Mica2 Mote Based Sensor Networks
Clifford Macklin

William Ehrbar

ABSTRACT
This project report is focused on a study of a Mica2 Mote Based Sensor Network (MBSN). Our research into a MBNS consisted of a TinyOS operating system using Crossbow hardware. Part I: Introduction will provide a brief synopsis into the TinyOS operating system, the program language it was constructed in, and a description of the hardware used. It will also explain some of the uses of this type of system and the different types of sensor hardware available within it. Part II: TinyOS Applications will delve into the architecture of a MBNS and how the hardware components communicate. Part III: Conclusion will finish off the report with a summation of some of the limitations and difficulties of the MBNS as well as suggested improvements.
TABLE OF CONTENTS

PART I. INTRODUCTION

2

nesC

2

TinyOS

3

Hardware

4

Applications for a MBNS

6

PART II. TINYOS APPLICATIONS

7

Architecture of an Application

7

Wireless Communications with the Mote

11
PART III. CONCLUSIONS

13

Limitations and Difficulties of a MBNS

13
REFERRENCES

14
PART I: INTRODUCTION

For the purposes of this research project, a Mote Based Network System (MBNS) is defined to be a wireless hardware system consisting of a series of motes capable of gathering information, broadcasting gathered information to a central gateway, and monitoring movement (tracking). This part of the paper will provide a brief background into nesC, the language the TinyOS operating system, an introduction into the TinyOS operating system (TinyOS), and a description of the hardware studied (Hardware).
nesC
nesC is an extension to the C programming language. It was developed by the University of California, Berkeley and Intel Research, Berkeley for use in a holistic, event driven, system. Such a system will usually consist of a network of motes – small sensor devices that have very limited resources [3]. According to the nesC 1.1 Language Reference Manual, the basic concepts behind the design of nesC are:

· Separation of construction and composition: programs are built out of components, which are (“wired”) to form whole programs.
· Specification of component behavior in terms of set of interfaces. Interfaces may be provided or used by the component.

· Interfaces are bidirectional: they specify a set of functions to be implemented by the interface’s provider (commands) and a set to be implemented by the interface’s user (events).

· Components are statically linked to each other via their interfaces.

· nesC is designed under the expectation that code will be generated by whole-program compilers.

· The concurrency model of nesC is based on run-to-completion tasks, and interrupt handlers which may interrupt tasks and each other. [1]
These concepts help create an effective programming language for deeply networked systems, especially MBSN.
A typical nesC application will consist of one or more components. The two basic components in nesC are “modules” (which provide the actual application code) and “configurations” (which are used to “link” the necessary components together into an application). The complete nesC 1.1 Language Reference Manual can be accessed at http://www.tinyos.net/tingos-1.x/doc/nesc/ref.pdf.
TinyOS
TinyOS is a holistic, event-driven operating system written in nesC. It is designed for sensor networks that have very limited resources (e.g., 8K bytes of program memory, 512 bytes of RAM [1]). An event driven system is a system that generally reacts to change in an environment (temperature, light intensity, sound, air flow . . .) rather than processing changes through interactive input or batch driven processes. Since multiple motes will be transmitting data simultaneously, a MBSN operating system must be able to address the complications of this type of system (race conditions). TinyOS was designed specifically with this in mind. It allows for concurrency management. The TinyOS Tutorial describes this concurrency management as follows:

TinyOS executes only one program consisting of selected system components and custom components needed for a single application. There are two threads of execution: tasks and hardware event handlers. Tasks are functions whose execution is deferred. Once scheduled, they run to completion and do not preempt one another. Hardware event handlers are executed in response to a hardware interrupt and also run to completion, but may preempt the execution of a task or other hardware event handler. [2]
In addition, since TinyOS was designed to operate with a wireless network system, it already has wireless communication components built within its structure. Finally, this operating system also comes equipped with the software necessary to operate Crossbow senor hardware. The TinyOS operating system can be downloaded at http://www.tinyos.net/download.html.
Hardware [6]
For the purpose of our study we used a Crossbow MIB 510 programming board with an -SB 2.0 serial interface and a Mica2 (MPR400CB) sensor board and MICA2DOT sensors. The MIB 510 (pictured below) has an on-board in-system processor (ISP) to program the motes. Code is downloaded to the ISP, over the serial port, and the ISP programs the code into the mode. The ISP runs at a fixed baud rate of 115 kbaud

