C S 522

 Computer Communication

Fall 2004
Multi-Path Routing

Dennis Ippoliti

Abstract

In a well connected network, multiple acceptable paths exist between any two nodes. In most network implementations, routers choose one single path and rout all traffic to a destination out the same path. In multi path routing, traffic is diffused over several paths. This approach has many benefits. Throughput is increased, delay is decreased, and robustness to eavesdropping is increased as attackers must sniff multiple links. At the network layer, routing is a two-step process: the first step is computing the desired paths, and the second is forwarding data on those paths. Once multiple paths have been identified, routers must make decisions as to which packets will be forwarded on which paths. Simple round robin or load balancing is not effective. One of the challenges created by multi path routing is packet re-ordering. Multi-path transport protocols must perform efficiently when faced with an environment where out-of-order packets is the norm. Traditional TCP considers out-of-order packets an indication of network congestion and incorrectly makes flow control decisions on this premise. This paper presents a brief explanation of current Multi-path routing protocols, multi-path transport protocols, and multi-path forwarding algorithms. Various approaches are simulated using a basic simulation tool I developed. Additionally, a proposal for an improvement to the Minimal-delay forwarding algorithm is proposed.

In a well connected network, multiple acceptable paths exist between any two nodes. In most network implementations, routers choose one single path and rout all traffic to a destination out the same path. In multi path routing, traffic is diffused over several paths. This approach has many benefits. Throughput is increased, delay is decreased, and robustness to eavesdropping is increased as attackers must sniff multiple links.

At the network layer, routing is a two-step process: the first step is computing the desired paths, and the second is forwarding data on those paths. Recent research has been accomplished that successfully identifies multiple routes. Two recent attempts to solve this problem are Multi-Path distance vector (MPDV) routing protocol [9] and Multi-path Link State (MPLS) routing protocol [1]. Once multiple paths have been identified, routers must make decisions as to which packets will be forwarded on which paths. Simple round robin or load balancing is not effective. It does not take network conditions into consideration. One recent attempt to solve this problem is Minimal Delay routing [1].

One of the challenges created by multi path routing is packet re-ordering. Multi-path transport protocols must perform efficiently when faced with an environment where out-of-order packets is the norm. Traditional TCP considers out-of-order packets an indication of network congestion and incorrectly makes flow control decisions on this premise. Recent attempts to solve this problem include the Eifel Algorithm [4], the DSACK algorithm [3], and the TCP-PR algorithm [2].
This paper presents a brief explanation of current Multi-path routing protocols, multi-path transport protocols, and multi-path forwarding algorithms. Various approaches are simulated using a basic simulation tool I developed. Additionally, a proposal for an improvement to the Minimal-delay forwarding algorithm is proposed.
Multi-Path transport protocols: One of the responsibilities of the transport layer is to provide for guaranteed delivery of network traffic. In TCP, this is accomplished by using packet acknowledgements and time outs to ensure that every packet transmitted is received. If a packet times-out before it is acknowledged, it is retransmitted. TCP uses a sliding window to implement flow control. The window size determines the amount of unacknowledged packets that can be transmitted before the sender blocks and waits for acknowledgement. In general, the larger the window size, the faster the transmission rate. When a TCP destination receives packets out of order, it sends a DUP ack for each out of order packet. The sender maintains a value called DUPTHRESH. This value is the number of DUPACKS that the sender can receive before it assumes there is a network problem. In a single path environment, a significant number of DUPACKs can indicate network congestion. The TCP sender assumes that the out of order packets have been dropped due to network congestion, it reduces its window size and retransmits unacknowledged packets before they are timed out.

In a multi-path environment, out-of-order packets are the norm. suppose a simple round robin method is use to diffuse traffic over two routes. Rout one has an average end to end transmission time of 3 seconds, route two has an average rate of 1 seconds. Packets are sent every second on one of the two routes. At time 1, packet one is sent over route one. At time 2, packet 2 is sent over route 2. At time 3 packet 3 is sent over route 1, etc… The packets will be transmitted in order 1, 2, 3, 4, etc… However, because of the different propagation times, they will be received out of order, 2, 1, 4, 3, etc… A DUPACK will be generated for nearly every packet. This is not an indication of a network problem; it is simply a result of the multi-path environment.

