
UNIVERSITY of COLORADO at COLORADO SPRINGS

A JAVA BASED STATE EXPLORATION TOOL

A PAPER SUBMITTED TO

DR. EDWARD CHOW

IN PARTIAL FULFILLMENT OF

THE REQUIREMENT FOR

CS522 COMPUTER COMMUNICATIONS
DEPARTMENT OF COMPUTER SCIENCE

BY

MIKE LAWSON
COLORADO SPRINGS, COLORADO

DECEMBER 2004
Abstract

Reachability Analysis (RA) is an important aspect in the field of protocol design and verification. RA uses a technique known as State Exploration to explore all possible states that might be assumed during the execution of a protocol. The results of this exploration will identify deadlocks, unspecified state receptions, unused states and unused transitions.

This project focused on providing the functionality of the SETool (State Exploration Tool, an X windows based application) as presented in class in a Java application so that it may be executed from within a web browser on any Java enabled client. This paper presents the approach taken to implement the Java State Exploration Tool (JSETool) and summarizes the variety of lessons learned as the tool was created.
CONTENTS

1Abstract

3INTRODUCTION

3THE REACHABILITY ANALYSIS ALGORITHM

3REQUIREMENTS

4RATIONALE

5The JAVA 2D API

7Distribute java applications

7Downloadable installations

8JAVA applets

11java web start

13Conclusion

INTRODUCTION
This project focused on creating a web-enabled version of the State Exploration Tool (an X-windows based application) such that it may be executed from the click of a link on a web page. This tool will implement the Reachability Analysis methodology of protocol verification, which involves exploring all states that a protocol may assume during execution. This methodology is known as State Exploration, and its execution will tell the user that the protocol is valid, or will it identify any deadlock states, unspecified reception states, unused transitions and/or unused states.

THE REACHABILITY ANALYSIS ALGORITHM
The algorithm for Reachability Analysis is implement using state exploration. That is, beginning from an initial state, explore each possible state that may be derived from that state. For each state created, explore those states the same until either you return to an explored state or you have exhausted all possibilities.

The algorithm was implemented in Java using the following pseudo-code as a guideline:
1. Create an initial ExplorationState I {i1, i2, E, E}; where i1 is machine 1’s initial state, i2 is machines 2’s initial state, and E denotes an empty communication channel.

2. exploreState(I)

exploreState(ExplorationState s) is implemented as follows:

1. if s has already been explored, return (prevent infinite recursion)

2. Mark s as explored

3. Examine machine 1’s transitions for any send transitions

a. create new ExplorationStates for machine thereof and add to s

b. mark the send transition as explored

4. Examine machine 2’s communication channel for anything that might be received by machine 1

a. If the received message can be used to create a new ExplorationState (e.g. {2, 2, b, E}) create the new state and add to s

b. If the transition does not yield a new ExplorationState, mark s as an Unspecified Reception State

5. Repeat steps 3 and 4 with respect to machine 2

6. Now, examine s. If there are no states generated as a result of steps 3, 4 and 5 AND there are no sending transmissions AND there are no messages in either communication channel, mark s a a Deadlocked state and return
7. For each state s’ in s (added in steps 3, 4, and 5), if any, exploreState(s’)

REQUIREMENTS
The essential requirements for this project may be summarized as follows:
1. The system shall implement the state exploration algorithm for reachability analysis as described above
2. The system shall be executable directly from a web page

3. The system shall allow the user to graphically draw communicating finite state machines

4. The system shall depict the results of analysis graphically

5. The system shall identify unspecified reception states.

6. The system shall identify deadlocked states.

7. The system shall provide summary statistics (e.g. time to compute, number of unused transitions)

8. The system shall allow the user to save and load both the inputs (finite state machines) plus the outputs so that they may be loaded and viewed again.

These requirements were further derived into the following use cases:
[image: image1.jpg]User Performs.
Reachability
Analysis

I
|

User Reviews

List of Unused
States and Transitions.

