Securing Wireless Ad Hoc Sensor Networks

Securing Wireless Ad Hoc Sensor Networks

A Research Paper Presented in Partial Fulfillment of the Requirements for CS522 – Computer Communications

University of Colorado

Colorado Springs

Frank Gearhart
08 December, 2004

Introduction

Wireless sensor networks are becoming a key area for research due to several practical areas of application. These include [1]:

· Environmental research & monitoring

· Individual and residential medical monitoring

· Emergency response management

· Energy system/grid management

· Logistics & inventory management

· Battlefield management

Of these, the last three are most likely to be the target of attack. They would thus be most likely to benefit from security measures and be willing to incur the cost of reasonable security measures.

However, sensor networks have certain limitations that restrict security options. Sensors are small and have limited computational power and memory as well as limited battery power and communication range. Limited computational power and memory restrict the types and strength of cryptographic algorithms that can be used.

Regardless of such limitations, there are certain requirements that any practical method for securing a wireless sensor network should meet. Briefly, they include:

· Self-organizing on the fly

· Able to handle sensors joining and leaving the network without warning

· Able to detect and effectively deal with malicious or misbehaving sensors

Self-organizing on the fly: This usually precludes using any central server-type device to assign unique attributes such as cryptographic keys, addresses or digital certificates to the sensors/ Using such a server works against the ad hoc nature of wireless sensor networks and can be a single point of failure as well as a tenmpting target for attackers.

Able to handle sensors joining and leaving the network without warning: Sensors may leave the network for several reasons, including malfunction, loss of power, no longer within communication range, or compromise by malicious attackers. Sensors may join the network after initial deployment for reasons such as: replacement of damaged, failed or compromised sensors, enlargement of the original network, or the addition of upgraded or more capable sensors to the network.

Able to detect and effectively deal with malicious or misbehaving sensors: Sensors can be compromised and attempt to actively disable or take over the network. Misbehaving sensors might unreliably forward data packets or provide false routing information to other sensors. Sensors that unreliably forward or fail to forward data packets from other sensors can be monitored by their neighbors. If a sensor fails to forward enough data packets it can be marked as unreliable or “selfish
”. Any routes that include such a sensor would no longer be used, and that sensor would essentially be dropped from the network and effectively rendered harmless.

Both misbehaving and malicious sensors are treated the same way – by effectively ignoring them and removing them from the network.

Two parts to securing a wireless ad hoc sensor network

Due to the limited power and communication range of most sensors, data transmissions will normally require multiple sensor-to-sensor hops. For the greatest security, both individual messages and routes need to be protected. While there are many different protocols being developed and researched (see References), I will concentrate on a single secure routing protocol (ANODR)[2] and a separate secure messaging protocol (LiSP)[3].

Securing routing information

ANODR is ANonymous On Demand Routing Protocol, developed by Jiejun Kong and Xiaoyan Hong of UCLA. ANODR uses route pseudonyms and either symmetric or asymmetric encryption and cryptographic onions to secure routing information from eavesdroppers. Due to the broadcast nature of wireless networks, any passive listener within range can hear sensor transmissions. By hiding routing information, all an eavesdropper could know is that a message is being broadcast. Who the original sender or the intended receiver is would not be known, nor would the route between them be available to the eavesdropper.

There are three versions of ANODR: ANODR-PO, which uses public-key cryptography to create a cryptographic onion (the PO), ANODR-BO, which uses a boomerang onion (the BO), and ANODR-TBO, which uses a trapdoor boomerang onion (the TBO). For the sake of brevity I will concentrate on ANODR-TBO, as it provides the best security and performance of the three versions. [2] describes all three in detail.

Like other on-demand routing protocols, ANODR-TBO uses route discovery packets (RREQ) and route maintenance packets (RREP) to discover routes when needed and to remove or update existing routes. The format of the RREQ packet is as follows:

(RREQ, seqnum, trdest, onion)

where RREQ indicates that this is a route discovery packet, seqnum is a globally unique sequence number, trdest is a cryptographic trapdoor that can only be opened by the destination that the originating sensor wishes to communicate with, and onion is cryptographic onion that is critical to establishing a route pseudonym, which is the heart of ANODR.

Fig 1: Discovering a single route from sensor A to sensor E using ANODR-TBO.
Packet = (RREQ, seqnum, trdest, TBO)

KX = Key known only to Sensor X

NX = Cryptographic nonce known only to Sensor X

TBOA = KA(src)

TBOB = KB(NB, KA(src))

TBOC = KC(NC, KB(NB, KA(src))))

TBOD = KD(ND, KC(NC, KB(NB, KA(src))))

Once the destination sensor has received the RREQ packet and opened the trdest trapdoor, it returns a RREP packet consisting of a route pseudonym N known only to it, prdest, which is cryptographic proof that it received the original RREQ packet and onion, the TBO cryptographic onion that it received.