Many approaches have been suggested to solve this problem. The Eifel algorithm uses the time-stamp option to differentiate between transmissions and retransmissions. It adjusts reduces its window size in the normal fashion. However, its window size is restored to its previous value when the original packet is acknowledged after a retransmitted packet is sent.

The DSACK algorithm uses the DSACK option to communicate between the sender and the receiver. This information is used to dynamically adjust the DUPTHRESH value of the sender. As the number of DUPACKS received increases, but normalizes at a higher level, the DUPTHRESH value is increased to this higher level. The system becomes more tolerant to DUPACKS and is less likely to interpret normal DUPACKS as network congestion.
TCP-PR ignores DUPACKS all together and uses timer alone to identify dropped packets. It constantly updates its expected round-trip time based on per packet collected data. When a packet times out it is retransmitted. When DUPACKS are received, they are ignored. By not relying on DUPACKS, out of order packets have no effect on the transmission window size.

Routing Protocols: Routing protocols construct tables at each node that specify for each destination the next-hop to use for packet forwarding. Routing tables should be loop free. That is, the set of nodes on any path between a source and a destination should contain each node only once. In dynamic environments routing tables should be loop-free every instant because, loops even if temporary can rapidly degrade performance. Most traditional routing protocols are not capable of building routing tables that contain multiple successor routes that are loop free at every instant. Most traditional routing protocols come in two varieties: distance vector and link state. Distance vector protocols use a distance vector such as hop count to calculate the best possible route. One of the most popular distance vector protocols is Routing Information Protocol [5] or RIP. Link state protocols consider information about network links to make routing decisions. Link state protocols take characteristics such as bandwidth, delay, reliability, and load into consideration instead of basing their decisions solely on distance or hop count. One of the most popular link state protocols is Open Shortest Path First [6] or OSPF. These protocols are not effective for multi path routing. RIP provides only one next-hop choice for each destination and does not prevent temporary loops from forming. OSPF offers a router multiple choices for packet-forwarding only when those choices offer the minimum distance. Paths that do not offer minimum distance are not considered. This reduces options for diffusing traffic. The full connectivity of the network is not used for load-balancing.

Recently, two protocols have been proposed to solve this problem. Multi-Path Distance Vector (MPDV) and (MPLS). MPDV uses distance vectors to construct the set of successor hops from i to j ([image: image1.bmp]) such that [image: image2.png]Sit) = (k\Df(q < Dj(t),k € N'}

. That is, every neighbor to node I that has a shorter path to node j than node i, is placed in the successor list. Every feasible path is selected. MPDV maintains loop freedom at every instant by ensuring that if a node reports a distance to a destination through a neighbor, that neighbor must remain in the successor table until the algorithm has converged. This prevents loops from forming during the converging process.

The MPLS algorithm is a link state routing protocol that provides similar assurances. Every neighbor to node i that has a lower cost to j than node i, is placed in the successor list. MPLS uses a link state process similar to OSPF to identify shortest path routes. MPLS uses Link State Updates (LSUs) to transmit information about known links. However, in the MPLS algorithm, all neighbors must acknowledge the LSU. While a node is waiting for an acknowledgement, it is labeled “ACTIVE”. Once all neighbors have acknowledged the LSU, the node examines LSUs that it received during its “ACVIVE” phase. If changes are required, it forwards new LSU messages. Local Routing table updates are made when all nodes are in “PASSIVE” state. This system of active/passive updates prevents loops at every instant.
Packet Forwarding: Once multiple feasible paths are identified the router must make forwarding decisions. The simplest forwarding decisions are to forward packets in a round robin fashion or load balance equally. These methods do provide improvements over single path routing, but do not provide optimal or near optimal routing. In a simple example, if there are two paths from i to j, the first path transmits at 1 gigabit per second, the second path transmits 1 megabit per second, splitting traffic equally will not be as effective as sending most traffic over the fast link and only supplementing the flow with the second link. The paper at [1] proposes a method of packet forwarding known as minimum delay routing. At large time intervals, the path priorities are updated based on link state information. Traffic is distributed based on the rank order. At short time intervals, traffic is incrementally moved from the links with large marginal delays to links with the least marginal delay. The amount of traffic moved away from a link is proportional to how large the marginal delay of the link is compared to the best successor link. This approach maximizes the overall effectiveness of the per hop multi-path routing behavior.

