

Indoor Location Using SENSOR

Networks

Timothy Porter
Jeremy Witmer

Dr. Chow, Advising
CS 522 – Network Communications

University of Colorado, Colorado Springs
Fall 2006

 Page 2 of 19

Abstract
New developments in wireless technologies has allowed for research into the possibility
for real-time indoor location using wireless SENSOR networks. Indoor real-time
location has drawn very strong interest from the emergency responder community, to
improve incident management, personnel response to rapidly changing environmental
conditions, and personnel safety. It has also drawn interest in the field of building
security.

This project is interested in taking wireless SENSOR hardware and software and
investigating the feasibility of tracking a moving sensor within a two dimensional
network of fixed sensors. Ideally, the position of the moving mote will be determined
based on the signal strength of the transmissions between the sensors, within a reasonable
margin of error. After design and testing of the network, the location software should be
able to determine the location of a moving sensor within a reasonable margin of error,
under 5%. After testing the network and software, it was found that, in two dimensions,
with no signal attenuation, the position of the moving sensor could be found with no
more than 7% error.

 Page 3 of 19

Table of Contents
Abstract ... 2
Table of Contents.. 3
Table of Figures .. 3
Introduction... 4
Introduction... 4
Wireless SENSOR Networks.. 4

Hardware... 5
TinyOS.. 5

Hardware Configuration ... 6
Software .. 7

Mote Software... 7
Remote Mote Software ... 8
Base Mote Software.. 9

Location Algorithm... 9
Location Software... 10

Results... 12
Further Research ... 13

Attenuated Signal Testing... 13
Updated Mote Software .. 14
Updated Location Software .. 14
Querying/Remote Control of Motes ... 14
Extension to Three Dimensions.. 15

Conclusion .. 16
Appendix A: Installation of Code and User Guide... 16

Mote Software... 16
Forwarder.exe Software.. 18
Location Software... 18

References... 19

Table of Figures
Figure 1: Crossbow Systems Mica2 (left) and Mica2Dot (right) motes (From [1])........... 5
Figure 2: Test mote network configuration .. 6
Figure 3: Trilateration in 2 dimensions (From [3])... 9
Figure 4: The configuration tab in the Location software .. 11
Figure 5: View tab in the Location software .. 11
Figure 6: Forwarder.exe software in operation... 12

 Page 4 of 19

Introduction
Emergency responders consistently look for ways to improve responder safety. To this
end, many recent technologies have arisen, including vehicle tracking and traffic signal
preemption, improved communications, and improved equipment. One area that has not
seen concurrent development with other first responder technology is that of real-time
personnel tracking within buildings and complexes during emergency events. This
tracking would allow incident commanders the ability to closely direct personnel for
improved response to rapidly changing environment conditions, and for improved safety.
Real time personnel tracking would also be useful in the area of building security, for
high security areas. Giving security personnel the ability to track visitors or other
persons within the building or complex would improve the general security. Wireless
technology and computer miniaturization have finally progressed to the point that this
tracking is now feasible.

This project is meant to explore basic location tracking using wireless SENSOR network
technology from Crossbow Systems. Ideally, the position of a single moving sensor will
be tracked within a two dimensional plane formed by fixed sensors at the corners. Using
a Trilateration algorithm, the position of the moving sensor will be determined from the
known distances between the fixed motes, and the radio transmission signal strengths
between the sensors in the network.

This project is meant to be a proof of concept. The signal strength exchange between
sensors has been explored, as has sensor location based on radio signals in simulation, but
both elements have not been combined to date within a network at UCCS. This project is
intended to show that positioning with the hardware is actually possible, within a
reasonable margin of error.

Wireless SENSOR Networks
The swift advancement of wireless technology has allowed for the development of new
technologies utilizing wireless communication. A wireless SENSOR network is one that
consists of numerous low-power microprocessor nodes, distributed across an area. Each
node is equipped with a radio transmitter, and the nodes dynamically form mesh
networks, allowing communication between the nodes, and back to a base node, allowing
data to be fed through the base node, processed, and collected.

