Turbo Codes
Michelle Stoll

CS 522 Fall, 2004
Turbo codes represent a striking breakthrough in error correcting codes.  Based upon fundamental error correcting code (ECC) concepts, they include enhancements such as concatenated recursive systematic encoders, pseudo-random interleavers, and soft input/soft output (SISO) iterative decoding.  These features permit turbo codes to boast a bit error rate very near the Shannon limit.  They are well-suited for low-power systems.  Indeed, turbo codes have been touted as the most effective class of error correcting codes to-date.  This paper will provide an overview of their development and function, as well as a discussion of their performance, applicability, and limitations.
Turbo codes are formally defined as “parallel-concatenated recursive systematic convolutional codes” [4].  The name ‘turbo’ draws an analogy to turbo engines through the use of iterative feedback in the decoding process.  These codes evolved from convolutional coding.  A convolutional code, depicted below, is considered a class of codes with memory.  They are defined as a triple (n, k, m), meaning they generate n encoded bits for every k data bits received, where m refers to the number of memory registers.  Thus n encoded bits at a given time depend on k data bit inputs as well as m previous input blocks, where (m + 1) defines the code constraint length.  Code constraint length represents the number of bits in an encoder’s memory that affect the generation of n parity bits. [10]
[image: image1.png]encoder 1 encoder 2 encoder n
outer code inner code
decoder 1 decoder 2 decoder n

channel




Fig 1:  A simple convolutional encoder and decoder. [4]
A turbo code differs from a convolutional code in that it concatenates codes in parallel instead of serially, and makes use of an interleaver to encode part of the data.  The iterative decoding process, which also makes use of an interleaver, lends the most unique characteristics to this class of codes.  Decoding uses probabilistic processing, passing soft decisions as feedback from the output of one decoder to the input of another.  The information is used iteratively in a loop, providing a refined index of reliability to the decoders in each iteration until an acceptable level of confidence is achieved.  
Turbo codes were first presented in 1993 by Claude Berrou, Alain Glavieux, and Punja Thitimajshima in their seminal paper “Near Shannon Limit Error-Correcting Coding and Decoding:  Turbo Codes”.  The authors claimed that turbo codes could perform within 0.7 dB of the Shannon limit, as well “double data throughput for a given transmitting power or, alternatively, achieve a specified communications data rate with half the transmitting energy” [5].  Such achievements seemed preposterous at the time, as state-of-the-art techniques performed at 2 dB (or greater) from the Shannon limit.  
The Shannon limit defines the fundamental transmission capacity of a communication channel.  While working for Bell Labs in 1948, Claude Shannon showed that with the right error correction mechanisms, data could be transmitted at speeds up to a channel’s capacity virtually error-free, with low transmission power.  To achieve capacity, he determined that incoming data should be split into data blocks of k bits, and mapped to other data blocks of n code symbols to produce codewords.  Codewords would be transmitted to the receiver, which would find a codeword that most closely resembled the one it received, then decode it to retrieve the original data bits.  Shannon proved mathematically that totally random sets of codewords could achieve channel capacity.  Naturally this was not applicable in practice, as the performance was untenable – channel capacity could only be obtained as k and n approached infinity.  So began an enduring search for codewords of manageable size and complexity.
Trying to find an optimal encoding/decoding process has always been a tradeoff between code convergence and small code distance.  Typically improvements to one component adversely impact the other.  The cost of a code, in terms of computation required to decode it, increases closer to the Shannon limit, requiring longer, more complex codewords.  This coding paradox is poignantly characterized by folk theorem “almost all codes are good, except those we can think of.” [4]  It was finally turbo codes that managed to strike a balance between the randomness required to produce good codewords, and the structure to make them decodable.   These codes were the first to perform close to the Shannon bound, nearly 50 years after Shannon published his theory.  
[image: image2.png]Bit Error Rate

Shannon Capacity Limit

Bound on Convolutional
Code Performance

Typical Turbo Code
Performance Curve

Bound on
Turbo Code

Performance
Channel SNR (decibels)