Fig 2: Route maintenance from sensor E back to sensor A using ANODR-TBO.

[image: image1.wmf]
Packet = (RREP, N, prdest, TBO)

KX = Key known only to Sensor X

Packet E -> D = (RREP, N, prdest, TBO)

TBOD = KD(ND, KC(NC, KB(NB, KA(src))))

Packet D -> C = (RREP, N’, prdest, TBO)

TBOC = KC(NC, KB(NB, KA(src))))

Packet C -> B = (RREP, N’’, prdest, TBO)

TBOB = KB(NB, KA(src))

Packet B -> A = (RREP, N’’’, prdest, TBO)

TBOA = KA(src)

For each end-to-end connection, the source wraps the data packet using the outgoing route pseudonym (e,g,; N’’’) from its local route forwarding table. The packet is broadcast locally and each listening sensor looks up the route pseudonym in its routing table. If no match is found the sensor discards the packet. Otherwise it changes the route pseudonym to the matched outgoing route pseudonym (e.g.; N’’) and broadcasts the changed data packet. This is repeated until the packet arrives at the intended destination.

Since each route pseudonym is unique and unrelated, any eavesdropper won’t be able to determine the route between source and destination, or the identity of either the source or the destination. Only if each sensor in the route is compromised will an intruder be able to determine the route. Compared to both DSR [3] and AODV [4], ANODR prevents sensor identity detection, but does allow traffic analysis.

Securing messages

LiSP[2] is a lightweight security protocol for wireless sensor networks. It uses symmetric keys and a streaming cipher for efficiency. It uses a shared key system and a hierarchical key server structure with key servers within each sensor group (or KS) and a network Key Server (KSN). The KS and KSN are computationally more powerful than the sensors. Each KS includes an Intrusion Detection System to monitor its own group, The KSN is both more capable than the KS’s and uses a more powerful IDS to monitor the entire network. In LiSP, sensors are in groups, each of with has a single KS that also acts as the central data collection for its group. This provides both scalability and security, as compromise of a single group does not necessarily compromise the entire network. Each Key Server sends its collected data to the network Key Server.

In LiSP, each sensor has a unique secret key known as a Master Key (MK). The Master Key is used to encrypt a Temporal Key (TK) generated by each Key Server. The Temporal Key is unicast to each sensor and encrypted using that sensor’s Master Key. Both the Master Key and a digital certificate are entered into the KS through out-of-band communication prior to deployment in the field. This illustrates one weakness of current wireless sensor security options – most rely on a shared key that has to be communicated out of band, and that places limits on adding new sensors to an existing deployed network. Solutions such as asymmetric or public-key cryptography are generally too computationally demanding for the current generation of wireless sensors.

Fig 3: LiSP Key hierarchy.

Initially the KS for a group generates a sequence of keys, then selects one at random. This seed key is used, along with a cryptographically strong hash function, to generate a set of approximately one hundred Temporal Keys. The hash function is also know to each sensor – this is crucial to the TK verification carried out by the sensors later.

Once the KS has created a set of TK’s, it sends out an InitKey packet to each sensor, encrypted with that sensor’s Master Key. The MK’s are known to the KS via an out-of-band communication sent prior to network deployment. Each InitKey packet includes the buffer size t for each TK, TKt+2, a refresh time Trefresh, and the Message Authentication Code (MAC):

KS (EMKm(t | TKt+| Trefres) | MAC t | TKt+| Trefres)
When each sensor receives the InitKey packet, it does several things:

· Clears any TK’s currently in memory.

· Allocates a buffer of size t.
· Computes keys TK1, TK2, … TKn using TKt and the same hash function used by KS to generate this TK set.

· Sets the ReKeying timer to expire after time Trefres /2

When the ReKeying timer expires, the sensor switches the active key from TK1 to TK2, begins using TK2 to encrypt messages to the KS, and resets the ReKeying timer. By using Trefres/2, the sensors and the group KS need only loose time synchronization.

If all the TK’s in the set have been used, the KS will generate a new set of TK’s as described above and send out a new InitKey packet to the sensors it its group. Each group acts independently.

If a sensor is compromised (as determined by that group’s KS) the KS will revoke that sensor’s certificate in the KS database and will no longer send any packets to that sensor. In addition, the KS will send out a new InitKey packet to the remaining valid sensors. If TKk-1 key has been compromised, the InitKey packet will instruct all sensors to begin with key TKk+t+2 instead of TKk. This makes all TK’s up to TKk-1 useless and prevents the compromised sensor from eavesdropping on new transmissions.

