GNoteT Conduit

A Look into Conduit Development

 for the Palm OS® using Java

by Mike Kirschman

for CS 522

Introduction
GNoteT & Background
In today’s fast-paced society, computers are becoming the norm. The size and shape of these electronic wonders has varied over the years, but the trend lately has been to get them as small as possible…then add as many features as possible. The most common trend of late is the Personal Digital Assistant (PDA,) which gives the advantage of moderate processing power in a hand-held unit.

There are two major platforms competing for supremacy: The Palm OS® based models (the first on the scene) and the Windows CE® based model. (There is also a Linux-based model, but that is still fairly in its infancy and out of the scope of this report.) Windows CE®, of course, continues to move toward .net and Microsoft™ proprietary utilities / development environments. Palm offers many free tools for developing for its OS. Many third party tools are also available. Because of this (and the price of the unit) the author’s first handheld was a Palm OS® unit.
To save on space in the author’s backpack, he also purchased a keyboard for the handheld so he could take notes on the handheld and print them out later. However, due to the large number of diagrams drawn by some professors, he looked for a program that would allow him to type and draw into the same document. A satisfactory program he could not find, so he wrote his own: the Graphical Note Taker or GNoteT for short. (Information on this program can be found in Kirschman, 2002.)
One of the goals of this program was to be able to export the data from the handheld to a printable form—HTML. This processing would take place on the PC in the form of a Conduit. But, to understand what a Conduit is, it is helpful to review the Palm suggested model of programming.
Palm Programming Model

Palm suggests that the handheld should be used for minimal text entry, perhaps small database queries, data subset viewing, and other actions that do not require fast processing, large memory, etc. The handheld programs should often be coupled with a PC/Laptop-side (desktop) program that does the heavy items: Large data entry, extensive processing, large database queries, large data exchange across the Internet, etc. This saves the Palm’s battery power and the user the frustration of having a slower processor handle large tasks and having to enter large amounts of text using a stylus (the pen-like drawing tool included with each handheld.) How is this coupling of the handheld program with the desktop program achieved? The answer is the Conduit and the Hotsync.

Conduits

Purpose
A handheld performs a Hotsync when the user inserts the handheld into the cradle, which is attached to the desktop, and presses the Hotsync button (either on the screen of the handheld or on the cradle.) This triggers the Palm-side Hotsync program to run, which triggers the desktop-side Hotsync program to run. During the Hotsync the Hotsync Manager runs any Conduits that have been registered with it. A Conduit, as its name implies, is a mechanism for transferring data in some fashion between the handheld and desktop (and vice-versa.) The Conduit for a program often will translate this data between formats and may do additional processing like send out email, get data from the internet, sync up data in a SQL database.
Alternatives (with a Charge)
If it is desired to use an IDE with a built-in Conduit-development tools, many options exist (though, most are not free.) Perhaps the most common is made by Metrowerks. See http://www.metrowerks.com/MW/develop/Wireless/PalmOS/Professional/ for more details.
CDK

As mentioned earlier, some tools for the Palm are available for free; the main free tool for writing Conduits is the Conduit Development Kit (CDK.) This tool is freely downloadable from http://www.palmos.com/dev/tech/conduits and contains APIs to program conduits in C++, Java, and Com. It should be noted that the CDK contains only the documentation and APIs; no IDE is included. Thus, for C++, Visual C++ is the recommended IDE and there are recommended IDEs for the other two languages, but any IDE will do. However, certain items (like the Classpath for Java) must be registered with the Hotsync Manager prior to the execution of the Conduit. Since the tools are pretty much equal, the language should be used that the Conduit programmer is most familiar with; thus, the author chose Java. Thus, the following discussion will lean toward the Java toolset of the CDK.
Hotsync

There are five major steps to synchronizing the data between handheld and desktop: Copy the handheld records to the desktop (or perhaps only the modified ones,) read the data into the Conduit, read the data stored on the desktop, determine the type of sync required, and write the data to the handheld and desktop as appropriate.
Copy HH to PC (Automatic)
First the data must be read from the handheld to the desktop. From the programmer’s perspective, this is an extremely simple task because it requires no work from him. The Hotsync programs running on the handheld and desktop take care of this.
Read PC Copy into Conduit
Next this copy of the data must be read into the Conduit. From the viewpoint of the Java CDK API, this data seems to come directly from the handheld (the first step is transparent to the programmer.) In Java, the records from the Palm for this program are stored in Vectors so they may be compared in a later step.
Read PC Data

