
Security-Enhanced Linux

December 13, 2004

Joseph A LaConte

CS522

Table of Contents

1I. Introduction

2II. Background

3III. Security-Enhanced Linux Overview

5IV. Security Policies

5A. Type Enforcement

6B. Role-Based Access Control

6C. User Identity

7D. Policies in General

8E. Strict versus Targeted Policy

9V. Limitations

9A. Performance Overhead

9B. Complexity

10C. X Windows

11VI. Conclusion

12VII. Bibliography

I. Introduction

The first impression of the title “Security-Enhanced Linux” stimulates images of a highly complex system. Perhaps of a system that is completely secure. This paper should help to eliminate any such misguided preconceptions. While the security policies may appear to be complex, this system is fairly straight-forward with the details residing in each individual implementation. The complexity arises from the natural complexity of operating systems and computer resource management at one of its most basic levels.

Due to time limitations and an unsuccessful attempt to interact with a working model in Fedora Core 3, the scope of this paper is limited to an introduction to Security-Enhanced Linux (SELinux) and focuses on the models and mechanisms used to enforce security policies in SELinux. This should provide a good foundation for any reader interested in modifying the example policies distributed with SELinux. Furthermore, this paper speculates on possible solutions to the limitations imposed on the current version of SELinux.

II. Background

Security-Enhanced Linux (SELinux) is a research program backed by the National Security Agency (NSA); however, this project is much more than a means to increase security in the Linux operating system. Realizing the importance of computer security early on, the NSA contracted Honeywell’s Secure Computing Technology Center (later know as Secure Computing Corporation) in the 1980’s to implement a highly secure computer. The result is the LOCK system, utilizing a security mechanism called Type Enforcement® technology
 (refer to section titled “Type Enforcement” for further information).

Following the LOCK system (a system not based on pc-class platforms1), the NSA and SCC continued to implement flexible mandatory access controls in two mach-based prototypes named the DTMach (Distributed Trusted Mach) and DTOS (Distributed Trusted Operating System)
. For continued research and development, DTOS was distributed to various government and university sites
.

The next stage of this progression included the addition of the Flux research group at the University of Utah and Flux’s research operating system named Fluke. The security architecture, developed up to this point, was implemented in Fluke and at the same time was enhanced to “provide better support for dynamic security policies.”
 The resulting architecture is know as Flask which is the basis for the security model implemented in SELinux.

III. Security-Enhanced Linux Overview

Security-Enhanced Linux (SELinux) is a security architecture implementation module available for Linux 2.6 or later. This module is designed to enhance the security of the kernal itself. As an important note:

“This work [the SELinux architecture] is not intended as a complete security solution for Linux. Security-enhanced Linux is not an attempt to correct any flaws that may currently exist in Linux. Instead, it is simply an example of how mandatory access controls that can confine the actions of any process, including a superuser process, can be added into Linux.”

This distinction is important. Rather than turning Linux into a complete secure solution, as the title may somewhat mislead, SELinux extends the current operating system security by adding mandatory access controls (MAC) with minimal modifications to the rest of the system. In other words, SELinux is an addition to Linux that provides a supplementary (not modified) security scheme know as MAC.

The Linux kernal already uses a security scheme call discretionary access control (DAC) in which a process invoked by a user maintains the same privileges as that user (ie. resources are restricted based on user login, and all processes owned by a user hold the same privileges as that user). So, where’s the problem with DAC? Well, there is little problem if the user writes every program he/she intends to use and is the direct owner of every resource those programs need; however, this is not a practical limitation. Because we need to execute programs written by other users, we do not know all of the details of a given program. What exactly is going on when we run program-x? As a result, a user may unwittingly execute a program that becomes a malicious process. The most common example is a Trojan horse. A Trojan horse is often downloaded as some sort of utility program (or any program under false-pretense). The user expects the downloaded program to respond as described by the author; however, unknown to the user, a Trojan horse may also run a process in the background to advertise a port to hackers or even act as spy-ware.

Because the user cannot know every executed program in its entirety (only the information provided by the authors/distributors) and because a process may have potential vulnerabilities (especially those for external-computer services), MAC addresses these flaws. In MAC, processes and objects (files, sockets, devices, etc.) have defined privileges of interaction such that (ideally) each application only holds the permissions it needs to perform its function
. In SELinux, MAC is implemented using Type Enforcement® (TE) and Role-based access control (RBAC).

By protecting the domain of each process, the MAC scheme can be identified with a firewall in that inter-system communication (process-to-process or process-to-object) rather than network communication is restricted based on the configuration of the scheme (policy in SELinux). In fact, the TE technology is also being employed by SCC for its Sidewinder® G2 Firewall™.

IV. Security Policies

The SELinux security policies are enforced using Type Enforcement and Role-based access control.

