REPORT
CS522:Communications (F2004)

Project

On

WEB SERVICES

By

Sujeeth Narayan

Ankur Maheshbhai Patwa
CONTENTS

Introduction……………………………………………………………………………..3

Definition………………………………………………………………..………..3

SOAP……………………………………………………………………………..3

WSDL…………………………………………………………………………….6

Steps to create a WebService…………………………………………………9
Research………..……………………………………………………………………..10
Security Issues…………………………………………………………………10

J2EE & WebServices……………………………………………………….…15

Tools…………………………………………………………………………….18
Implementation.………………………………………………………………………19

Functionality……………………………………………………………………19
Architecture………………………………………………………………….…19

Problems Faced..…………………………………...…………………………19
References…………………………………………………………………………….20
INTRODUCTION

Definition:-
A Web service is a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.

One of the primary advantages of the XML Web services architecture is that it allows programs written in different languages on different platforms to communicate with each other in a standards-based way.
SOAP (Simple Object Access Protocol)

SOAP is an extensible XML messaging protocol that forms the foundation for Web Services. SOAP provides a simple and consistent mechanism that allows one application to send an XML message to another application. A SOAP message is a one-way transmission from a SOAP sender to a SOAP receiver, and any application can participate in an exchange as either sender or receiver. SOAP messages may be combined to support many communication behaviors, including request/response, solicit response, one-way asynchronous messaging, or event notification. SOAP is a highlevel protocol that defines only the message protocol and a few rules for message processing. It is completely independent of the underlying transport protocol, so SOAP messages can be exchanged over HTTP, JMS, or mail transport protocols. Currently the HTTP protocol is the most

frequently used transport for SOAP messages. We'll show some sample SOAP messages later in this article.

SOAP message structure

SOAP messages follow the following basic structure:

<ENVELOPE attrs>

<HEADER attrs>

<directives/>

</HEADER>

<BODY attrs>

<payload/>
or

<FAULT attrs>

<errors/>

</FAULT>

</BODY>

</ENVELOPE>

The message content is enclosed in an ENVELOPE element. In this simple case, our SOAP messages contain only a BODY section. The Body carries the message payload. Generally, SOAP doesn't mandate any specific rules for the Body section. There are two possible styles for the Body section:

Document and RPC. The Document style has no rigid formatting requirements beyond standard XML rules, while the RPC style defines rules for marking up the method call with all its parameters. The SOAP specification recommends but doesn't mandate an encoding style, the basic framework for expressing typed values in a SOAP message.
The SOAP encoding style is based on the data types defined in the XML Schema, Part 2 Recommendation which includes primitive programming language types such as int, float, double, or string.
The SOAP protocol recommends using the SOAP encoding style to translate complex programming language types to XML. SOAP encoding can translate the following types automatically:

· Java 2 primitive types (boolean, byte, short, int, long, float, and double)

· Simple arrays and multidimensional arrays

· Standard Java classes (String, Data, Calendar, BigInteger, and BigDecimal)

· Java 2 collections (HashMap, Hashtable, Vector, List, etc.)

· Custom classes designed using the JavaBeans design pattern with public getter and setter methods for each property
SOAP Encoding also defines rules for building complex types (e.g. arrays, structures, etc.) on top of these primitives. In one example (using the RPC style with SOAP encoding), the Body section of the input message contains the invoked method name with encoded parameters:

<n0:getQuote

xmlns:n0="http://systinet.com/wsdl/com/systinet/demos/stock/
StockQuoteService">

<p0 i:type="d:string">SUNW</p0>

</n0:getQuote>

The output message contains the result of the method call:

<n0:getQuoteResponse

xmlns:n0="http://systinet.com/wsdl/com/systinet/demos/stock/

StockQuoteService">

<response i:type="d:double">10.0</response>

</n0:getQuoteResponse>

A SOAP message can also contain a HEADER section, which is usually used to propagate context information, such as payment details, transaction context, or security credentials. If an error occurs during processing, the SOAP server should return a FAULT in the Body section. The Fault element should contain a fault code, a fault description, and any details available about the fault. A SOAP

Fault contains three basic elements:

· FAULTCODE contains a machine-readable error code that indicates what caused the error

· FAULTSTRING carries a human-readable short description of the error

· DETAIL describes the error in detail

If the service throws an exception, the SOAP runtime maps the exception to a SOAP Fault message and returns it to the client. When the client-side SOAP runtime receives a SOAP Fault message, it pulls the exception information from the message and re-throws the exception.

