Peer-to-Peer Discovery

Nate Thrasher

CS522 – Dr. Chow

Fall 2003

The topic of my project is peer-to-peer discovery. My goal was to design and implement a flexible programmatic discovery mechanism which could be used to discover peers on a local network and across network boundaries such as firewalls and proxies. My research and implementation is loosely based on the concepts used in the open source project known as JXTA (see Resources). JXTA is very robust and rich with features and although many of my ideas were borrowed from it, my goal was to have a much simpler and lighter weight discovery implementation.

My research and experience have lead me to draw the following conclusion with regards to discovery; that discovery can be broken down into two major categories: physical or hardware discovery and information discovery. At the time that this paper was being written, JXTA offered a total of 6 different protocols that, when used in conjunction, offered the full realm of hardware and information discovery. The business of researching, developing and implementing complex query and propagation algorithms was more than I was willing to tackle in the span of one semester. My project focused entirely on hardware discovery.

There are many different interesting and valid approaches to peer-to-peer discovery. Explicit point-to-point which is a static discovery implementation, directory services, network and multicast are all examples of different types of P2P discovery (see Resources).

Explicit point-to-point basically means that every node is hard-coded with the information it needs to connect to any other node in its peer group. This sort of discovery mechanism is not considered to be “true” discovery and is of little interest.

Directory services is a model which is similar to what was used by Napster. A central server or group of servers is available for nodes to register information about themselves. The information registered could include connection information, metadata, etc. When a peer wants to connect to another peer he must first connect to a directory service to “discover” whatever information is necessary for him to go about his business.

Finally, the network and multicast models for discovery are quite similar to each other. The network model is a dynamic group of peers who may be linked to each other, but only know directly about the other peers to which they themselves are connected. It is up to the peers to which a given node is connected to forward on packets to other peers in the network. The multicast model, the model used by JXTA (see Resources), is similar but does not rely on peers to discover other nodes in the network. Potentially every node in a group could know about every other node, as is the case with my implementation.

The multicast model was the basic model I chose for my project. Multicast groups are a combination of reserved IP addresses and a port. In general, when a datagram packet is addressed to a group and then sent out on the wire, any node that is a member of that group will receive the packet. This is a convenient way for discovery to take place on a local, peer-to-peer network. All that needs to happen is for a peer to broadcast out his connection information (TCP-IP, XML-RPC, UDP, etc.) so that every other node will receive it and know how to make a connection to him. The reverse scenario could be that a peer comes up on the network and sends out a multicast request so that he can receive everyone else’s connection information.

In my discovery implementation I created a “Node” interface which must be implemented by every type of node that will be part of the peer-to-peer group. The interface includes methods for broadcasting connection information, receiving broadcasted information, sending and receiving information from a “direct connection”, looking up stored configuration information about other peers and pinging (requesting connection information from) the multicast group. My node implementation utilizes some of these methods indirectly by calling them from two inner classes, a MulticastHandler class which handles all multicast communications and a UDPHandler class which represents a “direct” connection to another peer.
public interface Node {
 public static final int PING = 0;
 public static final int REG = 1;
 public static final int DEREG = 2;
 public void broadcastConnectionInfo();
 public void receiveConnectionInfo(String name, InetSocketAddress address);
 public void ping();
 public InetSocketAddress getConnectionInfo(String name);
 public void sendPacket(Packet packet);
 public void receivePacket(byte[] payload);
 public void close();
}

The MulticastHandler class is used to broadcast out connection information automatically when a node comes up and then subsequently whenever the appropriate method is called from externally. The “ping()” method also delegates to the MulticastHandler to broadcast a request to the group to send out all of their connection information for cataloguing. The final responsibility of the MulticastHandler class is to send out a “deregistration” message to all of the peers when it is being shut down so that they can remove him from their list of available peer nodes.

The UDPHandler class is used to represent a direct connection to another peer (although it is not exactly the case, it was much easier to implement for demonstration purposes). The methods for sending and receiving packets delegate to the UDPHandler class. The generic send method accepts a special “Packet” which contains not only the byte array which contains the data, but also the address and port to which to send the data. The method extracts this information from the “Packet” and delegates to the UDPHandler to create a datagram packet and send it. The generic receive method simply receives an array bytes from the UDPHandler class which is the packet of data sent from another peer. It is up to the implementer of the method to know what to do with the bytes once received. In my sample implementation I assumed all data being passed around to be “String” data.

Unfortunately, this is as far as I got with my discovery implementation so we are left with the question, “what about peers outside of the local network”. Some work has been done to implement internet wide multicast packet routing/forwarding (see Resources) but it still requires the proper hardware (router) configuration and currently the internet is not particularly “multicast friendly”. It was my intention to answer the question by creating a special type of “Router” node that could communicate with other “Router” nodes outside of the local network using HTTP. This is one way that JXTA has dealt with the issue.

The idea of using HTTP to communicate across network boundaries seems to be a fairly elegant solution. The idea is that it is an easy way to have packets routed back to a specific node behind a firewall, much the same way packets are routed back to a web browser on a specific machine from behind a firewall after a request is made. All that would be necessary is for the router node to know the IP address of the router node on the other side and be able to wrap a message in an HTTP request and send it over the wire on port 80. Most routers/proxies/firewalls will let HTTP requests through on port 80 so there is usually no problem.

Once there are router nodes communicating with each other on either side of a firewall, a bridge is in place for other nodes on a network to communicate outside of the local network through the router nodes. At this point, some thought would have to be put into how the packets get routed from router node to router node. My initial thought was to mimic the layering method which is currently used by networking hardware/software and have different layers of packets each containing the destination and past location of the current layer. Then there would have to be some sort of algorithm in place for the router nodes to be able to choose a path onto which to forward a packet when they received one, much like a routing table on a real router. In any case, I didn’t get that far in my implementation so I will end my speculation.

In my opinion the area of peer-to-peer discovery still requires much more research before a robust solution is found. My discovery solution only contains the LAN multicast portion, however, with a little more work it could become a very simple, lightweight and useful solution.
Resources:
· http://www.jxta.org (The JXTA Project)

· http://www-106.ibm.com/developerworks/java/library/j-p2disc/ (IBM article on P2P discovery)

· http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm (Detailed article about multicast)