Each of the separate nodes (normally referred to as motes) can be configured with
multiple different sensors, including temperature, sound, vibration, GPS, and many
others. These sensors can be combined with the motes in various ways. The motes
themselves can be specifically programmed to perform different operations.

Each mote runs on a battery, which means that the most critical element for mote
longevity is power usage. Accordingly, the motes are optimized for low power usage,
and can be programmed to spend most of their operational time in a sleep state, drawing
only micro amps. The most power-hungry operation for the motes is data transmission
using the radio.

 Page 5 of 19

The motes, as stated previously, form dynamic networks. Each mote has a unique ID,
called the mote ID, and a group ID. The mote ID allows the motes to send messages to
specific other motes in the network. The group ID allows for the use of multiple different
networks of motes in the same area. When a mote receives a message, it checks the
group ID against its own, and if they don’t match, the message is ignored. For all of the
motes with a given group ID, there is also a broadcast address, which allows a message to
be sent to all the motes in a group.

Hardware
The motes used for this project were designed by Crossbow Systems. The motes are built
on an Atmel ATmega 128L microprocessor, with a 433 MHz band radio. The radio has a
maximum theoretical range of 1000 feet, but in practice, free space signal loss and
attenuation due to buildings and equipment limit them to a shorter distance. Further
information can be seen at http://www.xbow.com/Products/productsdetails.aspx?sid=3.

Two types of motes were used in this project, the Mica2 and the Mica2Dot. Both motes
use the same processor. The Mica2dots simply have a smaller form factor, and run on a
CR series lithium battery, providing three volts. The Mica2 series motes use 2 AA
batteries to provide the necessary three volts.

For the purposes of this project, and the SENSOR network designs in general, the two
types of motes are interchangeable. The different motes run the same software, so the
behavior is consistent across the network.

Figure 1: Crossbow Systems Mica2 (left) and Mica2Dot (right) motes

(From [1])

TinyOS
The motes from Crossbow Systems run the TinyOS operating system. TinyOS is an
event based operating environment designed for use with embedded networked sensors.
More specifically, it is designed to support the concurrency intensive operations required
by networked sensors with minimal hardware requirements [2]. TinyOS uses a version of
C, called nesC. nesC is a structured, component based language. It wraps hardware and
software functionality into what are referred to as components. Each component

 Page 6 of 19

provides and uses a series of well-defined interfaces. Because component access is
limited only to the interfaces provided, the modules are very loosely coupled, allowing
for extensive flexibility. The component/interface system also means that the underlying
component code can modified without changing the interface. Finally, because the
various hardware on the mote itself are wrapped in components, the programmer can
avoid having to do any low-level byte code programming, which allows the development
process to go much more quickly.

Hardware Configuration
The location network for this project was designed to test a two dimensional version of
the mote network (see Fig. 2). The motes are laid out in a roughly square configuration,
with the base mote at the upper left. The base mote is connected to the laptop with an
RS-232 serial cable. The laptop runs the location software and displays the location of
the mobile mote as it moves within the network. The fixed motes are placed as shown in
the diagram, at distances of up to 10 feet, for the test network. Dimensions within the
network were measured in inches for testing, but the units are arbitrary.

Figure 2: Test mote network configuration

 Page 7 of 19

Software

Mote Software
This project uses two different software versions for the motes. The remote (fixed and
mobile) motes in the network use one version of the software, and the base mote, which
passes data to the laptop, uses a second version of the software.

Both versions of the software rely heavily on the TinyOS ActiveMessage TOS_Msg
structure, which is the OS defined structure that the motes use to send messages. The
active message structure is defined as:

typedef struct TOS_Msg
{
 /* The following fields are transmitted/received on the
radio. */
 uint16_t addr;
 uint8_t type;
 uint8_t group;
 uint8_t length;
 int8_t data[TOSH_DATA_LENGTH];
 uint16_t crc;

 /* The following fields are not actually transmit ted or
received
 * on the radio! They are used for internal accou nting
only.
 * The reason they are in this structure is that the AM
interface
 * requires them to be part of the TOS_Msg that i s passed
to
 * send/receive operations.
 */
 uint16_t strength;
 uint8_t ack;
 uint16_t time;
 uint8_t sendSecurityMode;
 uint8_t receiveSecurityMode;
} TOS_Msg;