[image: image7.png]HPLClock
Wodle il
HPLClcokno

oo

NoLeds Clocke
Configurtin Fe:
Wodkds File:
Naladethno Cooktre
oo
Timerc
Lece Configurtrion e

TmarCne
Mol File: Tl o

Timer

Single Timer
Configurtion Fie:
SngleTimer no

Ledsc

Wodke File: LedsC o

Timer

Blink

Lt Configurtrion il

Bk
Wodkds File: Bl

HPLPower Manugerment.
Wodb il HPLFovar
Wansgemertit o

Legena

i] Be——

Application

Bi-rtertaoe

MIB 510 Programming Board (Top View)
The senor board we used (pictured below) contained a Crossbow 433 Mhz processor with 512 kB of memory. It runs as 8 mA in full operation and 8 uA in sleep mode. The maximum transmit distance between sensors and gateway was not tested during this research. In addition, the only sensor output test was the light sensor.
[image: image1]
Mica2 – MPR400CB Sensor Board (Top View)
These components were combined together through the expansion connectors as shown below.

[image: image3.png]

[image: image4.jpg]~

\

_,

Sensor Board

(MPR400CB)

[image: image5.jpg]

Programming Board

(MIB 510)

[image: image6.png]

Sensor (MTS300)

Combined Components (Side View)

Basic testing consisting of running through the TinyOS Tutorial [2].
The Sensor
Crossbow provides various sensor boards capable of performing a wide variety of functions. Most of the boards available can do perform multiple sensor operations. The list of available sensor functions are as follows: Accelerometer, Barometer, Buzzer, External Analog Senor Inputs, Light, Microphone, Magnetometer, Photo-sensitive Light, Relative Humidity and Temperature, Relays, and Thermistor [8]. The MTS300 senor was studied during our research. This sensor had the following functions: Buzzer, Light, Microphone, Magnetometer, and Thermistor. However, only the light sensing component of the sensor was tested in our research. This sensor is pictured below.

MTS 300 Sensor

(Top View)

Applications for a MBSN
In 2003, the University of Colorado tested the use of MBSN as a means of providing critical information in disaster environments. For example,
First responders at a disaster site must be able to transmit and receive critical information related to: Build design and floor plan, Building structural integrity, Stability and safety of building pathways, and Location of emergency personnel. A sensor network is a possible solution for this need to quickly establish tactical communications and relay critical information to ensure the effectiveness and safety of disaster relief efforts [such as those of fire fighters]. [4]
Currently the University of Colorado is still conducting research into the use of MBSN in disaster environments.
This type of wireless network sensor system also lends itself to environmental monitoring applications. Some examples of environmental deployments are:
· Light, temperature, and soil conditions within a green house

· Soil moisture and temperature in a vineyard or other high value crop

· Wind speed and wind direction measurement in mountainous regions

· Frost detection and warning

· Measurement of localized ET (Evapo-Transpiration) for Irrigation Control

· Indoor comfort monitoring, including HVAC tune-up [7]
There are also considerable security applications available for this system. For example, they could be place along an intercontinental cable to detect when (and more importantly) where an insurgent tampered with or broke the cable. Such a use could save tax-payers a considerable sum of money. [9]

PART II. TINYOS APPLICATIONS

Our research into MBSN heavily involved using TinyOS Applications to drive the hardware. This section will focus on the architecture of an application and how a wireless application controls the communication between hardware devices.

Architecture of A TinyOS NesC Application:

Just as any operating system operating in a single processor environment, all instructions are executed sequentially. Even more than that, TinyOS is a non-preemptive implementation consisting of tasks and events. This being said, the architecture of an application in TinyOS using NesC is a modular approach. From software perspective it is aspires to be an object oriented approach in order to promote reuse and ease of application reconfiguration. It also can be noted that the application architecture is also reminiscent of a VHDL (Very High Speed Integrated Circuit Hardware Description Language) approach in that way that it “wires” together bi-directional interfaces of component abstractions. Of course, actual implementation of the application does not achieve the concurrency of a VHDL design.

There are two basic facets to an application: Implementation & Interface. The implementation is the actual code that is executed to accomplish an algorithm/functionality while the interface is the way in which the implementations are connected to one another. The proper nomenclature for the NesC files that make up these facets are module and configuration files. The module file is used to both define implementation as well as interconnectivity, while a configuration file is used to define interconnectivity. Both types of files can contain abstractions that ease reconfiguration and reuse. The best way to further illustrate these items is to describe one of the examples that is provided called Blink. This application is simply used to blink an led that is on the MIB510 programming interface board.