Even though remote references are critical for many distributed computing applications, not all SOAP implementations support them.

WSDL (Web Services Definition Language)
WSDL is an XML document that contains a set of definitions that describes a Web service. It provides all the information needed to access and use a Web service. A WSDL document describes what the Web service does, how it communicates, and where it resides. One uses the WSDL document at development-time to create service interfaces. Some SOAP implementations use WSDL at runtime to support dynamic communications. The WSDL file contains a full description of the deployed Web service. Basically there are three parts in a WSDL file:
1. The WHAT part

2. The HOW part

3. The WHERE part

1. The WHAT part, consisting of the types, message, and portType elements, defines the messages and data types exchanged between client and server. First let's look at the contents of the WSDL <types> element. It contains all the XML Schema types that were generated to represent the corresponding Java classes. The message definitions follow. A message is the basic communication element of SOAP. A message can consist of one or more parts, each part representing a typed parameter. There are two messages (input and output) for each method of our stock quote Java class. All messages are grouped into operations in an entity called a portType. A portType represents a Web service interface – the abstract set of operations supported by the service. A Web service can have multiple interfaces represented by different portTypes.
2. The HOW part, consisting of the binding elements, binds an abstract interface (the portType) to a set of concrete protocols. Usually, SOAP over HTTP is used. Since we're using SOAP, we use a number of WSDL extensibility elements for SOAP to define the specifics of our SOAP binding. (Many of the elements use the soap: namespace prefix. These elements are SOAP extensions to WSDL.) The soapAction attribute in the soap:operation element is an HTTPspecific attribute that can be used to provide a hint as to the intent of the SOAP message. It can contain a message routing parameter or value that helps the SOAP runtime determine which application or method should be executed. The value specified in this attribute must also be specified in the SOAPAction: attribute in the HTTP header of the SOAP request message. A SOAP binding requires that we specify the communication style used for each operation in the portType. SOAP supports two possible communication styles: RPC and Document. The RPC style simulates a remote procedure call. It formats the request message as a structure containing the input parameters. The name of the structure indicates the method to be invoked. The response message is a structure containing the return value and any response parameters. The Document style does not impose any particular structure on the SOAP messages. It assumes that the contents of the SOAP message are well formed XML data. A SOAP binding also requires that we specify how our messages are expressed in XML. We can use either literal or encoded serialization rules. The use='literal' attribute indicates that the message should be serialized according to a specified XML Schema instance. The use='encoded' attribute indicates that the message should be serialized using a

particular encoding style. An encoding style defines a set of data typing rules. In this case we use the encoding style defined by SOAP in section 5 of the SOAP specification. Other encoding styles can also be used.
3. Finally the WHERE part, consisting of the service element, maps the service bindings to a specific service implementation. It specifies the actual location (a URI) of the Web service. Check out the service element at the very end of the WSDL document. You can see, a WSDL file completely describes a Web service. Given this WSDL file, we have all the information we need to create a client application that can access a Web service.

[image: image6.png]Registraion
0B

Verfer Web Service. INTERNET |

Cradit Card Web Servcs.

XML Emryption ang/Signature

SSL[Secure
Communication

Appication
(User Inteface)

Web Services architecture and its core building blocks

Steps to create a Web service:

1. Create the Web service business logic. First we need to write a Java class that implements the Web service business logic.

2. Deploy the Java class to a SOAP server. The easiest way to turn our class into a Web service is to compile our Java classes and then use the deployment tool to deploy them to the SOAP server. Next we need to turn the Java class into a Web service.

3. Generate the client access classes. A client application uses a proxy object to access a Web service. At request time, the proxy accepts a Java method call from the application and translates it into a SOAP request message. At response time, the proxy receives the SOAP response message, translates it into Java objects, and returns the results to the client application.

4. Client application development. The client application treats the proxy as a standard Java object that transparently performs the communication with the Web service.