The addr and group fields define the message receivers. The length, data, and crc fields
are the actual message body. Of the non-transmission fields, the one most critical to the
application is the strength field. When a message is received by a mote, this message
structure is passed up the radio stack to the receive message handler. In that structure, the
strength field indicates the transmission strength from the sender. This strength value is
what the location software uses to calculate the location of the mobile mote. The strength
field is a two byte field that ranges from 0 to 65535 for the signal strength, with 65535

 Page 8 of 19

being no connection, and 0 being the best possible signal strength. 65535 is the
theoretical lower limit on two connected motes, but in operation, the motes will lose their
connection well before a signal strength of 65535 is reached.

Each message data field can hold up to 29 bytes, which is the default TinyOS value. This
can be changed, but the default value gives the best balance between size of message and
throughput speed. Because of the way that the location software works, most of the
message traffic is broadcast traffic, which means that it goes to all other motes with the
same group ID, so throughput is important to reducing overall transmission lag in the
network.

Both of the software versions use the following two message structures (BUFFER_SIZE
is defined to be 13):

struct StrengthMsg
{
 uint16_t sourceMoteID;
};

struct SignalMsg
{

uint16_t sourceMoteID;
 uint16_t sigdata[BUFFER_SIZE];
};

The StrengthMsg structure is used by both versions of the software as a way to send its
own transmission strength values to all of the other motes in the area. The sourceMoteID
field is set to the motes own ID, which allows the other motes to store the transmission
signal value by mote ID. This message packet is sent approximately every half second.

The SignalMsg structure is used by the remote motes to send that mote’s received values
to all the other motes in the network. For instance, the network consists of motes 0-4,
where 0 is the base mote, and 4 is the mobile mote. Take mote 2. Each time mote 2
receives a StrengthMsg packet from one of the other motes, it puts the strength value
from the TOS_Msg structure in sigdata[transmittingMoteID]. This way, each mote’s ID
serves as the index into all the signal strength arrays that all of the motes send back to the
base mote. The strength value for any mote is at the same position in every sigdata array.
This message packet is sent every 3-5 seconds.

Remote Mote Software
The software on the remote motes has only two functions. The first is to, every 500
milliseconds or so, to send a StrengthMsg packet to all the other motes in the network.
This gives all the other motes in the network a signal strength value for this mote.

The second function, every 3-5 seconds, each mote sends a SignalMsg packet to the base
mote. This packet gives the laptop the signal strength data from every other mote in the

 Page 9 of 19

network to this mote. Getting all the SignalMsg packets from the motes in the network
allows the location software on the laptop to calculate the position of the mobile mote as
it moves within the network.

Base Mote Software
Unlike the remote motes, the base mote is connected to the display laptop over an RS-232
serial connection. It has the ability to transmit data to the laptop.

The software on the base mote transmits the same StrengthMsg packet as the remote
motes, every 500 milliseconds, since the base mote participates as a fixed mote in the
positioning network.

The second function of the base mote is to send its own SignalMsg packet down the serial
line every 3 seconds, to provide its own signal strength data to the location software on
the laptop.

The final function of the base mote software is to pass the SignalMsg packets from the
remote motes to the location software on the laptop. Each time a packet is received, the
base mote immediately passes it on to the laptop over the RS-232 line.

Location Algorithm

Figure 3: Trilateration in 2 dimensions (From [3])

The position of the mote within the sensor network is found using a Trilateration
algorithm. Trilateration is a method of determining the relative positions of objects using
the geometry of triangles in a similar fashion as triangulation [3]. Unlike triangulation,

 Page 10 of 19

which uses one known distance and the angles between points and the objective point,
Trilateration uses two or more known points, and the distances between those known
points and the objective point. To find a point in a two dimensional plane, three known
positions are required. To find a point in a three dimensional plane, four known points
are required. In three dimensions, replace “circle” with “sphere”, and all the geometry
remains the same.

