Sonchar

Page # 16

Candice Sonchar

CS522 Semester Project Report

Web Services

Web Services – Standards, APIs, and Applications
As the Internet becomes part of everyday life, applications are becoming web based. Applications are also running on multiple platforms and operating systems. Software has become more interactive with numerous other applications by communicating information back and forth as well. These changes allow for more applications to communicate with each other and to also run remotely through the web all running on a variety of platforms. These enterprise applications are called Web services. This paper will take a closer look at what makes up Web services. This will include core principles, protocols, APIs, and applications.
What Are Web Services
Web services provide a standard means of interoperating between different software applications, running on a variety of platforms and frameworks. Web services provide great interoperability and extensibility. They also have machine processable descriptions. These descriptions are written using the XML standard. This standard allows data exchange between clients. Programs providing simple services can interact with each other in order to deliver sophisticated added-value services.
“Web services take many of the ideas and principles of the Web and apply them to computer interactions. Like the World Wide Web, Web services communicate using a set of foundation protocols that share a common architecture and are meant to be realized in a variety of independently developed and deployed systems. Like the World Wide Web, Web services protocols owe much to the text-based heritage of the Internet and are designed to layer as cleanly as possible without undue dependencies within the protocol stack.” (JavaSun) One difference between web services and the web is how interaction takes place. WWW is mostly for browsing and read-only viewing of static cacheable data, whereas web services are highly dynamic program to program interaction.
Web Services are based upon the concept of messaging. Messaging is a method of communication between software components or applications by using a peer-to-peer facility that can send messages to, and receive messages from, any other client. Each client connects to a messaging agent that provides facilities for creating, sending, receiving, and reading messages. Messaging enables distributed communication that is loosely coupled. A component sends a message to a destination, and the recipient can retrieve the message from the destination. However, the sender and the receiver do not have to be available at the same time in order to communicate. In fact, the sender does not need to know anything about the receiver; nor does the receiver need to know anything about the sender. The sender and the receiver need to know only what message format and what destination to use.
A few examples for web services include distributed computational clusters, peer-to-peer environments, mobile-networked systems, asynchronous and synchronous messaging systems, and grid systems.
Core Principles

In order for Web services to communicate in a standard way and allow for applications to communicate, core principles were developed. These core principles are the design and architecture of web services protocols. The principles include the following:

· Message orientation—using only messages to communicate between services and realizing that messages often have a life beyond a given transmission event.

· Protocol composability—avoiding monoliths through the use of infrastructure protocol building blocks that may be used in nearly any combination.

· Autonomous services—allowing endpoints to be independently built, deployed, managed, versioned, and secured.

· Managed transparency—controlling which aspects of an endpoint are (and are not) visible to external services.

· Protocol-based integration—restricting cross-application coupling to wire artifacts only. (Web Service Activity)
Messages
Web services communicate using messages. The messages must be formed and processed in a specific manner. The message is the atomic unit of communication. This is true for both messages that are transmitted in wire format i.e. SOAP, and also for a given web service (WSDL).
Protocol Composablilty

Web Services’ protocol composablity is based on the SOAP architecture. This architecture “anticipates the composition of infrastructure protocols through the use of a flexible header mechanism. One advantage of this approach is that the protocol surface area for a particular application is based on the actual features used by that application. A given protocol imposes absolutely no cost to applications that do not use it. Software operating on computing devices of various scales can use the exact protocols they need, maximizing the applicability of the architecture. A second advantage is that new protocols can be introduced at any time to complement the existing ones and extend functionality. The ability to innovate is thus built-in to the architecture.” (Web Services Activity)
Autonomous Services

Changes to compatibility for evolving services are inevitable. These changes must be managed for the correct operations of the web services. Autonomous services are standards of how the versioning is to transpire. For example, SOAP provides an evolution model based on headers. As new headers are introduced, the upgrade policy is carried in the header itself. Headers that may be safely ignored are simply inserted into the message. Headers that cannot be safely ignored are annotated with a mustUnderstand attribute, indicating that their insertion is a breaking change and that only recipients that recognize the header may process the message.
Managed Transparency

To allow for the flexibility of code, operation systems, service autonomy, and other implementation details, the implementation details should be private to a service. This hiding is done by using the message-oriented façade. This also allows for substitution of one service implementation for another as long as both services respond to the same set of message requests with comparable results.
Protocol Based Integration

“Application integration is simplified when message-based protocols are used for all communication. By building a self-contained system for description and messaging that is devoid of programming language or operating system details, Web services have shown that it is possible for applications running in truly disparate environments to communicate securely and reliably.” (Web Services Activity) Assuming the applications must not share OS, VM, programming language or abstraction, independence from the implementation is key for web service interoperability.

Specifications
The specifications that define Web Services are intentionally modular and as a result there is no one document that defines it. Instead, there are a few “core” specifications that are supplemented by others as the circumstances and choice of technology dictate. The most common are:
· SOAP: An XML-based, extensible message envelope format, with “bindings” to underlying protocols e.g., HTTP, SMTP, and XMPP.

