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Introduction


The Internet has become a significant part of the global communication infrastructure.  According to Nua.com, over 600 million people around the world are users of the Internet (Nua).  This is shocking considering that only as little as 8 years ago there were only 16 million Internet users.  Along with the increased usage of the Internet, the demand of the Internet has grown as well.  Today’s users are not satisfied with just sending email or downloading an important research journal.  They want to be able to download Gigabytes worth of data, teleconference with coworkers and friends, and have streaming video-on-demand.  With the ubiquity of the Internet, people’s demands on the Internet have grown faster than its capacity.  Users require a network with guaranteed throughput, lower latency, and higher reliability.  Providing satisfying levels of these Quality of Service (QoS) has become a very difficult and growing problem (Tanenbaum 349).

While there are many different solutions and aspects to this problem, this research paper addresses one component of the problem, routing, which is the process of sending packets along a path of interconnected routers from a source machine to a destination machine.  Today’s routing algorithms send packets along a single shortest path.  This paper describes a new routing algorithm called multipath routing which makes greater utilization of the current network’s resources by sending packets along multiple paths between the source machine and the destination machine.

Singlepath Routing


Today’s Internet routing algorithms send traffic between machines along a single shortest path in the network (Chen 2).  That is, given a source and a destination machine, packets sent between these two machines will generally follow a single path of intervening routers whose links sum to a minimal “cost”.  The cost of the links can in theory be whatever metric the routing algorithms are measuring, but typically reflect the latency and bandwidth of the links (Chen 1).  When a packet arrives at a router, the router looks up the packet’s destination address within its router forwarding tables.  The router maintains a list of the least cost outbound link for each destination address in its forwarding table.  Once the router find the entry for the packet’s destination address, the router then forwards the packet on the outbound link.  Each router encountered by the packet makes similar decisions until the packet reaches the destination machine.  Since all routes are based on the route with the least cost, there is only a single route from a source machine to a destination machine: the one with the least cost.  Since the routers maintain a list of least-cost outbound links for each destination address, packets only need a destination address within their packet header in order to be forwarded to the correct destination.

Graphically, we can represent a network as a weighted graph where each node in the graph represents a router and each edge connecting nodes represents a communication line often called a link.  The weights assigned to each of the edges in the graph are the cost of the link based on the routing metric as described above.  Routers determine a least-cost path to any destination node by algorithmically determining a path to that destination node who’s links sum to the least amount.  An example single-path route from a source node to a destination node is shown below in Figure 1.
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Figure 1.  Single-path routing graph.


The solid line connecting Src and Dst in Figure 1 represents the computed shortest path between the two nodes.  Packets sent from Src are sent along this path to Dst.  The gray area surrounding the line represent the rest of the unused routers and communication lines within the subnet.

Multipath Routing


Multipath Routing is the process of spreading network traffic from a source machine to a destination machine over multiple paths through the network.  Graphically, this would look more like Figure 2 below. 
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Figure 2.  Multipath routing graph.


In Figure 2, each of the three lines connecting Src and Dst represents one of the available paths the Src node can send packets to Dst.  Each of these paths are computed by the routing algorithms used by the model.  Like the single-path routing model, the paths are computed based on a metric and are a collection of least-costing paths between the source and the destination node.  The source node can then use each or all of the paths made available to it for sending packets to the destination node.


One important clarification is that the source node should be responsible for deciding how to use the available paths rather than have the routing model decide this automatically.  This is important because the most efficient use of the available paths depends primarily on the end-host application.  Since the routing model does not have any capacity for understanding the particular application involved, it should rely on the end users to decide how specifically to use each of the available paths.  This allows the source nodes to use the paths in ways that best optimize their performance.  This distinction will be discussed in more detail later.


Finally, a case for the advantages of multipath routing can be made by considering some basic facts from queuing theory.  From queuing theory we know that for a limited resource that is used by a varying number of users and in varying amounts over time, dynamically sharing that resource gives better overall and individual performance than statically partitioning that resources into dedicated portions for each user.  Since not all of the users will be requiring use of the resource at the same time, restricting busy users who need more available amounts of that resource from using other user’s portions when they are not using it is wasteful.  This waste amounts to worse overall and individual performance compared to dynamically sharing the entire resource among all the users (Tanenbaum 248).