During the majority of Conduits’ executions, the data retrieved from the handheld is stored onto the desktop. This data can be used by the desktop’s partner program to the handheld program, or it can be used as a simple backup (in case the handheld gets broken, runs out of batteries, etc.) This data is now read back into the Conduit and stored (again, for Java, this is accomplished using Vectors) for comparison against the Palm data already stored.
Determine Type of Sync

Once the data from both sides is available, the type of sync required must be determined. If it is determined that the desktop has no records, a handheld to desktop sync will occur; in this case, all data from the handheld is written to the desktop’s files. If it is determined that the handheld has no records but the desktop has records (perhaps the batteries died on the Palm after the last sync,) then a desktop to handheld sync will occur; in this case, all data from the desktop will be copied to the handheld. Finally, if it is determined that both the handheld and the desktop have data and data has changed on both since the last sync then a full sync will occur; in this case data modified on the desktop will be written to the handheld and vice-versa.

Write Data to HH/PC as Necessary

Once it is known what course of action must be taken, the last step is simply to do it. This is where files are written on the desktop and/or data is transferred directly to the handheld.

Source Design

JSync Code & Call Structure (Shown in the GNoteT Conduit)
Much of this logic is already implemented in the many examples given in the Java CDK. It is recommended by the Conduit documentation that the developer start with one of these examples and modify it to suit the needs of the Conduit. The structure of the calls as defined by the Java CDK is as follows:
The registered Conduit class must implement the palm.conduit.Conduit interface as its open method will be called as the entry point into the Conduit. (This interface also defines some other minor methods that give information about the Conduit.) This method eventually calls the palm.conduit.SyncManager’s openDB method to get the handheld’s database data. As a parameter to this method, the class name for the Conduit’s record class is passed (in this case, gnt.GNTRecord,) which must implement the palm.conduit.Record interface or, alternatively, extend the AbstractRecord class.

For each record in the opened database, a record (of the class passed in) is created and the readData method is called with a data stream passed in of the data contained on the handheld. This stream represents the record, so it is similar to a serialized Java component reading itself back into existence. Because of the GNoteT record structure, this method creates an GNTOptions instance and has it read itself in a similar fashion followed by creating (possibly) multiple GNTFile instances, which are then read into existence.
Eventually the call stack returns to the Conduit’s main class. This class continues by creating a RecordManager, which will decide which kind of sync to execute. It then has GNTWriter (the desktop file reader/writer) read in the desktop records. With the records ready, the RecordManager is asked to decide which type of sync is to occur. The appropriate action is taken using the aforementioned Vectors as the data to act upon and also writing to the handheld “directly”. Finally, the Vector of synced records is written to the desktop files. With nothing left to do, the Conduit returns, thus ending the sync.
Conclusion

Thus, the Palm model is a well thought out model attempting to keep processing not reasonable for a small handheld computer’s execution to be done on the desktop, while keeping the flexibility granted by the handheld intact. The way that the data processed in each location (desktop and handheld) is kept synchronized is through the use of the program’s Conduit. These Conduits can be written using a standard IDE (often with a charge) or simply by using the free CDK offered on the Palm website. This CDK gives the developer options on the language used to develop the Conduit. The Conduit is fired by the Hotsync Manager, which has several steps associated with it. The GNoteT conduit was written in Java following these steps.
Bibliography and Endnotes
1. http://www.palmone.com/us/developers

2. http://ardiri.com

3. http://java.sun.com
4. http://www.palmos.com/dev/tech/conduits

5. http://www.metrowerks.com/MW/develop/Wireless/PalmOS/Professional
6. http://mysql.com

7. Core Servlets and JavaServer Pages by Marty Hall (© 2000, Prentice Hall, Upper Saddle River, NJ 07458.)

Palm OS and HotSync are the property (Copyright, Registered Trademark, or otherwise) of Palm Systems, Inc.

Java, Sun, JDBC, and possibly other Java-related words used in this report are the property of Sun Microsystems.
Microsoft, Windows, and Windows CE are the property of Microsoft, Inc.