Fig 2:  Performance bounds for Turbo Codes:  the dotted line illustrates a region of rapidly improving performance with a corresponding small increase in the signal to noise ratio (SNR), followed by a flattening of the curve.  The performance floor is in the vicinity of a BER of 10-5. [9].  
As early as the 1960s researchers realized that componentizing the complexity problem could improve error-resistance.  Convolutional codes approach this in a serial manner using n encoding modules (see Fig 1).  Turbo codes improve upon that paradigm by employing two encoders in parallel, synergistically, to produce a codeword.  Parallel concatenation of codes allows use of the same clock, expediting the encoding process.  A turbo encoder employs parallel concatenation in this way:  an input stream is divided into d blocks of n-bits length.  A copy of d is sent to the first encoder, enc1.  Enc1 operates on the block as-is, using a convolutional code to generate n parity bits,  y1, that it will transmit along with the original n data bits it received.  The second encoder, enc2, relies upon an identical convolutional code, but operates on a scrambled copy of the original bit string that has been pre-shuffled by an interleaver.  It will also transmit n parity bits, y2.  The resulting block of 3n bits from the encoders constitutes the output codeword produced from the original n bits.  For example, if the original n data bits were 01101, enc1 would encode them (say to 10110) and send the original bit string 01101 plus parity bits 10110 to the multiplexer. Enc2 would receive bits already interleaved, then encode them (say to 11100) and send this string to the multiplexer.  This culminates in the 3n codeword:  011011011011100.  

[image: image3.png]@

Input RSC Information
Data | Coder #1 & Parity Bits #1
1 .
o | [t 552

¥

RSC
Coder #2 | Pariy Bits #2 Only





Fig 3:  Schematic of a turbo encoder [6].
Turbo encoders implement a non-uniform, pseudo-random interleaver.  The interleaver operates between the modular encoders to permute all poor input sequences (low-weight codewords) into good input sequences producing large-weight output codewords.  The interleaver design is not based upon a typical block (square or rectangular) interleaver.  Instead it relies upon an irregular, random-like, permutation map.   Nonuniform interleaving assures a maximum scattering of data and maximum disorder in the interleaved data sequence.  The permutations “introduce some random behavior in the code.” [2]  The net effect is the character the permutations impose loosely conform to Shannon’s observation that pure random codes outperform others.  
The decoding component of turbo codes are by far their best and most unique asset, but also incur the largest penalty in speed.  Unlike the encoders, decoders process their input serially in an iterative process.  The decoder component is comprised of two constituent modules separated by a pseudo-random interleaver/deinterleaver.  The two decoders are trying to solve the same problem, but from different perspectives.  Each constituent decoder separates intrinsic (received) information from extrinsic (permuted confidence) information.  It is the extrinsic information, or bit reliability, that is passed from one decoder to the other.  Decision confidence is obtained from m-bit quantization, where one quantization bit is devoted to the sign of the decision, and m – 1 bits are devoted to the signal’s magnitude.  The larger the magnitude, the greater the confidence the sign bit is correct.  The result can be considered an educated guess.  
Bit reliabilities are expressed by log likelihood ratios (LLR), which vary between a positive and negative bound.  The closer the LLR is to one side, the greater the confidence assigned in that direction.  In practice, this bound is quite large, say between -127 and +127.   Denoting  Pr{d = 1} as the probability that a data bit is equal to 1 is expressed as:


[image: image4]
Each bit’s probability comprises the extrinsic information passed from one decoder to another.   The probability is the result of a decoder’s computations with respect to the estimation of d, without taking its own input into account.  Hence, the input related to d is a single piece of information shared by both decoders.  [3]  Consider the following example:   decoder module dec1 receives input from the demultiplexer and produces a confidence estimate of the original data.  That estimate is passed to an interleaver, which transmits the shuffled bit string to decoder module dec2.  If dec1 was successful, it would have passed few or no errors to dec2.  Dec2 also receives input from the demultiplexer, and processes its confidence estimate similarly to dec1, however also taking into consideration the extrinsic information it receives.  The estimate is then passed it to a de-interleaver.  This completes one iteration.  If no further refinements are needed (i.e. we have converged upon an optimum decoded word) then the data is decoded and passed to the upper layer.  Otherwise, the output is passed back to dec1 for another iteration.  
[image: image5.jpg]Coded
Input