· WSDL: An XML format that allows service interfaces to be described, along with the details of their binding to specific protocols. Typically used to generate server and client code, and for configuration.
· UDDI: A protocol for publishing and discovering metadata about Web services, to enable applications to find Web services, either at design time or runtime.
· WS-Security: Defines how to use XML Encryption and XML Signature in SOAP to secure message exchanges
Java API Standards

The Java language has expanded for the use of web services. There are numerous Java API standards for the use of XML to create and expose web services. There are many other languages that also are used in communication for web services. This includes .Net languages. The Web Services Interoperability Technology (WSIT) is an open-source implementation of next generation Web services technologies. WSIT delivers interoperability between Java EE and .Net to help you build, deploy, and maintain applications for you web service architecture. WSIT is built upon JAX-WS (Java API for XML Web Services) and is based on messaging, metadata, security, and Quality-of-Service. One of the most popular and most widely used Java APIs is the Java Messaging Service (JMS).
Java Messaging Service
The Java Message Service is a Java API that allows applications to create, send, receive, and read messages. The JMS API defines a common set of interfaces and associated semantics that allow programs written in the Java programming language to communicate with other messaging implementations. The JMS API minimizes the set of concepts a programmer must learn to use messaging products but provides enough features to support sophisticated messaging applications. It also strives to maximize the portability of JMS applications across JMS providers in the same messaging domain.

The JMS API enables communication that is not only loosely coupled but also Asynchronous and reliable. Asynchronous means that the JMS provider can deliver messages to a client as they arrive and the client does not have to request messages in order to receive them. Reliable means the JMS API can ensure that a message is delivered one and only once. If an application can afford to lose or duplicate messages, the reliability can be decreased.
When To Use JMS

There are certain enterprise applications that should be designed using JMS. This is when the application should use a loosely coupled messaging service instead of a tightly coupled service. An application should be designed using the JMS API under the following circumstances:

· The provider wants the components not to depend on information about other components' interfaces, so that components can be easily replaced.

· The provider wants the application to run whether or not all components are up and running simultaneously.

· The application business model allows a component to send information to another and to continue to operate without receiving an immediate response.
Architecture

JMS is designed using the core principles and standards of Web Services along with creating its own standards. This API can be used to create, delete, send, and update messages between applications on the server and clients. JMS also has certain components that must exist in order for applications to communicate. The following are the JMS components:
· JMS provider: A messaging system that implements the JMS interfaces and provides administrative and control features.
· JMS clients: The programs or components, written in the Java programming language, that produce and consume messages.
· Messages: Are the objects that communicate information between JMS clients.
· Administered objects: Preconfigured JMS objects created by an administrator for the use of clients. The two kinds of administered objects are destinations and connection factories.
· Native clients: Programs that use a messaging product's native client API instead of the JMS API. An application first created before the JMS API became available and subsequently modified is likely to include both JMS and native clients.
The following figure shows how the JMS components interact with each other. Administrative tools allow the application to bind destinations and connection factories a Java Naming and Directory Interface (JNDI) namespace. The JMS client can then look up the administrated objects in the namespace and then establish a logical connection to the same objects through the JMS provider.

The JMS API allows for messaging to be done in two different ways, point-to-point and publish/subscribe. These approaches for message transmission can be used independently or combined into a single application. Messaging can also be done either synchronously or asynchronously. During synchronous messaging a subscriber or a receiver explicitly fetches the message from the destination by calling the receive method. The receive method can block until a message arrives or can time out if a message does not arrive within a specified time limit. Asynchronous messaging occurs when a client can register a message listener with a consumer. A message listener is similar to an event listener. Whenever a message arrives at the destination, the JMS provider delivers the message by calling the listener's onMessage method, which acts on the contents of the message.
Point-to-Point (PTP) uses message queues, senders, and receivers. When messages are sent each message is delivered to a specific queue. The clients extract these messages from the queue that was established for that client. Messages are sent whether or not a client is ready to receive it and remain in the queue until consumed by the client or until the message expires. The client receiving the message can also fetch the message at anytime once it is in the queue. When the receiver gets the message it sends an acknowledgment back to sender. This method is best used when every message must be received by one client. The following diagram illustrates point-to-point messaging in JMS.
[image: image1.png]E
i Consumes
Sends

Acknowledges

Publish/Subscribe messaging occurs when several topics are used to address a message instead of a clients queue. Publishers and subscribers are anonymous and dynamically publish or subscribe to the content. The system takes care of distributing the messages arriving from a topic’s multiple publishers to its multiple subscribers. Topics retain messages only as long as it takes to distribute them to current subscribers. This messaging allows for multiple consumers. The subscribing client can only consume messages published after the client creates a subscription for a topic and it must remain active. JMS does allow for durable subscriptions in order for clients that were not subscribed at the time of a message being published, to receive those sent messages. The following picture shows the pub/sub messaging.
[image: image2.png]@ Subscribes | Client 2

Delivers
m — fopie 9
Publishes

Subscribes Client 3
—_ :'