Taking Fig. 3 as a demonstration, P1 is the base mote, and P2 and P3 are fixed motes.
The mobile mote is at point B. Measuring the distance to P1, r1, gives the location of the
mobile mote as anywhere on the circle C1. With the addition of the measurement to P2,
r2, the location of the mote is narrowed to the intersection points of circles C1 and C2, or
points A and B. With the addition of the measurement r3, there is only one intersection
point on all three circles, point B.

This diagram uses three circles to find the position of point B. The assumption here is
that there is no error in the distance measurements. Because there actually will be error
in the measurements, the software uses another fixed point, P4, and draws a fourth circle,
and takes the average of the intersection points, to find the best-fit point for the location
of the mobile mote.

The find the distances between the known points and the objective point (the mobile
mote), the signal strength values are used. When the network is first set up, the distances
between P1, P2, P3, and P4 are entered by the user. The motes at these points (the fixed
motes and the base mote) then exchange messages to get the signal strength values. For
instance, the base mote at P1 and the fixed mote at P2 are 36 inches apart. P1 receives a
signal strength of 18944. This value is divided by 36 inches to find a ratio, 526. That
ratio is then averaged with the ratios found using the signal/distance to P3, and P4, to get
an overall signal/distance ratio. Using the P1-P3 ratio = 528 and the P1-P4 ratio = 521,
the overall ratio is 525. Values are rounded to the nearest integer. At this point, the base
mote at P1 has enough information calculate the distance to the objective point, the
mobile mote, given a signal strength from that mote. If the signal strength from the
mobile mote is received as 16877, the corresponding distance is 16877/525, or 32 inches,
from P1 to the mobile mote.

This same operation is performed for the motes at P2, P3, and P4. Each of these motes
calculates its own signal/distance ratio that it uses to find the distance to the mobile mote.
After all these calculations are complete, the software then knows r1, r2, r3, and r4,
corresponding to the above diagram, and can calculate

To account for errors, and to determine sequentially better ratio values for the four known
points, the base mote and the fixed motes are constantly exchanging strength values, so
the ratios are constantly being recalculated.

Location Software
The location software is written in Java, and displays the positions of the fixed mote, and
the mobile mote, as it moves within the network. The positions of the base mote and

 Page 11 of 19

fixed motes are shown in blue, and the position of the mobile mote is shown in red. The
circles indicate the areas being used for the Trilateration algorithm by the software. The
location software accesses the data from the base mote over the network, served from the
Forwarder software.

Figure 4: The configuration tab in the Location software

Figure 5: View tab in the Location software

 Page 12 of 19

A second piece of software, Forwarder.exe is used to receive the data packets from the
base mote over the serial connection, check them for integrity, and make the packets
available over the network. This software simply acts as a terminal server.

Figure 6: Forwarder.exe software in operation

Results
To test the software, a few different networks were set up, with edge lengths between 70
and 120 inches. In each network, the mobile mote was moved, the actual position
measured, and that measurement was compared to the calculated measurement displayed
by the software. In all cases, the actual position was within 5 inches of the calculated
position, an error between 4% and 7%, which is quite acceptable. The error is calculated
to be:

[(actual x – calculated x)^2 + (actual y – calculated y)^2]
[(X side length + Y side length)/2]

 Page 13 of 19

This numerator is the Euclidean distance between the actual and calculated points. The
Euclidean distance is divided by the average side length to get a percentage error.
However, during the testing, a few problems arose with the network and the software.

The first problem was a concurrency issue with the mote data transmissions. Due to the
design of the mote software, the SignalMsg transmissions from the remote motes are
based on a timer. If two or more motes transmit their SignalMsg values to the base mote
at the same time, the first transmission to reach the base mote is received, and the others
are lost. This is due to the small amount of time that is required by the base mote to take
the data from the radio message, and transfer it over the serial line to the laptop. This
problem could be alleviated or eliminated by buffering the packets on the base mote, or
by querying the remote motes for their SignalMsg data, a pull operational model, instead
of the current “push” operational model, where the remote motes send their data based on
a timer.

The second problem that arose was with the implementation of the Trilateration
algorithm. Due to the fact that the radio signals are somewhat prone to interference, there
was error in the ratio values used to calculate the circles, so the intersection points do not
match up precisely. As a result, the location software must extrapolate the most correct
point of intersection as the position of the mobile mote. This extrapolation needs more
testing and refinement.

