

INDEX
TOPIC

PAGE NUMBER

1. INTRODUCTION ---------------------------------1

2. OPEN SSL --2 - 5
3. JSSE --6 – 8
4. APPLICATION ------------------------------------9 -11
CHAPTER 1. INTRODUCTION

 This project is an attempt to create an application which could be used as a text editor and double as an application to upload or download files from a remote machine.

 Often users working in a windows environment use two applications when they need to work on a remote machine due to unfamiliarity or lack of convenience working with application like vi editor or emacs on ssh client or putty. This inconvenience prompted us to develop an application which would double as a text editor and an application to upload or download files from a remote machine, therefore this project.

 This project gave us an opportunity to study and work on secure socket layer commonly known as SSL. SSL is widely accepted cryptography suite. Using java as our development tool we developed this application. Java being a cross platform compatible we chose it as our language for development. Java offers an array of ciphers which gives the user to choose from a large number of cipher algorithms to choose from. Java's security modules can be found in JSSE.

And finally our goal is to be able to use it when we are working on our thesis, next semester. Secure notepad would enable us to work on remote machine without the hassle of using two separate applications.

CHAPTER 2. OPEN SSL

 Open SSL was introduced by Netscape in 1994. Since then it has come a long way along to being the most widely used protocol on the web. It provides security over a communication channel by using a combination of cryptographic processes. SSL provides a secure enhancement to the standard TCP/IP sockets protocol used for Internet communications. Secure sockets layer is added between the transport layer and the application layer in the standard TCP/IP protocol stack. The application most commonly used with SSL is Hypertext Transfer Protocol (HTTP). Other applications, such as Net News Transfer Protocol (NNTP), Telnet, Lightweight Directory Access Protocol (LDAP), Interactive Message Access Protocol (IMAP), and File Transfer Protocol (FTP), can be used with SSL as well.

 Rational for using SSL are as follows

1. SSL is used as it provides a mechanism for authenticating the receiver at the other end by using certificates and public key cryptography.

2. Secures data over the communication channel by encrypting the data being sent. Encryption ensures that the data has not been modified or read by an attacker during transmission. SSL uses hash functions to check whether the data has been tampered during transmission.

SSL ARCHITECTURE

[image: image1.png]1. Client hello

7. Cettificateoptional
6 Client key exchange

9. Cettificate verify optional
10. Change cipher spec

11. Finished

14. Encrypted data

15. Close messages

2. Server hello

3. Cettificate options/

4. Cettificate request optiona!

5. Server key exchange optional

6. Server hello done

12. Change cipher spec
13. Finished
14. Encrypted data

15. Close messages

The SSL messages are sent in the following order:

1. Client hello - The client sends the server information including the highest version of SSL it supports and a list of the cipher suites it supports. (TLS 1.0 is indicated as SSL 3.1.) The cipher suite information includes cryptographic algorithms and key sizes.

2. Server hello - The server chooses the highest version of SSL and the best cipher suite that both the client and server support and sends this information to the client.

3. Certificate - The server sends the client a certificate or a certificate chain. A certificate chain typically begins with the server's public key certificate and ends with the certificate authority's root certificate. This message is optional, but is used whenever server authentication is required.

4. Certificate request - If the server needs to authenticate the client, it sends the client a certificate request. In Internet applications, this message is rarely sent.

5. Server key exchange - The server sends the client a server key exchange message when the public key information sent in 3) above is not sufficient for key exchange.

6. Server hello done - The server tells the client that it is finished with its initial negotiation messages.

7. Certificate - If the server requests a certificate from the client in Message 4, the client sends its certificate chain, just as the server did in Message 3.

Note: Only a few Internet server applications ask for a certificate from the client.

8. Client key exchange - The client generates information used to create a key to

9. use for symmetric encryption. For RSA, the client then encrypts this key information with the server's public key and sends it to the server.

10. Certificate verify - This message is sent when a client presents a certificate as above. Its purpose is to allow the server to complete the process of authenticating the client. When this message is used, the client sends information that it digitally signs using a cryptographic hash function. When the server decrypts this information with the client's public key, the server is able to authenticate the client.

11. Change cipher spec - The client sends a message telling the server to change to encrypted mode.

12. Finished - The client tells the server that it is ready for secure data communication to begin.

13. Change cipher spec - The server sends a message telling the client to change to encrypted mode.

14. Finished - The server tells the client that it is ready for secure data communication to begin. This is the end of the SSL handshake.

15. Encrypted data - The client and the server communicate using the symmetric encryption algorithm and the cryptographic hash function negotiated in Messages 1 and 2, and using the secret key that the client sent to the server in Message 8.

16. Close Messages - At the end of the connection, each side will send a close_notify message to inform the peer that the connection is closed.

CHAPTER 3. Java Secure Socket Extension (JSSE)

 The Java Secure Socket Extension (JSSE) enables secure Internet communications. It provides a framework and an implementation for a Java version of the SSL and TLS protocols and includes functionality for data encryption, server authentication, message integrity, and optional client authentication. Using JSSE, secure passage of data between a client and a server running any application protocol, such as Hypertext Transfer Protocol (HTTP), Telnet, or FTP, over TCP/IP can be provided.