Figure 1 - JSETool Use Cases

RATIONALE

There were several purposes as to why this project was chosen. The first was to force this author into actually figuring out why he continually performed reachability analysis incorrectly. Personal experience has proven to this author that if one cannot figure out an algorithm, implementing said algorithm in code forces one to think clearly and logically.
Java provides a robust 2 dimensional rendering capability known as the Java 2D API, of which this author was only vaguely familiar. In order to meet the graphical drawing and rendering requirements for the project, this API must be used and therefore represented an opportunity to learn. As discussed below, this API presented some challenges to be overcome.
There are several industry accepted mechanisms in which to distribute Java applications. The most common of these were explored in execution of the project. As discussed below, the saving and loading requirements for this project posed problematic with respect to the requirements for executing the application from within a web browser.

Additionally, and somewhat less importantly, this author has a few preferences with respect to educational projects. The first is that this author will advocate the development of new software at any time in order to bring additional code into the world and to further enhance the skills of the developer (do something once and you get the feel for it, do it a few hundred times and you start to understand, do it a thousand times and it becomes second nature). Next, a personal pet peeve, anything that is clickable from a web page should do something web like, so this author was a little disappointed in how we had to execute the existing (yet full-featured) SETool.

The JAVA 2D API

The Java 2D API was essential to satisfying the requirements for this project. This API, which has been in existence almost since the beginnings of the Java programming language, provides the essential for graphical drawing in a platform independent manner (i.e. the program may execute on a Windows environment and on Linux environment without code changes or recompilation).
As stated, this API provides only the essentials of two dimensional rendering: classes that graphically depict on a drawing palette rectangles, lines, arcs, and common utilities such as transformation classes. However, the API does not offer classes that implement the ability to move, resize, label, and connect graphical objects. As such, it is up to the each application to implement these individually. The underlying philosophy in the Java language is to provide the basics and provide unlimited freedom in implementation, in order to promote creativity in the field.
A common approach, and that taken by this author, is to track the graphical representation objects (view) as the user draws them on the drawing palette in a collection apart from the palette itself using model object. As the mouse is moved and as the user interacts with the application, the application will examine this collection to determine if the mouse is currently “on” a graphical object. This allows the application to highlight, provide edits, show resize boxes, etc for the graphical object.
In the case of states, which manifest themselves as Rectangle object on the drawings, Java provides the contains method, which returns true if a specified point is located “in” the object. However, in the case of lines, Java asserts that a line has no area so therefore a point can never be within it. As such, the author chose to place an invisible stand-off distance from the line, and the point is said to be “on” the line if it is within plus or minus the standoff distance.

An examination of the software developed for this project reveals that the bulk of classes and software was developed for rendering and not for reachability analysis, and that the rendering software is bulky, and oftentimes lacking in nominal safety features of a well-written application. As such, the author makes the following recommendation with respect to developing a generic drawing framework: DO NOT DO IT. Instead, use a freely available open source package such as The Java Graphical Editing Framework (GEF), which has been used in many commercial and open source products over the years (see references).

Distribute java applications

The industry has accepted several common mechanisms for distributing platform-independent Java programs. The most common include: providing a downloadable installation of the program, Java Applets and Java Web Start. These approaches are described below.
Downloadable installations

This is the simplest and most common mechanism for deploying Java applications in a networked environment. The user is directed to a web page, and after supplying appropriate credentials (e.g. username/password/credit card), the user is allowed to download a package that installs the application on their desktop (or given a CD, DVD, etc).
This is an easy solution to distributing Java applications as the application provide can easily guarantee that all dependencies are bundled into the downloaded installation medium. The application installs itself on the user’s machine and becomes a full-fledged application with shortcuts, folders, etc.

Some problems exist with this approach. The first is: how does the end user know that the developer is trustworthy and not malicious? For the most part, one may assume that the application will execute correctly and not cause damage or install or act like the now infamous “spyware” applications that have are becoming unadvoidable. With respect to Java software, programs may be executed within a “sandbox” where it cannot play outside of, but in a downloaded application, there is no guarantee that the sandbox will be honoured.