Finally, in the current implementation of the mote software, the motes are almost
constantly transmitting, which is a significant drain on the batteries. The Mica2 motes
will operate for approximately 24 hours on one set of batteries, and the Mica2dot motes
not more than 12 hours.

Further Research

Attenuated Signal Testing
For indoor location to be a viable option in the real world, it must work with attenuated
signals. In a normal indoor environment, there are walls, cubicles, equipment, and other
sources of attenuation.

The test two dimensional mote network for this project was set up in open space, without
any obstructions. To test the network in a more realistic environment, the network needs
to be set up between rooms, between cubicles, between floors, and in other configurations
to test whether or not the location software can handle the differences in signal strength
and still calculate an accurate location for the mobile motes.

Standard triangulation requires two points to determine the distance to a point.
Trilateration requires three fixed points to determine the location of a point. For
redundancy, the location software expects four fixed points. Ideally, with this many fixed
points, even in an attenuated environment, the average of the various calculations will
give a correct position.

 Page 14 of 19

Updated Mote Software
Due to the basic design of the software on the motes, there are concurrency issues with
the transmission of the SignalMsg packets to the base mote, and transfer to the laptop.
Since the base mote software doesn’t do any kind of packet buffering, it will refuse any
packets sent to it while it is transferring data on the serial line. That transfer takes
between 50 and 100 milliseconds. Any data packets sent to base mote are simply lost.
Ideally, the base mote software should be updated so that it queues the packets and
transfers continuously, as the serial line becomes available. In addition to this, the
transmission times for packets on the radio need to be determined, which would allow
each mote to send its SignalMsg updates to the base mote at optimal intervals. This
would allow maximum throughput of the packets to the location software.

Furthermore, the software would need to be extended to allow for message passing
between motes, to arrive at a base mote. For this network to be useful inside a larger
building or complex of any sort, one network of motes with a single base station would
not be able to cover the whole area. Therefore, a number of different base motes would
have to all have connections back to the central server where the location software is run,
probably over Ethernet, but possibly with another wireless link, such as 802.11b/g.

Currently, the sigdata[] array in the SignalMsg type will hold the signal values of up to
13 total motes, as each mote signal value is 2 bytes, and there are 26 bytes available for
the data structure. To extend the network, a new data structure would have to be defined,
to include the signal strength data and the transmitting mote ID, so more than 13 motes
could be used in the network.

Updated Location Software
Due to tight time constraints, the location software is a somewhat imperfect
implementation of the Trilateration algorithm. Due to the nature of the network
environment, there are numerous error conditions and boundary/weak signal conditions
that are not accounted for in the software. As the signal strengths vary, the program
needs to be able to select the correct intersections from the various distance circles used
to find the mobile mote, and must select between two likely positions.

Furthermore, the software currently will only handle a single mote, and only in two
dimensions. However, the code can be updated to handle these two cases with relatively
little effort.

Querying/Remote Control of Motes
Additionally, to save power in the whole network, a “pull” operational model could be
implemented. The base mote itself runs on 12V DC from the wall, but all of the remote
motes must run on battery, which requires that they conserve power. As the network is
designed now, each remote mote pushes its data back to the base mote constantly, which
is a significant power drain, relatively speaking. The remote motes are also always
running once powered on, and there is no way to shut them down, short of removing the
battery.

 Page 15 of 19

Since radio reception is a much lower-power operation than transmission, the remote
motes could normally be in a waiting state, doing nothing but waiting for inbound
messages. If the network needs to be used for location, the base mote can send a “power
up” command to all of the remote motes, at which point they will come online and begin
to broadcast the StrengthMsg packet, or the equivalent, to distribute the signal strength
values. When the network is no longer needed, the base mote can send a “power down”
signal, and the motes can go back into wait state. This method of operation would allow
the battery life of the motes to be significantly extended.