If a new sensor wishes to join a group, it must be authenticated by the group KS via mutual certificate authentication. Again, this illustrates one of the weaknesses of the current options – the need for out-of-band communication to transmit a shared secret (certificate and/or symmetric key) – makes it difficult to add new sensors to an existing network.

Once the new sensor has been authenticated and the group KS has the sensor’s Master Key in its database, the KS sends the current t, TKk+t+2 and Trefresh to the new sensor via an InitKey packet unicast to the joining sensor. Once the new sensor has the set up the current TK, it can begin communicating with the group.

Without the current TK, the best an attacker can do is passive traffic analysis. If an attacker can compromise a sensor, it can listen to the transmissions in that group only, but any attempt to actively affect transmissions (perhaps by injecting false TK’s) would be detected by the group KS via the Key Server’s IDS. The compromised sensor would then be blocked from further eavesdropping once the KS sends a new InitKey packet to each uncompromised sensor in the group.

If an attacker attempts to fool sensors into using a different TK, any TK can be validated by each sensor using the same hash the KS used to generate the valid TK sets. Any sensor can disregard an invalid TK. In addition, each TK is unique and cannot be predicted from previous TK’s.

Any attacker attempting to impersonate a KS must pass the mutual authentication test with each sensor it’s attempting to defraud. Failure of such authentication means the sensors will not accept any communications from the attacker.

Unresolved issues

Despite the continuing work being done to find ways to efficiently and effectively secure wireless sensor networks, there are several significant unresolved issues. Looking at the problem of secure routing, these issues include (but are not limited to):

· The overhead due to broadcasts required to discover, maintain and update routes is still significant. Given the limited power and communication range of wireless sensors, any improvement here would be worthwhile.

· If the sensors are mobile, this overhead can grow quickly.

· While the number of broadcasts can be reduced by using a hierarchal structure, this presents us with a single point of failure and/or compromise.

Looking at the issues surrounding securing the actual messages, three issues continue to trouble researchers:

· Since asymmetric or public/private key encryption is still both magnitudes of order slower and more computationally intensive than symmetric/shared key encryption, shared secrets and/or certificates must be distributed out-of-band prior to sensor deployment in the field.

· Any sensors that attempt to join a deployed network must have the same shared secret as the deployed network. This makes it difficult to have new sensors join a deployed network without prior planning, thus negating some of the benefits of an ad hoc network.

· Using a central or hierarchal “server” within a deployed network provides a possible single point of failure or compromise. Strengthening the “server” increases the cost of deploying a sensor network, which works against one of the benefits of wireless sensor networks.

 Possible solutions to these issues might include:

· Continued improvement in embedded processors and ECC (Elliptic Curve Cryptography) may allow low-cost, low-powered sensors to use asymmetrical cryptography, this obviating the need for out-of-band communication of shared secrets.

· Use m of n key distribution to reduce the need for a “server” sensor and the resultant possible single point of failure or compromise.

Conclusion

It’s heartening to see that security is being considered at such an early stage in the development of wireless sensor networks. While not every sensor network may require the type of protection briefly reviewed in this paper, it’s clear that some will.

In addition, advances made here, under the difficult restrictions imposed by the limitations of power, communication range and computational capability would likely be adopted by systems that may be less limited but still not have limitless capabilities. Popular devices such as mobile telephones, handheld computers, and even laptops could benefit from advances made in the field of securing wireless sensor networks.

RERFERENCES:

[1]
A. Perrig, R. Szewczyk, J. Tygar, V. Wen & D. Culler. SPINS: Security Protcol;s For Sensor Network. Wireless Networks 8, 2002

[2]
J. Kong & X. Hong. ANODR: ANonymous On Demand Routing with Untraceable Routes for Mobile Ad-Hoc Sensor Networks. MOBIHOC, June 2003

[3]
T, Park & K. Shin. LiSP: A Lightweight Security Protocol for Wireless Sensor Networks, In ACM Transactions on Embedded Computing Systems, Vol 3, No. 3, August 2004

TBOD

TBOC

TBOB

TBOA

E

D

C

B

A

IDS

(run by KS)

Master Key

(unique to each sensor)

Data encryption

TK management

(handled bt the KS)

TK revocation

Temporal Key (TK)

(group-wide)

� A selfish sensor is one that does not forward packets from other sensors but expects other sensors to forward its packets. Since forwarding other sensor’s packets consumes precious power, this type of behavior benefits the misbehaving sensor at the expense of the other sensors and is thus considered “selfish” behavior.

Page 2 of 10