Delivers

=

Mule

Mule is a light-weight messaging framework object broker that is highly distributable and can seamlessly handle interactions and communication with other applications using disparate technologies, transports and protocols. The Mule framework provides a highly scalable environment in which you can deploy your business components. Mule manages all the interactions between components transparently whether they exist in the same VM or over the internet and regardless of the underlying transport used. (Mule)
Mule provides a simple way to write components to process data without needing to know about the sender or receiver, the format of data, technology being used for send and receive. Mule allows you to quickly develop components and then change the way they behave through configuration instead of coding.
Architecture
Mule is a messaging platform based on ideas from Enterprise Service Bus (ESB) architectures. ESB works by acting as a sort of transit system for carrying data between applications within or without your virtual machine. Mule uses a set of endpoints through which applications send and receive data between each other. The messaging bus routes messages between endpoints. The ESB is usually developed using JMS however it can be implemented using several other message server APIs.
The point of the object broker is to manage service components. These components are called Universal Message Objects (UMOs). UMOs are plain old Java objects and can exist in the same VM or throughout a network or Internet. All communication between UMOs and other applications is made through message endpoints. These endpoints provide a simple and consistent interface to vastly disparate technologies such as Jms, Smtp, Jdbc, Tcp, Http, Xmpp, file, etc. The diagram below shows a common scenario with Mule. Mule applications usually consist of many Mule instances across the network. Each instance is a light-weight container that hosts one or more UMO component. Each UMO component will have one or more endpoints that it will send and receive events through.

 [image: image3.png]Mule Manager nstance

Mule Manager nstance

R
j
‘

Mule exposes web services in two different ways. It can invoke them programmatically using the Mule Client or it can invoke them as part of the event flow of a UMO component. Mule is designed to provide wiring of services using endpoints and makes no assumptions about the message. Mule is designed to be adaptive to its surrounding technology. It interacts with JBI, EJB, mainframe apps, messaging, web services, sockets and file systems in a consistent way but does not have any set rules on how this interaction must take place.
Mule is a very flexible system. It is designed to be flexible and extensible by allowing mule to use services from other frameworks just through configuration. With this flexible design, an application can make use of all the functionality of several applications as well as additional features of Mule. Often times the configuration is a single line to manage components. The following picture demonstrates how many components can communicate through Mule:

[image: image4.jpg]381 3R 208)

Web Sarvices
Not1JZEE

. Pt Bl
A e et oy

When to use Mule
Mule allows for flexible interaction between applications easy configuration. The following are times when a developer should use Mule in the application:
· Integration projects where two or more existing systems need to communicate with each other.

· Applications that need to be totally decouple from their surrounding environment or where the ability to scale one more components in the system is needed.

· Single VM Applications where the developer wants to future-proof their application against unexpected distribution or scaling requirements. Mule works very well as a single VM application where interaction between components in the system is achieved in memory with no detectable degradation in performance. (Mule)
Conclusion
Web services have allowed applications to grow and advance into dynamic, flexible, systems that can communicate and interact with one another. This allows applications to run across networks and the Internet. This interaction can take place due to the fact the web services have standards and protocols that applications must follow. There are numerous agents available to create these web services. JMS and Mule the two this paper analyzed. They are both powerful tools for allowing applications to communicate.
JMS is a Java only product. This allows for multiple Java applications to communicate messages back and forth through a JMS provider. If however two applications that are not Java must communicate, Mule is a better solution. Mule allows for a much simpler integration of systems. It provides an easy to use, powerful server that operates over many complex topologies. Mule also allows for more code reuse than JMS because only the configuration files must be changed to receive different messages.
Mule fills a void in enterprise java development where an application requires complex interactions with a variety of systems on a variety of platforms. Mule makes light work of wiring these systems together in a robust decoupled environment and provides the necessary support to route, transport and transform data to and from these systems. Mule is not a replacement for existing application frameworks but leverages many source projects. JMS is a vital tool in the enterprise toolbox, but on its own it leaves a lot of additional work for the developer in order to use it. Mule provides a simple, consistent yet fully customizable way to work with JMS or any other messaging or transport technology. Components in Mule are wired together using a variety of technologies though this is totally abstracted away from the application.
Overall Mule gives a platform that is much easier for a developer to use. Mule does not require as much code for messaging as JMS does. To see this difference in amount of code the following hello world examples, JMS Hello World and Mule Hello World (Examples). The best way to use these two components is to use them in combination. This allows the developer to get the benefits of both APIs in order to make their web services flexible, reliable, and each to use.

With the advancement of communications between applications more and more APIs will be developed to create these web services. They will become more flexible and universal. Web services will continue to advance which leaves the research in this area wide open and ongoing.

References
Java Message Service Tutorial. http://java.sun.com/products/jms/tutorial
Web Services Activity . http://www.w3.org/2002/ws/, November 20, 2006
Wikipedia: http://en.wikipedia.org/wiki/Web_service, November 30, 2006.
Java Technology and Web Services . http://java.sun.com/webservices/, December 1, 2006
Mule: http://mule.mulesource.org/wiki/display/MULE/Home; November 30, 2006
Examples: http://www.enterpriseintegrationpatterns.com/RequestReplyJmsExample.html; December 2, 2006