Since multipath routing provides users access to a larger collection of routers and communication lines (network resources) compared with single-path routing (compare Figure 1 with Figure 2), multipath routing results in better network utilization and therefore performance.  This is easy to understand from a single node’s point of view.  If a source node has say three paths to use to send data to a destination node, it will have better performance than if it just had a single path.  This is simple to understand since the source node can send data simultaneously through all of the available paths in parallel to the destination node.  Sending data in parallel results in roughly three times the performance assuming equal bandwidth across the three paths.  However, the bigger picture is true also.  By providing all users with multiple paths, the result is that all of the users gain better performance even if more data is being sent across the entire network.  The reason is that the resources in the network are being better utilized by increased sharing of those resources across all the users.  Less network resources are being wasted.  Multipath routing provides better sharing of network resources compared to single-path routing and therefore results in improved individual and overall network performance.

Multipath Routing Model Components


A multipath routing model consists of three main components necessary for implementation: a multipath calculation algorithm for computing the multiple paths, a multipath forwarding algorithm for forwarding packets along those computed paths, and a multipath end-host protocol for effectively using the available paths by end-host applications.  Let’s now take a look at each of these components in detail.

Multipath Calculation Algorithms


The first major component of a multipath routing model is a multipath calculation algorithm.  In order for a multipath routing model to provide multiple paths between pairs of nodes, it must first calculate those paths.  A multipath calculation algorithm does just that.  A multipath calculation algorithm computes multiple paths between node pairs based on a set of metrics or desired path characteristics typically described in a path specification (Chen 55).  Typically these characteristics are high throughput or low latency, but they also can be others such as increased reliability, higher security, or lower cost (Chen 176).


The quality of a path is related to how well the path meets the requirements of the path specification.  For example, if the desired path characteristic is high throughput, then the multipath calculation algorithm should generate multiple paths each with high throughput.  In addition to meeting the requirements of the path specification, however, a multipath calculation algorithms should also generate paths with two other characteristics: path quantity and path independence.

Path quantity refers to the number of paths a multipath calculation algorithm generates.  Since the main performance contribution of a multipath routing model is through providing multiple paths, it is important that the multipath calculation algorithms generate as many quality paths between node pairs as possible.  With more paths available, source nodes have improved flexibility in how they can communication to their destination nodes and can increase their performance by using additional network resources (Chen 72).

Another important path characteristic is path independence.  Path independence is the measure of disjointedness between calculated paths.  Paths that are more disjoint are better than paths that share several common links.  Consider the example network topology shown below in figure 3.
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Figure 3.  Example network topology.

The multiple paths (A,D,H,I) and (A,C,D,H,I) are not as good of a set of paths as are the paths (A,D,H,I) and (A,C,E,G,I) (assuming all links have uniform capacity in terms of performance).  Because the first set of paths share many common links (D and H), these paths offer less aggregate network resources and thus don’t provide as good of performance.  In addition, the shared links increase the probability that a problem in one of the paths will become a problem in the other path as well.  Consider for example the link from D to H being cut.  For the first set of paths, both paths will become completely inoperable.  However, in the second set of paths, the second path will operate just fine because it does not share this link.  Therefore, generating multiple paths that are as independent as possible are important design requirements of the multipath calculation algorithm.


There are several possibly algorithms available for generating multiple paths through a graph.  However, not all of these algorithms generate paths with the characteristics that we described above.  For example, the Shortest K Paths algorithm generates a set of paths that have a minimal distance from a source node to a destination node.  However, this algorithm tends to generate paths that share many common links, thus not providing good path independence (Chen 75).  Another example is the Link Disjoint Paths algorithm which generates a set of paths from a source node to a destination node such that none of the paths overlap.  While this algorithm provides good path independence, it also provides paths that are way too long.  Paths with multiple hops generally don’t meet the path specification qualities required such as low latency.