Additionally, instead of timed sending of the SignalMsg packets, as the software does
now, the base mote could, instead, query each of the fixed and remote motes, wait for a
response, and move on to the next mote. With a timer, as the remote motes operate now,
there is a significant amount of time, up to 50%, in some cases, where none of the motes
are transmitting SignalMsg packets to the base. With the addition of querying, the base
mote can ensure that one of the remote motes is always sending a SignalMsg packet,
allowing for much more efficient use of the system.

Take for instance a large industrial structure, such as a chemical production plant. Each
area of the structure is wired with a base mote, and a series of fixed remote motes, all of
which are in a dormant state. In the event of an emergency, where the site coordinator
needs to send personnel into hazardous areas, the base motes can send out the “power up”
command, and the network can be put into operation for the duration of the event. Each
responder who needs to go into the plant can be given one of the mobile motes to wear,
allowing the incident commander to see the locations of all his personnel. While on, the
system can report the positions of all the emergency personnel, allowing for faster
response time, better incident management, and better safety for all the personnel
involved in the fire. Once the incident is over, the base motes can send out the “power
down” command, and put the remote motes back into a dormant state.

Ideally, the power-up/power-down would only be used for the fixed motes, as opposed to
the mobile motes. The network should be designed with redundant fixed motes, to ensure
coverage even in the case that one of the motes does not power up, but the mobile motes
should still be in “always-on” mode. This would ensure that the mobile motes, once
powered, would always transmit their own StrengthMsg and SignalMsg packets,
eliminating a point of failure.

As a final step, for reliability, the base motes could send out a status query packet to all of
the fixed motes once every hour, or every day, etc. This would check for fixed motes that
are not operating due to damage, power failure, or some other circumstance.

Extension to Three Dimensions
This project served as a proof of concept in two dimensions. Using the location and mote
software written for this project, the hardware network could probably be extended to
three dimensions. Instead of the four motes used for these tests, forming a square, the
network would have to be extended to eight motes, to form a cube. With a cube as the
fixed network, the position of a mobile mote could be tracked in three dimensions.

 Page 16 of 19

Unfortunately, due to the transmission concurrency problem, with nine motes in the
network, there would be significant lag problems. It would take some 10 or more
seconds for the location software to get updates from all of the motes.

However, with updates to the software and concurrency model for the motes, the
performance of the network could be significantly improved. For this project to have
more than theoretical use, of course, positioning must happen in three dimensions.

Conclusion
This project has shown that indoor location using motes is certainly feasible, and
warrants further research. Using only the signal strength values between the motes, the
position of a moving mote can be determined within a reasonable margin of error.
Although there are certainly issues with the network and software design, the basic
operation has been demonstrated.

Though the network in this project was simple, the code and network can be extended to
test location finding more thoroughly, including extension to three dimensions, and
testing with signal attenuation, through walls, equipment, floors, etc.

Appendix A: Installation of Code and User Guide
All the software can be downloaded from the UCCS website at
http://cs.uccs.edu/~cs522/studentproj/projF2006/jtwitmer/src/. Download all files and
directories into a directory on your local computer.

Mote Software
Install Cygwin and TinyOS 1.1.0-1 from the Crossbow Systems guide at
http://www.xbow.com/Support/Support_pdf_files/Getting_Started_Guide.pdf. Copy the
BaseMote and RemoteMote folders, and the MakeXbowlocal file to your Cygwin home
directory.

**Warning: when attaching and removing the Mica2Dot motes on the programming
board, make sure that the power cord is disconnected from the board to avoid damage to
the motes. Also, ensure that the battery switch on the Mica2 mote is off when attaching it
to the programming board.

Using five motes Mica2 or Mica2Dot motes, choose and mark one of the Mica2 motes as
the base mote. The Mica2dot will not work as a base mote. Place that mote on the
MIB510 programming board, connect the board to your computer, and install the
software with the following command from your Cygwin home directory.

cd BaseMote
make mica2 install,0 mib510,<comport #>

 Page 17 of 19

<comport #> is the COM port to which the MIB510 board is connected. Once the
programming is complete, the base mote has been successfully programmed.