RESEARCH
Security Issues:

With XML Web services, information about data parameters is exposed. In addition, more data across many different interface types is likely to be sent between systems, creating the opportunity for hackers to launch buffer overflow attacks. For example, an attacker can send an overly long parameter, such as a password with more characters than expected or undesirable code, causing the service to crash or to execute code the attacker supplies. Sending a character in a numeric field could cause problems if the application isn't expecting it. Many legacy systems you might want to Web service-enable are designed for controlled, predicable requests and might not be prepared to handle unusual ones. Providing malicious attack protection for your Web services is essential, especially for legacy systems.

Although existing standards, such as LDAP, public key infrastructure (PKI), and SSL play an important role in securing Web services, additional standards are necessary to address Web services' unique security needs. Although basic SOAP, WSDL, and UDDI Web services standards are relatively well established, standards for Web services security specifically, such as Security Assertion Markup Language (SAML), XML Encryption, XML Signature, and WS-Security, are still in development. The SAML protocol asserts authentication and authorization information. You can access SAML-compliant servers for authentication and authorization data to enable single sign-on. The XML Encryption protocol describes the encryption of digital content. It includes protocols for encrypting sections of XML documents and enables end-to-end encryption because only the private content is encrypted. Session-level encryption can provide data privacy only between two servers. The XML Signature protocol describes the signing of digital content. It includes protocols for signing sections of XML documents and enables capabilities such as message integrity. The XML Key Management Specification (XKMS) describes the distribution and registration of public keys. Services can access an XKMS compliant server to receive updated key information for encryption and authentication.

SQL injection attacks involve adding special characters or terms to cause SQL statements to return unintended data. For example, strings that might end up in a WHERE clause of a SQL statement might be tricked into including more information. For instance, this parameter value might cause the whole table to be returned because 1=1 is always TRUE in the WHERE clause:

X' OR 1=1
To provide true end-to-end security for these fluid and dynamic environments; you'll need to use a mix of technology and standards. Building in scalable security from the beginning is critical. Doing it after the fact creates a range of problems similar to what you'd see if you tried building quality into a standard Web application later. For example, trying to enforce company-wide policies in a heterogeneous, decentralized environment becomes intractable as more and more Web services are added to the network. Enforcing standards and using integration technologies such as XML firewalls help scale the environment as it grows in size and complexity.
Now,if we deploy a network-level firewall to protect from intruders, we will not be able to distinguish between a customer and a partner once it has reached the SOAP server. It is possible that an intruder authenticates himself as an anonymous customer, reaches the SOAP server, and invokes sensitive web services meant for partners. Thus, a SOAP server is like a hole in your network.
There are two solutions to this problem:

1. Use a different SOAP server for each level of sensitivity, so that different authentication policies can be enforced on each sensitivity level. This solution may seem appropriate for web services today. However the real advantage of web services lies in the next generations where web services will not just be
invoked by browser-assisted human clients, but web services will invoke each other to form chained or transactional operations. Such complex web service
infrastructure will be very hard and expensive to build with the idea of having a separate SOAP server for each authorization policy. In addition, this idea hardly allows building reusable or off-the-shelf security solutions.
2. The second option is to make the firewall XML and SOAP aware. The firewall will be able to inspect SOAP messages, trying to match user roles with access lists, policy levels, and so on. This solution is a better approach. It also allows building XML-based standard security protocols, which can be adopted by security vendors to ensure interoperability. Web service users can add security information (signature, security tokens, algorithm names) inside SOAP messages, according to the XML-based security protocols. The XML and SOAP-aware firewall will check the message before it reaches the SOAP server, so that it is able to detect and stop intruders before they are able to reach the service.

XMLSecurity:
The XML Signature specification is a joint effort of W3C and IETF. It aims to provide data integrity and authentication (both message and signer authentication) features, wrapped inside XML format.
A sample XML Signature:

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference URI="#stms_response">
<ds:Transforms>
<ds:Transform Algorithm="http://www.algomagic.com/stms/xml/dsig/20020405#transform_asl"/>
<ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>0OUm6eGKLGYEd6M4Mf5JY+feqUs=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue> ... </ds:SignatureValue>
<ds:KeyInfo> ... </ds:KeyInfo>
</ds:Signature>

[image: image2.png]XML Signature

Private WoSarice

Network. Commomer

XML Encryption %

WebServer Running WobServco

Wensonice Firowal Coneimer
XxAcML.