A. Type Enforcement

Type Enforcement (TE) in the SELinux implementation differs slightly from traditional TE
. In traditional TE, processes and objects (files, sockets, devices, etc.) are broken down into different classifications. The classifications used for processes are called domains. Every process in the same domain is treated equally (ie. a domain is associated with the permissions/privileges of a process). For objects, the classification is referred to as type; again, each object in a type is treated equally. Two access matrices define the interaction between domains-to-types and domains-to-domains.

As such, “type enforcement technology essentially divides the computer into separate compartments, like those used to make an oceangoing ship less likely to sink even if part of the hull is breached.”
 In other words, if a process becomes malicious (either being written that way or having become compromised), the potential damage is restricted to the confines of the domain of that process. This behavior remains true even for a process owned by the root user. Whereas in DAC alone, a process owned by the root has full root privileges.

TE in SELinux differs slightly. Instead of two classifications (domains and types), SELinux only uses a single classification for both processes and objects. As such no distinction is made between a type versus a domain (ie. the domain of a process is a type in SELinux)
. As such, a single access matrix defines how a type can interact with other types. In conjunction with this type pair, a security class is used to distinguish objects of the same type. The example used by Smally is the distinction between a TCP socket and a raw IP socket.

B. Role-Based Access Control

The SELinux implementation also differs from traditional TE by using role-based access control (RBAC) instead of a direct user-to-domain association. In the SELinux RBAC model, a user is assigned a set of roles (defined in the security policy) where each role is assigned a set of TE domains (also defined in the security policy). 10 Thus, by using RBAC, a much more refined policy is possible through categorizing domains more specifically rather than lumping interactions directly into a domain associate with a user (ie. RBAC allows an additional level of abstraction).

C. User Identity

In addition to being assigned roles, users are also assigned a special identity attribute in the security context. 10 This new entry is used instead of the standard Linux user identity attribute because of a security flaw (note: the standard identity attribute still exists, but SELinux keeps its own record of user identities). The security flaw consists of the ability for some users, specifically the root, to arbitrarily change Linux uids.

D. Policies in General

As mentioned in the introduction, explicit detail concerning the modification and adaptation of policies is unfortunately beyond the current scope of this paper. As an important note, the policies are completely user definable. That is, the SELinux holds the flexibility to provide/restrict system processes to any degree a security administrator sets. Because of this flexibility, this security scheme can become quite complex as discussed here and briefly in the section entitled “limitations.”

Fay Coker provides several good guides for working with SELinux Policies, specifically “Getting Started with SE Linux HOWTO: the new SE Linux” and “Writing SE Linux Policy HOWTO” found in the attached bibliography. Any active policy is actually compiled from several source files. The source files are script like files that contain the rules defining the context and behavior of any given interaction based on the domain, security context, and actual context of the processes/objects involved. The actual grammar is defined at the NSA website in the paper “Configuring the SELinux Policy: Policy Language and the Example Policy Configuration” by Stephen Smally; however, while this paper gives a technical overview of the grammar, it tends to lack tangible information (most notably useful examples). For fear of providing misleading information, I will refrain from attempting to explain the source file hierarchy/compile process as well as the associated grammar, since I was unable to test/refine my interpretations through an example.

E. Strict versus Targeted Policy

SELinux currently provides two example policies by default
. In the strict policy, most system daemons have a defined domain and associated set of rules whereas the targeted policy focuses restrictions on the most common daemons. While targeted policy is of course the easiest to setup initially, the strict policy has far greater potential for ensuring system security (assuming the default strict policy is well defined).

A good comparative example for this distinction is how rules should be defined for treating input values in a CGI perl script. If no restrictions are placed on input to a CGI perl program, a hacker could potentially run commands as the root user using the program as an interface. The reason for this is perl can execute system commands, and CGI scripts are commonly setup to run as the root user. Now, to protect the input, we could try to put a list together of everything that is dangerous for the input to contain; however, this method is limited because we may not think of every potentially damaging case (or some may not yet be envisioned). The better method is to limit the input to only a relevant safe format. While potentially good input in an unexpected format may not be accepted, the result is we only receive data in a format we have determined is safe.

This example relates in that starting with a safe environment (assuming no flaws in the strict policy – which is not likely) and slowly releasing restrictions based on needs is far better security-wise than starting with a loose environment and trying to add additional rules as required. Of course, some additional security is better than none (better to have a working targeted policy than a non-functional strict policy). Perhaps there is future research that could be applied to tighten the logic of the SELinux security module.

V. Limitations

A. Performance Overhead

Because the security architecture of SELinux lies at the very core of the operating system, additional work is required for every process call and use of system resources. Flags and policy rules must be checked at these times. As such, overall system performance will be reduced. The overhead is approximated at 7% (note: some cases like networking may be higher)
; however, this estimate is before optimizations have been introduced. While performance overhead will always exist, the potential security advantage will likely be worth the necessary loss.