Demultiplexer
———-‘wm.iw,
Decoder #1 -
“Treauoy

Interleaver

Parity

Multiplexer
Bus e2

Decoder #2 |

e

Deinterleaver

|
|
|

Dacgded T

Output i g )




Fig 4:  Schematic of a turbo decoder [7].
To achieve near-optimum results, a relatively large number of decoding iterations are required (on the order of 10 to 20).  This predictably increases computational complexity and output delay.  Often a fixed number of iterations is selected, between 4 and 10, depending upon the type of code and code length. [4]  This is knows as a stopping rule.  But if convergence is detected before the pre-determined number of iterations completes (the stopping rule), the cycle can terminate and divest itself immediately of the decoded data.  
Another way to mitigate decoding delay is through code puncturing.  Puncturing will change the code rate, k data bits / n output bits, without changing any of its attributes.  To accomplish this, certain redundant values in a codeword are simply not transmitted.  For example, a Rate 1/2 code can be increased to a Rate 2/3 code by dropping every other output bit from the parity stream: 
	Rate of

Encoder 1
	Rate of

Encoder 2
	Resulting TC Rate

(no puncturing)
	Resulting TC Rate

(with puncturing)

	1/2
	1/2
	1/3
	1/2

	2/3
	2/3
	1/2
	2/3

	3/4
	3/4
	3/5
	3/4

	1/2
	2/3
	2/5
	4/7

	1/2
	3/4
	3/7
	3/5

	2/3
	3/4
	6/11
	12/17


Fig 5:  A turbo code can increase its Rate without changing any of its attributes through puncturing. [6]
Because the decoder is comprised of two constituent modules, it is twice as complex as a conventional decoder when performing a single iteration.  Two iterations will require twice the computation, rendering it four times as complex as a conventional decoder.  Performing 10 – 20 iterations will impose substantial latency.  For many applications, the delay is an acceptable price to pay for the bit error rate turbo codes deliver.  But for others, such as voice or real-time applications, the delay of output data is prohibitive.  
The issue of decoding latency is the thorniest aspect of turbo codes.  Decoding performance is influenced by three broad factors:  interleaver size, number of iterations, and the choice of decoding algorithm.  While it is established that large interleavers and numerous iterations increase BER performance, reducing interleaver size and the number of iterations can decrease latency.  Note however, that BER performance can degrade in these circumstances.  Experimenting with the choice of decoding algorithm can increase performance with fewer repercussions.  Nevertheless, if a decoder employs a block decoding scheme, it still must await the entire encoded sequence to begin its computations.  The decoding paradigm itself imposes a limitation.

Improvements to turbo codes, and more importantly to all classes of ECCs, are constantly emerging.  In fact, turbo codes bear substantial responsibility for recent advances.  “The turbo-coding idea sparked lots of other ideas.” [5]  When these codes broke the near fifty-year 2 dB barrier to the Shannon limit, they begat a “renaissance in coding research”. [4]  Now new codes vie to, and do, attain performance closer to channel capacity.  New advances are multi-faceted.  Turbo codes are being applied to the multipath propagation problem.  Turbo-product codes, a hybrid approach between product codes and turbo codes, have now surpassed standard turbo code performance.  New attention has been focused on low-density parity check (LDPC) codes, developed in the 1960s, which nearly provide turbo performance but have no error floor.  Repeat Accumulate Codes, which employ a simpler concatenation scheme than turbo codes, yield good overall performance.  Turbo decoding has also been implemented in software.  The software approach is intriguing:  one such implementation can perform turbo decoding at 300 kbits/second using 10 iterations per frame.  With a stopping rule in place, the speed can be doubled or tripled, with only a small degradation in the BER [1].
In addition to the invigoration they have bestowed upon coding research, turbo codes have made steady inroads into a variety of practical applications.  Originally viewed as a niche technology, they are becoming ubiquitous.  They are currently used in digital audio broadcasting, in mobile telephones to handle multimedia data (like digital video and graphics), in long-haul terrestrial wireless communications to combat fading, and in satellite and deep-space communications where power savings is crucial, among others. [8]  As innovations evolve to combat latency, the useful domain of turbo codes will undoubtedly widen.  Moore’s law alone should facilitate this as higher circuit frequencies and greater parallelism emerge.  
Regardless of the staying power that turbo codes may (or may not) exert on the field of digital signal processing, they have left an indelible mark.  Claude Berrou, Alain Glavieux, and Punya Thitimajshima’s conception of the innovative and successful turbo approach was nothing short of revolutionary.  Turbo codes have revitalized and enabled numerous ancillary advances in error correcting codes.  While the process clearly has room for improvement with respect to its complexity, latency, and throughput, it is nevertheless deserving of position of prominence in the history of coding theory.
Cited References
[1] Andrews, K, Stanton, S, Dolinar, V, Chen, V, Berner, J, and F Pollara.  “Turbo-Decoder Implementation for the Deep Space Network.”  IPN Progress Report, 42-148, Feb 15 2000.