Secure Web Services Implementation
XML Security

W3C's XML Encryption specification addresses the issue of data confidentiality using encryption techniques. Encrypted data is wrapped inside XML tags defined by the XML Encryption specification. WS-Security from OASIS defines the mechanism for including integrity, confidentiality, and single message authentication features within a SOAP message. WS-Security makes use of the XML Signature and XML Encryption specifications and defines how to include digital signatures, message digests, and encrypted data in a SOAP message. Security Assertion Markup Language (SAML) from OASIS provides a means for partner applications to share user authentication and authorization information. This is essentially the single sign-on (SSO) feature being offered by all major vendors in their e-commerce products. In the absence of any standard protocol on sharing authentication information, vendors normally use cookies in HTTP communication to implement SSO. With the advent of SAML, this same data can be wrapped inside XML in a standard way, so that cookies are not needed and interoperable SSO can be achieved.
XACML:

eXtensible Access Control Markup Language (XACML) presented by OASIS lets you express your authorization and access policies in XML. XACML defines a vocabulary to specify subjects, rights, objects, and conditions - the essential bits of all authorization policies in today's e-commerce applications.

Proposed Web-Security Standard
Microsoft and IBM have made specifications for WebSecuirty.
The specification can be found in Reference [5].
The proposal has specification on :
· WS-Security - Security tokens, X.509 certificates, signatures and encryption to SOAP header
· WS-Policy - Capabilities and Constraints of Security Policies
· WS-Trust - Framework of trust models
· WS-Privacy - Model for Web Services, Requesters and Organizational privacy preferences.
Conclusion

The important requirements for Web service security are [6]:
· Authentication
· Authorization, access control
· Encryption through SSL, XML Encryption, or dedicated lines
· Signature support, XML Signature
· Malicious attack protection for Web service interfaces
· Monitoring, alerts, threat containment, and intrusion detection
· Auditing for proving security
· Interoperability of different security, data, and transport schemes across departments and companies
· Sophisticated policy enforcement, including content filtering
· Scalability of secure message throughput, as well as scalability in security management and administration
Although existing standards, such as LDAP, public key infrastructure (PKI), and SSL play an important role in securing Web services, additional standards are necessary to address Web services' unique security needs. Although basic SOAP, WSDL, and UDDI Web services standards are relatively well established, standards for Web services security specifically, such as Security Assertion Markup Language (SAML), XML Encryption, XML Signature, and WS-Security, are still in development.
SSL provides confidentiality and authentication. The level of authentication provided by server side SSL needs to be supplemented with XML security
technologies or Firewall.

In addition to confidentiality Web services require data validation, accountability, and distributed authentication and authorization. None of these are provided by SSL. These security requirements can be met with the use of XML security technologies, including XML Signature and SAML, which apply security at the message layer.

J2EE & WebServices

Traditionally, a J2EE client application uses the Java Naming and Directory Interface (JNDI) to find J2EE components on the server-side. For example, the client application looks up the EJB reference in JNDI and receives an EJB client proxy in return. The client uses this EJB client proxy later to access the EJB component. All J2EE communication normally occurs over RMI.

[image: image3.png]EIB Client RMI

J2EE
INDI Lookup —— 1. lokup
Create local proxy o

2. client prory |
Execute methods .‘ ~——___3. communication w

There are two basic approaches to accessing J2EE resources via SOAP:

· Creating a Web service wrapper around the EJB. This approach is particularly appropriate in situations where the Web service application does not map directly to the capabilities of an individual EJB and requires some additional orchestration of the J2EE components. The wrapper approach is very simple, and it is widely used by many SOAP frameworks. (There are slight differences among the various implementations, which generally pertain to the level of automation of the development process.) The wrapper approach requires development of a Web service that wraps one or more existing J2EE components. This wrapper acts as a bridge between the SOAP and RMI. Clients send SOAP requests to the wrapper, and the wrapper translates them into RMI requests to the EJB components. This approach is recommended for use mainly with stateless J2EE resources, such as stateless session beans.

To access stateful resources using this technique one would need to set up additional lifecycle services to manage the proper removal of orphaned stateful resources.