Dynamic class differentiation: Although minimal delay routing is highly effective, there exists the possibility that a greedy node could cause negative impacts on other nodes by increasing the delay at successor nodes. For example, given the topology below, the diagram on the right shows the path packets might take in a single path environment. The path on the right shows the paths packets might take in a multi path environment. Green arrows indicate primary paths, blue arrows indicate secondary paths. In a multi path environment, packets will be sent down both primary and secondary routes.

[image: image3.emf]A

1

3 4

2

5

6 7 8

9 0

B

C D

A

1

3 4

2

5

6 7 8

9 0

B

C D

 [image: image4.emf]A

1

3 4

2

5

6 7 8

9 0

B

C D

A

1

3 4

2

5

6 7 8

9 0

B

C D

In the diagram on the right, packets on the primary path from B to D are competing with packets on the secondary path from A to C. If the traffic load from A is large, packets from B will suffer. To counteract this, I propose to implement a DiffServ [7] application on the link from 4 to 7. As packets are forwarded out of a router, their priority will be changed to the priority level of the path they are taking. Traffic on a primary path will be class one. Packets on a secondary path will be class two. Packets on a tertiary path will be class three. In the above example, packets from 1 to 4 will be low priority, packets from 2 to 4 will be high priority. I have simulated this approach and the results are detailed later in this report.
Simulation Approach:

For my simulation approach, I used a model loosely based on the Click Modular Router platform [8]. Click is a platform developed at MIT. It uses a combination of modules to move packets through a router from the input device to the output device or the operating system. Each module performs only basic functions. For example, there is a module that decrements the TTL value. There is a queue module that stores packets. There is a module that collects data about packets passing through it. Every module is connected by one of three types of connections: push, pull, or ambiguous. Push connections and pull connections must be connected to like connection types. Ambiguous connections may be connected to either type of connection. Push connections push packets from the source module to the destination module. Pull connections pull packets to the destination from the source. For example, in the simple drop tail queue shown below:

[image: image5]
Packets are “pushed” on to the queue from the source. If the queue is full, the packet is pushed on to the sink. Otherwise it is stored. When the destination is ready for the next packet, packets are “pulled” from the queue to the destination by the destination.
Implementation Details:

In the click platform, modules are implemented as C++ objects that are compiled and run inside a kernel level process. The modules are combined using a scripting language developed specifically for Click. Each combination of modules on a computer implements a single network device. In my simulation, modules are implemented as C++ objects called elements that are compiled and run inside a user process. Elements are combined to form components. Components are linked together to form entire networks. Elements, components, and links are all run within the same process. The main C++ objects of my simulation are CElement, CComponent, and CConnection. Most modules in my simulation construct are inherited from these three objects to form the various simulated network devices. CElements are the basic building blocks of the construct. They are connected to other CElement objects using CConnection objects. CElements and CConnections are grouped together inside CComponent objects. CComponents simulate network nodes.

In addition to the classes specified above, there are also helper classes. CList is a templated link list class I developed to manage packet storage. CPacket is the basic class to simulate a network packet. CSimpleRoutingTable and its descendants are used to implement various types of routing tables.

At runtime, each component is sequentially “triggered” by making a call to its Go() function. Each call to Go() causes the component to perform basic functions. Most components simply update local time. Others, such as network link components process network packets based on their link speed. Still others generate packets and datagrams based on certain input parameters.