 JSSE provides both an application programming interface (API) framework and an implementation of that API. The JSSE API supplements the "core" network and cryptographic services defined in the Java 2 SDK, v1.4 and later java.security and java.net packages by providing extended networking socket classes, trust managers, key managers, SSLContexts, and a socket factory framework for encapsulating socket creation behavior. (It also provides a limited public key certificate API that is compatible with Java Development Kit (JDK) 1.1-based platforms. However, please note that this limited javax.security.cert certificate API is provided only for backward compatibility with JSSE 1.0.x and should not be used. Instead, use the standard java.security.cert certificate API.) Because the socket APIs was based on a blocking I/O model, in J2SE 5, a non-blocking SSLEngineAPI was introduced to allow implementations to choose their own I/O methods.

The JSSE API is capable of supporting SSL versions 2.0 and 3.0 and Transport Layer Security (TLS) 1.0. These security protocols encapsulate a normal bidirectional stream

Socket and the JSSE API add transparent support for authentication, encryption, and integrity protection. The JSSE implementation in the J2SDK 1.4 and later implements SSL 3.0 and TLS 1.0. It does not implement SSL 2.0.

As mentioned above, JSSE is a security component of the Java 2 platform, and is based on the same design principles found elsewhere in the Java Cryptography Architecture (JCA) framework. This framework for cryptography-related security components allows them to have implementation independence and, whenever possible, algorithm independence.

JSSE includes the following important features:

· Implemented in 100% Pure Java

· Can be exported to most countries

· Provides API support for SSL versions 2.0 and 3.0, and an implementation of SSL version 3.0

· Provides API support and an implementation for TLS version 1.0

· Includes classes that can be instantiated to create secure channels (SSLSocket, SSLServerSocket, and SSLEngine)

· Provides support for cipher suite negotiation, which is part of the SSL handshaking used to initiate or verify secure communications

· Provides support for client and server authentication, which is part of the normal SSL handshaking

· Provides support for Hypertext Transfer Protocol (HTTP) encapsulated in the SSL protocol (HTTPS), which allows access to data such as web pages using HTTPS

· Provides server session management APIs to manage memory-resident SSL sessions

Figure 2 shows the SSL Sockets / SSL Engine layout provided by JSSE.

[image: image2.png]Key Material

Key Material

KeyManagerFactory

KeyManager

TrustManagerFactory.

TrustManager

SSLContext

SSLserverSocketFactory

SSLServerSocket

-accept)

SSLSocketFactory

SecureRandom

SSLSocket

SSLSocket

SsLSession

SSLEngine.

CHAPTER 4. APPLICATION

 Our application, secure notepad has been developed using Java's swing package. The editor emulates the basic features of a notepad provided in Windows operating systems. The basic features that are provided are as follows

1. File features – The features provided are consistent with other text editors and IDE. The options provided are new, open, save, save as and close.

2. Editing features – Basic editing operations can be performed, undo, cut, paste, copy, delete, select all and time/date.

3. Help – Currently it only has one option called about, names of the developers.

4. Send/Receive – This option is used for communicating with the server/ client to upload or download files from it. Once the send or receive option is selected a window opens which prompts the user to enter the name of the destination server. The proposed security module interacts with the application to provide a secure communication channel.

 The secure socket connection’s modules were written for interaction between the server and the client. The module works independently well but it needs to be integrated with the notepad to work in congruence with it. The SSL client – server module use a certificate for their interaction.

[image: image3.jpg]| File Edit_Format Help SendReceive Files

) [@scnarie I L=TEY]
Username [asdeshmu
Password

Please enter the remote host name.

Figure 3 – Snapshot of notepad

Client

 SocketChannel socketChannel = SocketChannel.open();

socketChannel.configureBlocking(false);

socketChannel.connect(new InetSocketAddress(hostname, port));

// Do initial handshake

doHandshake(socketChannel, engine, myNetData, peerNetData);

myAppData.put("hello".getBytes());

Server

int num = socketChannel.read(peerNetData);

if (num == -1) { // Handle closed channel } else if (num == 0) { // No bytes read; try again ... } else { // Process incoming data peerNetData.flip();

res = engine.unwrap(peerNetData, peerAppData);

if (res.getStatus() == SSLEngineResult.Status.OK) { peerNetData.compact(); if (peerAppData.hasRemaining()) { // Use peerAppData } }

CHAPTER 6. FUTURE WORK

1. Integration of notepad and the security modules.

2. Add feature which would highlight the syntax used by a programming language.

3. Complete the project to make it a open source

BIBLIOGRAPHY

1. www.java.sun.com
2. www.openssl.org
3. Cryptography and Network Security: PRINCIPLIES AND PRACTICES, William Stallings

�

			Figure � SEQ "Drawing" *ARABIC �1� SSL ARCHITECTURE

�

		Figure 2 SSL SOCKET / SSL ENGINE

PAGE
0