Two algorithms that do provide good sets of quality paths are the Discount Shortest Path algorithm and the Capacity Removal algorithm.  These algorithms are based on a variation of Dijkstra’s Shortest Path algorithm.  The first algorithm, Discount Shortest, provides paths that minimize latency between two nodes by repeatedly searching for the shortest path like the Shortest K Paths algorithm.  However, after finding a shortest path, it adds additional cost to each link in the found path such that the path no longer meets the minimum requirements of an acceptable path (Chen 77).  This, in effect, reduces the likelihood that future derived paths share links with the previously computed paths since those links are now more expensive.  The Discount Shortest Paths algorithms is effective at generating several quality shortest paths that minimize latency while providing good path independence.  The pseudocode is shown below in figure 4.
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Figure 4.  Discount Shortest Path Algorithm.


The other algorithm that provides a good set of quality paths is the Capacity Removal algorithm.  This algorithm provides paths that maximize throughput by a process similar to the Discount Shortest Path algorithm.  The Capacity Removal algorithm repeatedly searches for the shortest path that has a capacity above a certain threshold.  A path’s capacity is the minimal capacity of all links along the path (Chen 79).  Once a path is found, that path’s capacity is subtracted from all links along the path.  Like the Discount Shortest Path algorithm, this reduces the likelihood that future derived paths share links with previously computed paths since those already used links now have poor throughput.  The pseudocode for the Capacity Removal algorithm is shown below in Figure 5.  The Get_Shortest_Path_CapThresh() routine returns the shortest path from Src to Dst such that all links in the path have capacity above Capacity_Threshold.  For detailed descriptions of each of these algorithms see (Chen 73).
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Figure 5.  Capacity Removal Algorithm.

Multipath Forwarding


Once multiple paths between nodes have been calculated, packets have to be forwarded along those paths.  This is known as the path forwarding problem: how to forward packets along a specified path.  Multipath forwarding is particularly difficult because each router in the network now has potentially multiple paths to the destination node.  Because of this, a single 32-bit destination IP address is no longer sufficient as a means of routing a packet to its destination.  Each packet now requires additional information in the form of a path identifier that describes which path to forward a packet along to its final destination.


The overhead introduced by multipath routing is higher than single-path routing.  In particular, there is increased router overhead in the form of extra memory within the forwarding tables for storing the additional paths, extra router CPU cycles for computing the multiple paths, and extra router messages for communicating the multiple paths to others routers in the network (Chen 82).  In addition to router costs, there is also the packet cost of having to consume some of its precious bits in the form of a path identifier.
The multipath forwarding problem is one of the most difficult design problems in implementing a multipath routing model.  In order to make multipath routing feasible, the path forwarding problem has to be solved in such a way that the incurred costs don’t outweigh the provided benefits.  For an example multipath forwarding algorithm, see (Chen 82) which provides an elegant solution that uses short fixed-length path identifiers within packet headers and provides efficient path-forwarding routing algorithms.

Multipath End-Host Protocol

The last major component necessary for implementing a multipath routing model is an efficient end-host usage of the multiple paths.  Once multiple paths can be calculated and packets can be forwarded along any of the available paths, end-host applications must make effective use of those provided paths in order to realize significant performance benefits.

The optimal use of multiple paths is application specific.  In other words, only applications can determine the optimal usage of a set of multiple paths.  For example, consider an FTP application.  An FTP application would like to maximize its throughput by obtaining several high-throughput paths and then send data in parallel along those paths.  However, another application, like Telnet, may have a completely different idea about performance.  It may not need high throughput at all.  Instead, it may require several paths with very low latency.  It could then monitor each of the provided paths and then send messages along the path with the lowest latency for providing the best response time.  These two different applications demonstrate that multiple paths can be used in completely different ways.  By allowing applications to choose the best use of multiple paths, the multipath routing model provides the greatest amount of flexibility for applications to optimize their individual performance.

Although only applications can determine the optimal use of multiple paths, a multipath routing model should make it easy for applications to take advantage of the provided multiple paths.  Effective usage of a multipath routing network would probably not happen if each application programmer had to become an expert in low-level network programming.  Therefore, another important piece of the multipath routing model is an abstracted protocol layer that users can apply to their particular application’s needs.  Just as the transport layer provides a robust and simplified set of services to the application layer in network applications today, a multipath routing model should provide one or more additional protocol layers that simplify the task of making effective use of multiple paths.  These layers could abstract some of the important details of managing multiple paths like congestion and flow control, important tasks currently handled by TCP today (Chen 101).  Application programmers would then be relieved of the majority of burdens associated with multipath programming and then could concentrate on how to use the paths in ways that optimize their performance.