The interconnection is accomplished through an inheritance model, thus the reason for the comparison to an object oriented model. The Blink Architecture figure on the following page indicates the “inheritance” module that is implemented along with indications of what types of files (module &/or configuration) that are used to achieve the desired interconnection. Note that the arrows are bi-directional because they represent bi-directional interfaces.

[image: image2]
As can be seen, the Blink application actually employs many layers of abstraction from the base hardware. The main working components that are in the Blink application are the led itself, which is toggled between an on and off state, and the timer which determines the rate at which it occurs. The top-level implementation of the blink application (found in the module file BlinkM.nc) simply initializes the necessary items through abstracted calls and then toggles the led on a timer event. The top-level configuration (Blink.nc file) very simply shows how the Blink module “inherits” the functionality of the Leds “class” and the Timer “class” (note: the term class is used loosely, because each of these components are accessed through a controlled interface, but the idea of an instantiation of a class type doesn’t hold.).

First Layer of Abstraction (Timer): The SingleTimer is utilized here as an “abstract class” in that it simply supplies the Blink application with an abstracted interface to the Timer component. In actuality the Blink application could be wired straight through to the Timer component (simply change out SingleTimer wiring in the Blink.nc file to go straight through to the Timer component). The reason it has been added is just for illustrated purposes. An example of why you may want to do this would be to supply a static (not used in the software sense) component interface to applications that would allow the programmer to change the underlying timer mechanism without causing any changes to the application configuration or module files (same idea as to why you may do something like this in C++!).

Second Layer of Abstraction: The Timer component is made up of both a configuration and module file. This abstraction utilizes 3 different underlying components. The main one for this application being the ClockC (the PowerManagement and NoLeds interfaces are not used for this application). The Timer module utilizes the Clock to fire an event based on a given time interval (which is initializes through the Blink.Timer interface to this underlying component). This event is then tied back up to the top-level Blink.Timer interface thereby supplying the mechanism to time the led toggling.

Third Layer of Abstraction: The ClockC interface is yet another abstraction to an underlying hardware clock (oscillator, synthesized digital clock, etc.). This abstraction is used to avoid having the user from having to change application code (or “middleware” code) in the case that a new board (platform is the term used in the code directory structure; this is the same as the approach Linux uses) will be used that utilizes a different hardware clock. This allows the user to differentiate platforms through a makefile switch thereby making the application portable. This abstraction could also be used to implement a different clock on the same board, but mainly this is utilized for the former reason. The low level components, NoLeds and HPLPowerManagement, are not really used in the Blink application, but never the less represent the modules that directly control the hardware on the board. This is the hardware to software glue that allows the programmer to utilize the associated hardware functionalities without having to re-write the interface to them over and over again. These modules have functions that are associated with an interface and they make the appropriate interfaces available to applications for their use at the base level. These modules contain the low level TinyOS calls that will manipulate the hardware.

Fourth Level of Abstraction: The HPLClock module is the low level module that directly manipulates the clock hardware on the mica2 platform. It’s relation to the ClockC module, as described above; in addition to the description of the NoLeds & HPLPowerManagement modules should make its use clear.

First Layer of Abstraction (Leds): The LedsC module is the low level component that interacts directly to the leds on the board. It is important to note that the Leds interface that is shown between the Timer and NoLeds is not utilized. Instead the Leds interface to the LedsC module is used. This is evident in the top-level configuration file (Blink.nc). This interface provides the low level interface needed for the Blink application to manipulate the the Leds on the board.

In terms of the application architecture this description should give a good idea of how NesC applications in TinyOS are structured, how they operate, and why. More detailed investigation of the code itself is encouraged to get a stronger grasp on the subject. As a pointer to where to start, particular attention should be given to the top-level configuration file that outlines the overall application structure. In addition, the importance and functionality of the Main module and the StdControl interface and its semantics should be investigated.

Wireless Communications with the Mote:

Due to the resource and size constraints that the hardware platforms introduce it is critical that the TinyOS environment implement a lean implementation of all available functions. Wireless communications happens to be the major purpose of the platforms using TinyOS because the platforms are generally used for remotes sensing and transfer of data. Because TinyOS is an operating system used to target this resource constrained platforms I will interchangeably use the term TinyOS for the platforms that it is actually running on.