This simulation model is not suitable for in-depth study of network behavior. There are a number of imperfections in it. For example only one link can be active at a time. Links are triggered in sequential order. In a real network, all links are capable of transmitting packets at the same time. I do believe however, it is suited for identifying and validating general network behavior according to the implemented algorithms.
In my simulation I simulated three routing algorithms, static single path routing, Round Robin multi-path routing, and minimum delay multi-path routing. I also simulated two transport protocols, a standard TCP type transport protocol and a TCP-PR type transport protocol. Finally, I simulated two QoS approaches, same service to all, and Wait Time Priority[7].
The first routing algorithm simulated is static single path routing. From each source to each destination, there is one path identified. All packets are routed along that path. In Round Robin multi-path routing, multiple potential paths are identified. Packets are dispersed over those multiple paths. Each packet is routed down a different path in a round robin order. In minimum delay multi path routing, multiple potential paths are identified. Packets are dispersed over those multiple paths. As the delay on a single path increases, the amount of packets forwarded down that path decreases.
The simulated TCP type protocol uses a sliding window for flow control. Each packet within the window is transmitted. When the lowest packet in the window is acknowledged, the window is slid forward. If a packet times out, it is retransmitted. When excessive packets time out, the window size is reduced. When a significant number of packets are acknowledged, the window size is gradually increased to the maximum window size. When packets are received out of order, DUPACKS are generated. When a significant amount of DUPACKS are received, the window size is reduced, and the sender enters fast-retransmit. Unacknowledged packets are retransmitted before they time out. The TCP-PR type transport protocol simulated ignores DUPACKS all together. It relies on timers only. Otherwise, it performs identically to the simulated TCP protocol.

The QoS “same-service-to-all” method does not attempt to provide Differentiated service. All traffic is treated as the same priority. The QoS method Wait Time Priority is a proportional differentiated service model in which the priority of a packet at any given time is the amount of time that packet has been waiting in queue times the service weight for that class of traffic. If class A traffic has weight 1 and class B traffic has weight 2, class B traffic will receive twice the level of service as class A traffic.

Simulation Results: The first test was designed to compare single path routing and multi-path routing. It also compares TCP to TCP-PR in multi-path routing environments. The topology used for the first simulation is below:

[image: image6]
Blue links are 10 Mbps, Green links are 5 Mbps. The results of the various test runs are below

	Single Path routing 1, 2, 3, 4, C
	3.4 Mbps Throughput

	Round Robin Multi-Path TCP
	10.42 Mbps Throughput

	Round Robin Multi-Path TCP-PR
	10.42 Mbps Throughput

	Minimal Delay Multi-Path TCP
	10.48 Mbps Throughput

	Minimal Delay Multi-Path TCP-PR
	10.48 Mbps Throughput

The links from 1->3, and 3-> C are changed to 2 Mbps. The links from 1 -> 4 and 4-> C are changed to 3 Mpbs. The new results are below

	Single Path routing 1, 2, 3, 4, C
	3.4 Mbps Throughput

	Round Robin Multi-Path TCP
	904 Kbps Throughput

	Round Robin Multi-Path TCP-PR
	4.89 Mbps Throughput

	Minimal Delay Multi-Path TCP
	5.88 Mbps Throughput

	Minimal Delay Multi-Path TCP-PR
	10.48 Mbps Throughput

Now, testing the theory that we can prevent a greedy flow from starving a smaller flow. In the next simulation, the following topology was used:

[image: image7]
Blue links are 10Mbps, Black links are 8Mbps, green links are 5Mbps, and red links are 1Mbps. What I attempt to show here is that the flow from A to C is greedy. It requires significantly more bandwidth that the flow from B to D. Using a WTP scheduler at node 4 that will give priority to traffic from B will help minimize the negative affect. The scheduler at node 4 will see traffic from node A as being on node A’s secondary path where traffic from node B is on node B’s primary path. Node B traffic will get priority. The premise is that when a packet is transmitted out of a node, it is prioritized according to the path it takes. In the above example, traffic from 1 to 3 is on the primary path so it is priority 1. Traffic on the path from 2 to 4 is also on the primary path. Traffic from 1 to 4 is on the secondary path so it is priority 2. At node 4, priority 1 traffic is given better service than priority 2 traffic. The below chart shows the simulation results.