Example Multipath Routing Model


Now that we have taken a look at the major components necessary for a multipath routing model, lets take a look at an example model.  Johnny Chen of Rice University developed a multipath routing model for his PhD thesis in 1999.  This example comes from his thesis as well as a large body of the information present within this paper.


Chen’s thesis describes two different multipath routing algorithms that each solve the path forwarding problem.  These two new algorithms are based on extensions to the existing routing algorithms Distance Vector and Link State.  One is called Multipath Distance Vector (MPDV) and is a multipath extension to the existing single-path Distance Vector algorithm.  The other is called the Multipath Link State (MPLS) algorithm which is a multipath extension to today’s single-path Link State algorithm.  Both of these routing algorithms seek to optimize throughput by using the Capacity Removal algorithm described above.  Chen chose to optimize throughput since most existing applications could benefit from this characteristic.  However, other path characteristics can be applied (Chen 176).

The two routing algorithms achieve efficient path forwarding by using a short fixed-length path ID within packet headers.  This short path ID consumes minimal bit resources within packet headers which reduces the amount of packet overhead.  In addition, the short path ID also allows fast indexing into router forwarding tables.  Chen is able to use a short path ID by requiring path sets to satisfy a suffix matched property (Chen 88).  By using paths that satisfy the suffix matched property, Chen is able to reduce the required amount of router storage overhead to be proportional to the number of paths calculated.  This is an important contribution that reduces the overhead involved in implementing a multipath routing model to an amount that doesn’t outweigh its benefits.

Finally, Chen develops a new transport layer called Multipath TCP (MPTCP).  MPTCP is based on the existing single-path TCP and provides a reliable bit stream service while performing congestion and flow control among the multiple paths (Chen 106).  MPTCP works by opening multiple independent TCP connections on each of the available paths and then multiplexing data between them.  Since MPTCP is an end-to-end protocol, the receiving MPTCP protocol then collects the incoming data from each of the different TCP connections and restores the original message stream for sending to the upper layer.  In order to reassemble the packets in the correct order, MPTCP attaches sequence numbers to each of the packets for final reassembly at the receiver.  In addition, since the management of the multiple paths is handled transparently in the MPTCP transport layer, existing applications can enjoy the performance benefits of using multiple paths without any modification (Chen 101).  Chen demonstrates that MPTCP provides substantial performance improvements in both individual and network-wide throughput.  We will discuss some of these results in the next section.

Simulation Results


Chen simulates the performance improvements obtained by the two MPDV and MPLS routing algorithms and MPTCP by using an execution-driven, packet-level network simulator “xsim” from the University of Arizona (Chen 135).  Chen measures performance in terms of throughput, latency, and message drop probability.  Throughput is measured using MPTCP.  Latency and drop probability are measured using a multipath version of ping which will be described later.  Using the simulator, Chen creates an Internet-like topology with 100 nodes and 195 links across multiple clusters.  The 1:2 ratio of nodes to links highlights the performance differences between single and multipath routing while not being too sparse or too connected.  In addition, background traffic is introduced throughout the experiments to simulate a real network even further.

Throughput Simulation Results


Throughput performance is measured using the MPTCP protocol.  For this test, a foreground traffic node sends 5,000 packets to another node in a different cluster while a background traffic node sends bursts of packets in the range of 100 to 2,000 packets to a destination chosen at random.  Each packet size is 1,500 bytes.  The foreground nodes are also chosen at random.  The results of the throughput test for both the MPDV and the MPLS algorithms are shown below in Figure 6.  Only the foreground traffic results are shown, however, since the background results are similar.
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Figure 5.  Foreground MPTCP performance using MPDV and MPLS.

The left graph in Figure 5 shows the throughput results of the MPDV algorithm.  The right graph shows the results of the MPLS algorithm.  The y-axis of each graph corresponds to the effective throughput in KB/s and the x-axis correspond to the background traffic burst size, ranging from 100 to 2,000 packets.  The plotted curves represent the transport protocol used by the foreground and background nodes.  The labels MP2, MP3, or SP refers to MPTCP with 2 or 3 paths respectively and SP refers to single-path TCP.