The second most common problem with this distribution approach is that of client maintenance: it is extremely difficult to force the user to maintain his system and keep his application up to date because the onus is on the end user to go and download updates. A variety of live-update techniques have come into being to address this issue, but those often require manual intervention and often fail leaving the user with a useless application.
This project offers both the source code and a compiled Java Archive (JAR) for download and installation if desired.

JAVA applets

The original intent of Java was to provide a platform-independent means of enhancing World Wide Web pages in browsers. This means was accomplished using Java Applets, which are small Java applications that execute inside a Web browser. The applets can take full advantage of all Java graphical and User Interface components to provide a rich full-featured application executing right inside the browser.
Java Applets are an excellent means of distributing Java Applications. There is full APPLET support in the HTML 1.1 specification (much easier to add an Applet to a Web page than several years ago). They are extremely easy to create – the developer simply follows a pattern and ends up with an Applet (keeping security restrictions in mind). Deployment is as simple as placing the Applet’s compiled class files in a Java Archive (JAR) file on the web server and putting an APPLET tab in a HTML file. There no changes required on the server and the application is available for use on the Web immediately
Further, Java Applets are subject to a sandbox from which they cannot escape. This sandbox greatly restricts what the Applet may do and guarantees a safe experience for the end-user,. Specifically, the Applet may not obtain detailed information about the client’s computer, it may only open networking connections to the server from which it was served, it may not read or write files to the local file system, and many other restrictions. This sandbox is vital to the security of Java, but it presented a major obstacle with respect to the save and load requirements of the project.

A Java Applet, by nature, cannot read or write files to the local file system. As such, this author could not meet the save/load requirements. The question to be answered was: how do industry experts solve this problem? The most commonplace means are to configure the sandbox with a policy, use HTTP GET and PUT, open a socket server, or sign the jar.

Configuring the sandbox means to provide a security policy file (a plaintext file) that the user downloads and merges into his existing Java security settings. This is risky as the user must trust the provider of the security policy, and Java security policy files are difficult to create correctly so as not to open the end user up to attack. As such, this author immediately chose not to use this approach.

Another common practice is to use HTTP GET and PUT to retrieve and store application specific data on the web server from whence the Applet is served. This of course, presupposes some sort of CGI mechanisms or whatnot in order to accept the PUTs and to store the data somewhere. Any sane user would not want a publicly available CGI that stores files under his user name! As such, this author abandoned this approach as well.
A socket server may be developed and launched on the originating web server to accommodate saving and loading of data (remember, Java Applets by default can only open network connections to the sever from where it was served). This of course, assumes that the user has telnet or ssh access to the web server (a very bad assumption) and it requires a secondary step which fails the run-from-a-click requirements.

The approach taken for this project is to sign the JAR file. This means that the JAR is signed with a digital certificate obtained (usually) from a trusted certificate authority such as Verisign or Thawte. However, being a humble student, this author did not feel like paying the fees to obtain a true digital signature. JARs may be signed without the need of approval from a certificate authority (reference http://cs.uccs.edu/~mjlawson/cs522/HowToSignJarFileForApplet.html for instructions). By signing the JAR, the Applet may have full-run of the guest’s computer. Of course, the end user must trust the developer of the Applet to not do anything malicious as discussed previously. When a opens the web page, the user is presented with a dialog asking the user to confirm if he wishes to trust the author of the JAR. In the case of JSETool, if the user says “no, I don’t trust him,” the Applet will still execute normally, but saving and loading of the data is not supported.
Aside from the issues due to the sandbox, there are several that make Applets less appealing. The most obvious is that the size of the display is fixed in the APPLET tag of the HTML and the display cannot be resized. Further, there is often no means of executing the Applet in an offline mode where the user is not connected to the Internet. Next, browsers commonly download the Applet every time the page is loaded which is painful for dial-up users (some browsers, particularly the latest Netscape, cache the Applet during the user’s session). Finally, the Applet author is assuming that the end user will be executing a Java Runtime compatible with that under which the Applet was developed.