With respect to the Wireless Communication facilities TinyOS offers there are two major hurdles to overcome:

(1) Small amount of processing power and memory due to footprint and power issues. Directly effects data and instructions handling and size.

(2) Power supply is small (2AA batteries) therefore it requires low power thereby lowering the transmit range

The wireless communication model does several things to overcome these issues. First the network stack itself has been basically reduced to an event handler (interrupt service routing, ISR) that is responsible for integrating the message into the computation and/or responding to messages. The message composition is that of payload and a target address (complete with what event handler on a target it is for, somewhat synonymous to ports in Linux). Not only does using Active Message model reduce the need for instruction related code, but it also uses a zero copy method for handling packets. This means, instead of an application copying over the data from the event handler the handler passes the buffer pointer to the application. A reusable buffer pool is implemented such that the application must copy the data to another location or simply release the buffer back to the pool when it has finished with the data.

From a power perspective the TinyOS environment uses fewer parts and less power hungry parts. This is specifically evident with the transmitter that is utilized in the wireless communications (the range of the transmitter being a matter of meters). To overcome this issue the platform has no choice but to utilize a low power transmitter, but in order to meet the objectives of remote sensing, which implies that the range of effective transmission be increased. To do this implementers have built components that support multi-hop routing (they also achieve ad-hoc topology discovery). This gives the functionality of a higher effective range by dispersing the power and range requirements among many targets. In this specific case a 4 hop mechanism was supported with the addition of the muli-hop component and a packet size increase of 7 bytes (4 bytes – intermediate hop addresses, 1 byte for number of bytes thus far, 1 byte for source address, 1 byte for handler ID on target) [5].

PART III. CONCLUSION

This final section will address some common issues experienced with a MBSN.
Limitations and Difficulties of a sensor network
The greatest limitation to any wireless MBSN is power. Power limits the system in how long it can function without some form of direct human inaction (i.e. changing batteries). Changing batteries for sensors located across 100s of miles of network would be extremely expensive to say the least (not to mention that a few would surely be missed). In addition, power consummation will automatically place limitations on the capabilities of the sensors; such as, how often they should take readings and/or transmit data, how much time they will spend in “sleep” mode, the overall range of the sensors, etc. The more power conserved needed, the more these functions must be restricted. [3, 4, 6]
Furthermore, FRSN have computation constraints. These nodes do not have the power or memory available to support full TCP/IP stacks or perform complex routing algorithms. This makes tracking non-stationary motes more difficult. [4]
Another difficulty is overcoming mote failures and run-time errors. Since there is no real recovery mechanism programmed or wired into the motes, these failures are difficult to correct short of automatic reboot sequences. [3] With rapidly changing environmental conditions, sensors can and will become inaccurate and will therefore require some form of automatic recalibration. There is currently nothing built into the mote to handle this.
A final issue would be security. Placing a MBSN in a secure site but not securing the broadcast would be like giving out a semantic to the site. Converting wireless transmissions into an encrypted signal would require more memory and place a higher power drain on each mote. This would not be a problem if the motes are physically hard-wired into a building, but becomes an issue in an external environment where direct wiring is not possible or practical.
REFERENCES

[1] D. Gay, P. Levis, D. Culler, E. Brewer. nesC 1.1 Language Referrence Manual, May 2005. http://www.tinyos.net/tingos-1.x/doc/nesc/ref.pdf. 20 Nov. 04.
[2] TinyOS Tutorial, September 2003. http://www.tinyos.net/tinyos-1.x/doc/tutorial. 15 Nov. 04.

[3] D. Gay, P. Levis, D. Culler, E. Brewer, R. von Behren, M. Welsh. The nesC Language: A Holistic Approach to Networked Embedded Systems, June 2003. http://nescc.sourceforge.net/papers/nesc-pldi-2003.pdf. 27 Nov. 04.

[4] C. Chow and G. Godavari. First Response Sensor Network (MBSN) Final Report for NISSC Fall 2003 Project.

[5] P. Buonadonna, J. Hill, D. Culler. Active Message Communication for Tiny Networked Sensors.
[6] MPR – Mote Processor Readio Board – MIB – Mote Interface/Programming Board User’s Manual. 2004. http://www.xbow.com. 15 Nov. 04.

[7] Wireless Systems for Environmental Monitoring. http://www.xbow.com. 1 Dec. 04.

[8] Product Info Guide. http://www.xbow.com. 1 Dec. 04.
[9] Edward Chow. “Class Lecture”, 22 Nov. 04.

Page 1