The graphs reveal several interesting results.  First of all, they show that MPTCP is very effective at increasing network throughput over traditional TCP even at high levels of network utilization.  In addition, they also show that both the MPDV and the MPLS algorithm improve performance proportionally to the number of paths provided by each of the algorithms (Chen 138).  Finally, the graphs also demonstrate that the MPLS algorithm gives better performance than the MPDV algorithm.  Chen determines this is due to the MPLS algorithm being more relaxed on its path computing requirements than MPDV (Chen 140).  In particular, the MPLS algorithm doesn’t always have to satisfy the suffix matched property for path sets whereas the MPDV strictly requires it.  This results in more overall paths between nodes in the MPLS algorithm compared to the MPDV algorithm accounting for the differences seen in performance.

Latency and Message-Drop Simulation Results


For measuring the latency and message-drop results, Chen compares a single-path version of ping to a multipath version.

The single-path version of ping works as follows.  Given a destination address, the sender sends a single ping message to the destination.  Upon receiving the ping message, the receiver sends back a reply.  Upon receiving a reply, the sender computes the time difference between sending the ping message and the reply.  The difference is the computed latency.  If a reply never returns, the message is counted as dropped.

The multipath version of ping works similarly.  Given a destination address, the multipath ping program sends duplicated ping message on all of the available paths to the destination.  As soon as the receiver gets the first arrived ping message, it immediately sends a reply message on all of the available paths back to the sender.  Upon receiving the first reply, the sender then computes the time difference between sending the first message and receiving the first reply.  The difference is the computed latency.  Subsequent message received by the sender or receiver are ignored.  If no reply is received by the sender, the message is considered dropped.  In order for a dropped message to occur, each ping message sent by the sender has to be lost or each ping reply sent by the receiver has to be lost.  Since multipath ping duplicates ping messages in both directions, the probability that a multipath ping message is dropped is less compared to the single-path version.


Figure 6 displays the latency and message-drop results for the two versions of ping.
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Figure 6.  Latency and Message Drop percentages with MP-ping and SP-ping.


The graph on the left in Figure 6 shows the latency results of a 3-path multipath ping program compared to a single-path version.  The y-axis is the measured latency in milliseconds and the x-axis is the background traffic burst size from 100 packets to 2,000 packets.  The left graph demonstrates that for all background traffic levels, the multipath version of ping has less latency than the single-path version.  These results are intuitive since the multipath version of ping is sending multiple ping messages across multiple paths.  The odds that one of those paths will have less latency than the single path are 3:1.


The graph on the right in Figure 6 displays the results of the message-drop test.  The x-axis is labeled identically as the left graph.  The y-axis is the percentage of dropped messages.  Again, for all levels of background traffic, the multipath ping program has a less probability of losing ping messages.  This is also intuitive since the multipath ping program sends multiple ping messages – one per path.  In order for a message to be dropped, all of the ping messages have to be lost which is less likely than losing a single ping message by the single-path ping program.  Note that the spikes and dips in the graph are due to the product of random traffic generation.


The overall conclusion of the simulation results is that the multipath routing algorithms provide increased throughput while simultaneously lowering latency and dropped messages compared to the single-path TCP protocol and routing algorithms.

Summary


With the exponential growth of the Internet, users expectations have grown at even faster rate.  Providing guaranteed levels of QoS for characteristics such as throughput, latency, or reliability are difficult with today’s shortest single-path routing model.  One solution that will improve these difficult problems is a new routing model: multipath routing.  As demonstrated, multipath routing provides better individual and overall end-to-end network performance by providing applications access to more network resources than single-path routing.  By improving the amount of resources shared, multipath routing improves performance in terms of throughput, latency, and reliability.


Multipath routing comes at a price.  In order to implement a multipath routing model, one must overcome the additional overhead associated with computing multiple paths, specifying packet paths, and forwarding packets efficiently along those paths.  Fortunately,  Chen has demonstrated through his MPDV and MPLS routing models and MPTCP protocol that the overhead associated with multipath routing doesn’t have to outweigh its performance benefits.  With the right implementation, multipath routing can provide significantly increased network performance while simultaneously not being overly costly or inefficient to implement.
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