	A->C Single Path
	B->D Single Path
	A->C = 6.4 Mbps
	B-D = 2.2Mbps

	A->C Single Path
	B-D Multi Path
	A->C = 6.4 Mbps
	B-D = 4.2Mbps

	A->C Multi-Path
	B-D Multi Path
	A->C 10.4 Mbps
	B-D 2.4 Mbps

	A->C WTP Multi-Path
	B->D WTP Multi Path
	A->C 9.2 Mbps
	B-D 4.0 Mbps

Conclusions: In the first simulation example, all links provide equal service. In this case, multi-path routing provides higher throughput that single path routing. The two packet forwarding algorithms used are round robin and minimal delay. In this case, minimal delay is only slightly better than round robin. Because all links are equal and all links are operating under identical circumstances, the benefits of minimal delay routing are not seen. Both round robin and minimal delay are reduced to equal load balancing. However, in the second example discussed, the three links all provide dramatically different levels of service. In this example two main points are observed. First, due to the consistent re-ordering of packets, round robin multi-path routing with standard TCP is actually worse that round single path routing. The excessive DUPACKS causes a significant problem for the network. As shown, TCP-PR eliminates this problem and provides the best service of all the configurations. The second thing that is observed, is that minimal delay routing is more effective than round robin. In an environment where service levels of the various path are different, minimal delay routing is able to adapt to the network conditions. Round robin routing is not.

In the second simulation topology, a situation is created where a greedy flow on one set of links affects the flows on other links. In the case of single path routing on both flows, the results are 6.4 Mbps and 2.2 Mbps. When the slower flow is dispersed, it increases its throughput to 4.2 Mbps. This is due to both increased bandwidth and a decrease in packet loss. When the greedy flow is dispersed and competes for bandwidth from 4 to 7, the benefit of multi-path routing on the second flow is almost eliminated. Only when the traffic from 4 to 7 is differentiated based on flow priority, do both flows see a significant increase in service caused by multi-path routing.

Future Work: The first step in future work is to refine the simulator. Right now, you must re-write main() and recompile for every simulation. I intend to write a scripting language similar to "Click" this will allow me develop simulations in very short order. Once that is working, I will begin implementing these experiments using the actual Click platform. Using virtual terminals, I can implement an entire network on one PC. This will help eliminate the artificialities introduced by my simulation methods. Finally, minimal delay routing is the only algorithm I experimented with. I intend to research and study other algorithms and use my simulator to experiment with their behavior.

References
[1] S. Vutukury and J.J. Garcia-Luna-Aceves. A Simple Approximation to Minimum Delay Routing. Proc. of ACM SIGCOMM, Sept. 1999.
[2] Stephan Bohacek, Joao Hespanha, Junsoo Lee, Chansook Lim, Katia Obraczka. A New TCP for Persistent Packet Reordering-TCP-PR, Accepted for Publication in Transactions on Networking, 2004
[3] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension to the selective acknowledgement (SACK) option for TCP.” RFC 2883, 2000.
[4] R. Ludwig and R. Katz, “The Eifel algorithm: Making TCP robust against spurious retransmissions,” ACM Computer Communication Review, vol. 30, no. 1, 2000.
[5] C Hedrick, "Routing Information Protocol", RFC 1058, Network Working Group, June 1988.

[6] J Moy, "Open Shortest Path First Version 2", RFC 1247, Network Working Group, July 1991
[7] Constantinos Dovrolis, Dimitrios Stiliadis, and Parmesh Ramanathan, " Proportional Differentiated Services: Delay Differentiation and Packet Scheduling.," In IEEE/ACM Transactions in Networking, 10(1):12-26, February 2002.

[8] The Click modular router. Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. Proceedings of SOSP '99, Kiawah Island, South Carolina, December 1999, pages 217-231.

[9] S. Vutukury and J.J. Garcia-Luna-Aceves. MDVA: A Distance-Vector Multipath Routing Protocol. In Proceedings of the IEEE INFOCOM Conference on Computer Communications, pages 557--564. IEEE Press, 2001. 29
[image: image8.emf]

A

Queue

Destination

Source

Sink

C

8

36

5

45

2

1

A

2

D

7

6

C

B

4

3

1

A