To install the RemoteMote software on the other 4 motes, place them on the MIB510
programming board one at a time, and execute the following commands from your
Cygwin home directory.

cd RemoteMote
make <platform> install,<#> mib510,<comport #>

<platform> takes either mica2 or mica2dot, depending on the mote being programmed.
<#> is the number of the mote being programmed, 1-4.
<comport #> is the COM port to which the MIB510 board is connected.

Before each install, open the file RemoteMoteM.nc, and vary the SigTimer value
between 2800 and 3300, and vary the StrTimer value between 600 and 1000, on lines 49
and 50. This skews the clocks on the remote motes so that they don’t attempt to transmit
over each other. The lines look like the following:

call SigTimer.start(TIMER_REPEAT, 3200);
call StrTimer.start(TIMER_REPEAT, 900);

Now that all five motes have been programmed, the network can be put into operation.
Mote 0 is the base mote, and should be attached to the MIB510, and the MIB510 should
be connected to the laptop using the serial cable.

Motes 1-3 are the fixed motes, and should be arranged relative to the base mote based on
the directions in the Location Software section of this appendix. Mote 4 is the mobile
mote, and can be moved within the confines of the plane defined by the fixed motes and
base mote.

The base mote draws power from the MIB510 board, and does not require batteries. To
turn the other motes on and off, replace or remove their respective batteries.

On the base mote, the red LED cycling indicates that it is sending StrengthMsg packets.
The yellow LED cycles each time it receives a StrengthMsg packed from another mote in
the network. The green LED cycles each time the base mote receives a SignalMsg packet
from another mote in the network.

On the motes running the RemoteMote software, the red LED cycles each time the mote
sends a StrengthMsg packet. The yellow LED cycles each time it receives a StrengthMsg
packed from another mote in the network. The green LED cycles each time the mote
sends a SignalMsg packet to the base mote.

 Page 18 of 19

Forwarder.exe Software
Once the motes have been programmed and powered up, the Forwarder.exe software
should be started. This software requires that the computer has the Microsoft .NET 2.0 or
higher framework installed. This framework software can be downloaded at
http://www.microsoft.com/downloads/details.aspx?familyid=0856EACB-4362-4B0D-
8EDD-AAB15C5E04F5&displaylang=en. Once the framework has been downloaded
and installed, start the program by clicking on the .exe file named Forwarder.exe.

To start the server to the network, select the COM port to which the MIB510 is attached.
Press the “Start Server” button. The local IP address will display in the box, and the
server will listen for connections on port 9001.

Once the server has started, binary data should start appearing in the gray text box. If
not, flip the small white switch on the edge of the MIB510 board. Once data is appearing
in the text box, the server is forwarding packets.

The Forwarder server will accept up to 10 connections from clients.

Location Software
The location software requires that the Java 1.5.0 platform or better. This software can
be downloaded from http://java.com/en/.

Download the moteview.jar file from src/MoteView/.

From the command line, use the command java –jar moteview.jar to run the
program.

Click on the Config tab. Fill in the Socket address field with the IP address provided by
the Forwarder software. The socket port is 9001.

To form the network for the motes, take the motes programmed 0-3 in the previous
section. Mote 0 is the base mote; it is placed in the upper left corner of the square that
will be formed. Mote 1 is the upper right corner, mote 2 is the lower left corner, and
mote 3 is the lower right corner, looking at the square from above. The square need not
be perfectly square, the location software will account for any discrepancies.

Now, using a tape measure, enter the distances between the various motes into the correct
boxes on the Config tab. The units aren’t important. Once completed, press the Save
button. Now, press the Connect button, and switch to the View tab.

Move mote 4, the mobile mote, within the plane defined by the other four motes. In the
View tab, the blue dots represent the positions of the base mote and the fixed motes, and
the red dot represents the calculated position of the mobile mote. The four circles
represent the circles used to find the position. The radius of each circle is found using the
signal strength/distance average between the blue motes.

 Page 19 of 19

References
[1] Website: “Motes, Smart Dust Sensors, Wireless Sensor Networks”,

http://www.xbow.com/Products/productsdetails.aspx?sid=3
[2] Website: “TinyOS FAQ”, http://www.tinyos.net/faq.html
[3] Website: “Trilateration”, http://en.wikipedia.org/wiki/Trilateration