[2] Berrou, Claude and Alain Glavieux.  “Near Optimum Error Correcting Coding and Decoding:  Turbo-Codes.”  IEEE Transactions on Communications, vol. 44, no. 10, October 1996.

[3] Berrou, Claude.  “The Ten-Year-Old Turbo Codes are Entering into Service.”  IEEE Communications Magazine, August 2003.

[4] Burr, A.  “Turbo-codes:  the Ultimate Error Control Codes?”  Electronics and Communication Engineering Journal, August 2001.

[5] Guizzo, Erico.  “Closing in on the Perfect Code.”  IEEE Spectrum, March 2004.

[6] Gumas, Charles Constantine.  “Turbo Codes Build on Classic Error-Correcting Codes and Boost Performance, part II”, EE Times Network at http://archive.chipcenter.com/dsp/DSP000426F1.html
[7] Gumas, Charles Constantine.  “Turbo Codes Propel New Concepts for Superior Codes, part III.”  EE Time Network at http://archive.chipcenter.com/dsp/DSP000505F1.html
[8] Gumas, Charles Constantine.  “Win, Place, or Show, Turbo Codes Enter the Race for Next Generation Error-Correcting Systems, part IV.”  At  http://archive.chipcenter.com/dsp/DSP000510F1.html
[9] LaBerge, E.F.C.  “System Design Considerations for the use of Turbo Codes in Aeronautical Satellite Communications.”  Honeywell, 2000.

[10] Langton, Charan.  “Coding and decoding with Convolutional Codes.”  Signal Process and Simulation Newsletter, tutorial 12 at http://www.complextoreal.com/convo.htm
References
Berrou, Claude, Glavieux, Alain and Punya Thitimajshima.  “Near Shannon Limit Error-Correcting Coding and Decoding:  Turbo Codes.”  Ecole Nationale Superieure des Telecommunications de Bretagne, France.  1993.

Divsalar, D. and F. Pollara.  “Turbo Codes for Deep-Space Communications.”  TDA Progress Report, 42-120.  Feb 15, 1995.

Fleming, Chip.  “A Tutorial on Convolutional Coding with Viterbi Decoding.”  Spectrum Applications, Jan 2003 at http://pw1.netcom.com/~chip.f/viterbi/tutorial.html
Gumas, Charles Constantine.  “Turbo Codes Rev Up Error-Correcting Performance.”  EE Times Network at http://archive.chipcenter.com/dsp/DSP000419F1.html
Hall, Erik and Stephen Wilson.  “Stream-Oriented Turbo Codes.”  IEEE Transactions on Information Theory, vol. 47, no. 5,  July 2001

Liu, Hang, Ma, Hairou, El Zarki, Magda, and Sanjay Gupta.  “Error Control Schemes for Networks:  an Overview.”  Mobile Networks and Applications, vol 2.  1997.

Puckett, W Bruce.   “Implementation and Performance of an Improved Turbo Decoder on a Configurable Computing Machine” at http://scholar.lib.vt.edu/theses/available/etd-07172000-11270030/unrestricted/NEW-thesis.pdf
Sklar, Bernard.  “A Primer on Turbo Code Concepts.”  IEEE Communications Magazine, Dec 1997.

Viglione, F, Masera, G, Piccinini, M, Roch, Ruo and M. Zamboni.  “A 50 Mbit/s Iterative Turbo-Decoder.”  Dipartmento di Electtronica – Politecnico di Torino, Torino Italy.  2000.
received sequence





1 - Pr {d = 1}





Pr {d = 1}





L(d) = ln








PAGE  
5