B. Complexity

The inherent complexity of an operating system is reflected in the SELinux architecture (after all, we are trying to manage something that is managing something else – system resources – and adding contextual rules to the matter). In addition, complexity of system security itself comes into play as briefly discussed above in “Strict versus Targeted Policy.” This issue should be addressed as more users begin to define their own policies (ie. molded policies appear), as policies become shared within specific communities (such as among campuses, web server groups, etc), and if molded policies become distributed with the SELinux module (more choices to start from than just a targeted or strict policy). While a general all encompassing policy is potentially viable, minor adjustments will always be required (which leads to issues of maintenance).

C. X Windows

The current SELinux architecture is not ready for X Windows. Work to address this issue is currently referred to as “Security Enhanced X.”
 Without support for a GUI (Graphical User Interface) driven system, wide-spread pc use is not viable; however, server platforms would still be possible. It will be interesting to see if a direct adaptation to X Windows maintains stability. A new interface platform built off of this model would be another route as would a remake of the model to allow a further abstraction for this purpose.

VI. Conclusion

While SELinux is not meant to be a commercially distributed product at this stage, it is a good start at fulfilling a fundamental security gap in operating systems. The security scheme clearly highlights the importance of mandatory access controls. Some of the discussed limitation may be discouraging at first glance, but as progress continues should dissipate. Once fully refined, this security architecture should be placed at the heart of most pc operating systems, and potentially used as a reference while designing future operating systems. While the NSA and SCC seem proud of the security architecture, the model may be somewhat outdated (many security issues have arisen and been dealt with – in some manner – since the initiation of this project; so have many programming models and abstractions), but this is idle speculation until a more detailed perspective is used.

VII. Bibliography

Coker, Faye. Getting Started with SE Linux HOWTO: the new SE Linux, last revised March 18, 2004. http://sourceforge.net/docman/display_doc.php?docid=20372&group_id=21266

Coker, Faye. What’s New in Fedora Core 3 SE Linux, November 9, 2004. http://www.linuxjournal.com/node/7887/print

Coker, Faye. Writing SE Linux Policy HOWTO, last revised March 18, 2004. http://sourceforge.net/docman/display_doc.php?docid=21959&group_id=21266
Hallyn, Serge Edward. Domain and Type Enforcement in Linux. The College of William and Mary in Virginia. <URL:http://www.cs.wm.edu/~kearns/dissertations.d/serge.pdf>

National Security Agency. Security Enhanced Linux, December 8, 2004. http://www.nsa.gov/selinux/index.cfm
OSDGroup LLC. Module 13 – SELinux Overview, December 8, 2004. http://www.bradfordlearning.com/en/courseware/sample_chapters/se_linux_sample_chapter.pdf

Secure Computing Corporation. The Origin of Sidewinder® G2 Firewall, December 8, 2004. http://www.securecomputing.com/index.cfm?skey=1024

Smally, Stephen. Configuring the SELinux Policy, February 2002, revised January 2003. NAI Labs. <URL:http://www.nsa.gov/selinux/papers/policy2-abs.cfm>

Smally, Stephen, The Distributed Trusted Operating System (DTOS) Home Page, last revised December 26, 2002. http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos.html
SourceFORGE.net. SELinux Background, December 8, 2004. http://selinux.sourceforge.net/background.php3

Thompson, Kerry. The UnOfficial SELinux FAQ, June 15, 2004. http://www.crypt.gen.nz/selinux/faq.html

Wade, Karsten. Fedora Core 3 SELinux FAQ, November 9, 2004. http://fedora.redhat.com/docs/selinux-faq-fc3/index.html

� Secure Computing Corporation

. http://www.securecomputing.com/index.cfm?skey=1024

� National Security Agency. Security Enhanced Linux

: Background. http://www.nsa.gov/selinux/info/

� Smally, Stephen. The Distributed Trusted Operating System (DTOS) Home Page. http://www.cs.utah.edu/flux/fluke/html/dtos/HTML/dtos.html

� SorceForge.net. http://selinux.sourceforge.net/background.php3

� National Security Agency. Security Enhanced Linux

. http://www.nsa.gov/selinux/index.cfm

� Wade, Karsten. Fedora Core 3 SELinux FAQ: What is SELinux? http://fedora.redhat.com/docs/selinux-faq-fc3/index.html

� Secure Computing Corporation. http://www.securecomputing.com/index.cfm?skey=1024

� Smally, Stephen. Configuring the SELinux Policy: Security Model. http://www.nsa.gov/selinux/papers/policy2/x87.html

� Secure Computing Corporation. http://www.securecomputing.com/index.cfm?skey=1024

� Smally, Stephen. Configuring the SELinux Policy: Security Model. http://www.nsa.gov/selinux/papers/policy2/x87.html

� Coker, Faye. What’s New in Fedora Core 3 SE Linux. http://www.linuxjournal.com/node/7887/print

� Thompson, Kerry. The UnOfficial SELinux FAQ: What is the performance impact of running SELinux? http://www.crypt.gen.nz/selinux/faq.html

� Coker, Faye. What’s New in Fedora Core 3 SE Linux. http://www.linuxjournal.com/node/7887/print