· A codeless, transparent integration approach. Its main goal is to expose existing J2EE applications as Web services as quickly and as dynamically as possible. This approach allows us to effectively access existing J2EE resource over SOAP without writing or modifying any code. By transparent we mean that it isn't necessary to write a wrapper service or to change the original J2EE code. This approach is most useful if you have existing J2EE resources that you want to make available to SOAP clients or if you have J2EE clients that need to access J2EE resources across the Internet. The transparent J2EE integration framework exploits the strengths of the JNDI architecture, which provides an abstract mechanism to access J2EE resources. In normal J2EE processing, a J2EE client calls the JNDI lookup method, and the client's JNDI provider passes this request over RMI to the JNDI service within the J2EE server. JNDI returns a J2EE proxy to the client. The client subsequently uses this proxy to invoke methods on the remote J2EE resource over RMI.

If we will use a JNDI provider on the client side that speaks SOAP rather than RMI. as you can see in figure,

1. when the client issues a JNDI call using this provider, the request is sent over SOAP to a JNDI Web service.

2. This JNDI Web service performs the actual lookup in the application server JNDI, obtaining the J2EE proxy.

3. The JNDI Web service dynamically generates a SOAP interface to the J2EE proxy and returns a SOAP-based remote reference for the J2EE proxy to the client.

4. The client application can then use this remote reference to access the business logic in the EJB component.

Each method invocation is transported over SOAP to the J2EE proxy, which

redirects the request to the actual EJB component.

No code modifications are required in either the EJB component or in the client code. Only a configuration change is required in the client to point to the SOAP-based JNDI provider.

[image: image4.png]SOAP

15080 lookup__—

EJB Client

- o S prony| /) 2stanaa jocku;
4 s0kp iy 3oy 2.standard U0 lockup

- J2EE|)\

INDI Lookup —~
Create local proxy _ a
Execute methods

N

\, 6 1268 BL access
5 S0P BL access \

Web service access to JNDI

Most Web service runtime servers operate in the same context as the application server, so the redirected method invocation is very fast and won't degrade performance. This approach also works for non-Java clients. Since the JNDI Web service is a standard SOAP service, any SOAP client can take advantage of its transparent invocation framework. For example, a Microsoft Visual Basic client can call the lookup method on the JNDI Web service and obtain a Web service proxy to the requested J2EE resource. The JNDI Web service performs automatic remote garbage collection of all components created in the Web service runtime. Each component is given a set life span, or time in which it can expect to live--Time to Live (TTL). This attribute is reset each time the component is accessed. The major advantage of the transparent invocation approach is that it provides immediate and transparent SOAP access to any J2EE resource registered in JNDI, including all types of EJB components (stateless and stateful session beans, entity beans, and message-driven beans), plus JMS, JDBC, JCA, and other J2EE resources. No modifications or wrappers need to be made for the J2EE resources. This approach is obviously very useful to provide quick and easy access to existing systems via SOAP.

Tools:

1. Sakai Project:

Can be used for integrating, testing with a dummy client and deploying a web service application. The package is an initiative of educational institutions to be used as a front-end to deploy a web service application. Tutorials given on the website are good. It is an open-source project and downloaded and used.

2. beaWebLogic:

Useful for developing, integrating, testing with a dummy client and deploying web service applications. For more details, visit the link.
IMPLEMENTATION
Functionality Overview:
Verify validity of credit card used for online payment with the bank that issued it; which will be performed as follows:

· A database is maintained for credit-cards at every bank.

· A Central Credit Card Web Service access the above database to verify a credit-card and perform transactions.

Architecture:

[image: image5]
Problems Faced:
Sakai Installation:

We installed Sakai QuickStart module and configured it for being used with MYSQL database. Start.bat in the package is used to run the Sakai module. We were unable to run successfully the module. Java JDBC connection errors showed up.

REFERENCES
Links:
1. www.systinet.com
2. www.sakai.org
3. www.bea.com
4. http://www.mywebservices.org
5. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-security.asp
6. http://www.ftponline.com/wss/2003_TE/magazine/features/ayang
7. www.w3.org
Books:
1. Developing JavaTM Web Services – Architecture and Developing Secure Web Services Using Java by Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh.
Services

Delivery

Services

Container

Web Service Requester

Web Service Provider

UDDI

REGISTRY

Web Service Broker

Invoke Services using

SOAP messages

Discover Services & location of WSDL

Register Services using WSDL

PAGE
- 19 -

[image: image1]