It is for these issues that the Java Web Start technology was investigated.
java web start

Java Web Start was initially released in the Java 1.2 edition circa 1999. This is a technology that is often ignored (as has been by this author up to this point), yet it provides a distribution mechanism that addresses many of the issues discussed previously. First, it allows a web page to host full-fledged application that execute outside of the browser (overcoming the limitations of Applets). These applications will execute in the same sandbox as applets, again providing a safe experience for the end user but providing challenges for this project. Further, these applications are cached locally so that they may be executed locally as desired (on a business trip, on a motorcycle ride, etc.) Finally, there is no a priori Java Runtime version required, as long as the user is executing at least Java 1.2 – the application developer may chose to specify a runtime version and have Web Start automatically download the correct version.
Several things must be done prior to successfully deploying an application using Java Web Start. The first is to develop an application with a valid main method signature. This is the same as developing a standalone application. Next, the web server itself must be changed (which is a significant difference between Java Web Start and Applets) to support a new MIME type: jnlp. JNLP is the Java Network Launch Protocol which is recognized by the Java Runtime in the browser. This protocol is responsible for downloading the application and any dependencies and launching the program.

For an apache server, the following line must be added to the mime.types configuration file:

application/x-java-jnlp-file JNLP

as has been done on blanca.uccs.edu in support of this project.

Next, a valid JNLP file must be created. This XML file describes to the JNLP protocol implementation what the application is, what is to be downloaded, etc in support of the application. The following is the JNLP file developed for this project:

<?xml version="1.0" encoding="utf-8"?>

<!-- JNLP File for JSETool Application -->

<jnlp

 spec="1.0+"

 codebase="http://blanca.uccs.edu"

 href="~mjlawson/cs522/jsetool/jsetool.jnlp">

 <information>

 <title>Java State Exploration Tool</title>

 <vendor>Mike Lawson, cs522, Fall 2004</vendor>

 <homepage href="jsetool_help.html"/>

 <description>Java State Exploration Tool/description>

 <description kind="short">A Portable State Exploration Tool.</description>

 <offline-allowed/>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <j2se version="1.4.2+"/>

 <jar href="~mjlawson/cs522/jsetool/JSETool.jar"/>

 </resources>

Once this file is created and put onto the web server, along with the JARs required for the application, all that is needed is to provide a link to the JNLP in a HTML page, such as:
Launch JSETool via Java Web Start: JSETool

When the user clicks on the link on the web page, the application will download and will begin to execute locally. Further, if the application or one of its dependencies changes between visits to the web site, Java Web Start will automatically download the updates prior to launching the program. The application is also cached locally and can be launched via the Java Web Start program (javaws).
Through Java Web Start, Java developers may expose their applications on the Web without the need for elaborate installation tools and in a way that overcomes the limitations of Java Applets. However, this approach implies a change to the MIME types of the web server which may not be a possibility to all developers (e.g. a developer renting web space on an Eathlink server). Since Web Start applications execute under the same sandbox as an Applet, saving and loading files are restricted by default. The technique to sign the jar overcomes this limitation (in fact, for this project, it is the exact same JAR that is used for both the Applet and the Java Web Start demonstration.) Finally, while automatically downloading dependent software is a great benefit to many users; it is a curse those with slow connections. As such, the JNLP must be configured to prevent downloading too much data where possible.
Conclusion
This paper presented the need and requirements for a Java based State Exploration tool for reachability analysis. It presented a brief discussion of how the algorithm works and how it might be implemented in Java. An analysis of how Java was used successfully in creating the rendering and drawing engine for the problem was presented, along with how the author exposed the application on the Web and how several challenges were overcome in doing so.
This project added value in that a) the author finally figured out how to correctly do Reachability Analysis and b) the author examined several techniques as to how to distribute a Java application according to industry standards thereby making him ever slightly more valuable in his job.
There are many items left unfinished in the accompanying software, however, the package as it stands now can easily support future CS522 classes in understanding how Reachability Analysis works.

REFERENCES
· Java Web Start

· http://java.sun.com/j2se/1.5.0/docs/guide/javaws/developersguide/contents.html
· Java Applets

· http://java.sun.com/docs/books/tutorial/uiswing/components/applet.html
· GEF

· http://gef.tigris.org/

