A

Study on

Multi Path Routing over Multiple Devices

By

Syama Sundar Kosuri

Towards cs522 term project

Fall2002
Table of Contents

1.Introduction………………………………………………………………………..3

2. Linux socket buffer(skbuff or skb) structure..……………………………..4

3. Receiving the packet ………….…………………………………………….…..4

 3.1 The receive interrupt ………….………………………………………..…..4

 3.2 The network RX softirq…..……………………………………………..…..5

 3.3 The IPv4 packet handler …………………………………………………...6

 3.4 Netfilters….………………………………….……………………………..….7

 3.5 Packet selection…………………………………………………………...…8

 3.6 TCP segment layer……………….…………………………………………10

 3.7 Application Layer Data Handling…………………………………………10

4.0 Proposed Methodology to do Multi-path routing over multi devices…11

Resources…………………………………………………………………..………..16
1.Introduction

 With the growing rate of network traffic, efficient and effective management of network resources need not be over emphasized. The management of the resources is a part of the operating system. The current method in which Linux sends packets doesn’t differentiate between having one network interface card or having multiple network interface cards. Even if multiple network interface cards (eg.etha, ethb…) are present, Linux kernel uses a single network interface card (say ethb) only to transmit and receive data for a connection. This can be made more efficient if we could transmit/receive over multiple devices. I am currently working on devising a methodology for distributing the packet traffic on to multiple devices of the system. This report states my current understanding of the Linux kernel-2.4.x.

Macro level journey of the packet in the Linux kernel is shown in the below diagram.

[image: image1.png]<iesf routedjgated | [

Application Process Lu [

TC]

BSD Socket
INET Socket

/ i Y

input ———— forward ———> output
L

]

backiog
buffer

netlink.

y
enguaue. Traffic
Device Driver Contral
degueue’ Elements
4 I
>

NIC

Fig. 1 Overview of the packet flow in 2.4 kernel

The steps, structures and the typical functions used in the packet journey, from the point it is received at the NIC to the point the packet data is delivered to the application program are explained below.

2.Linux socket buffer(skbuff or skb) structure

 This is key structure of Linux networking code: common packet data structure for all protocol layers. Contains pointers to all protocol headers and length field that allow each protocol layer to manipulate data via standard functions/methods.

 Data is copied only twice:

· From user space to kernel space

· From kernel space to output medium (in case of an outbound packet)
[image: image2.png]sk_buff

et |—+

“previous _——*

*socket f——

*th

*uh

Ficmph

iph

*arph

“ethernet

Fraw

packet
data

Fig 2. Structure of the socket buffer

3. Receiving the packet

3.1 The receive interrupt

 If the network card receives an Ethernet frame which matches the local MAC address or is a link layer broadcast, it issues an interrupt. The network driver for this particular card handles the interrupt, fetches the packet data via DMA / PIO / whatever into RAM. It then allocates a socketbuffer and calls a function “net/core/dev.c:netif_rx(skb)” of the protocol independent device support routines.

 If the driver didn't already timestamp the socketbuffer, it is timestamped now. Afterwards the socketbuffer gets enqueued in the appropriate queue for the processor handling this packet. If the queue backlog is full the packet is dropped at this place. After enqueuing the socketbuffer the receive softinterrupt is marked for execution via include/linux/interrupt.h:__cpu_raise_softirq().

 The interrupt handler exits and all interrupts are reenabled.

3.2 The network RX softirq

 In the kernel-2.4 the network stack is no longer a bottom half, but a softirq. Softirqs have the major advantage that they may run on more than one CPU simultaneously. Bottom half's were guaranteed to run only on one CPU at a time.

Our network receive softirq is registered in net/core/dev.c:net_init() using the function kernel/softirq.c:open_softirq() provided by the softirq subsystem.

 Further handling of the packet is done in the network receive softirq (NET_RX_SOFTIRQ) which is called from kernel/softirq.c:do_softirq(). do_softirq() itself is called from three places within the kernel:

1. From arch/i386/kernel/irq.c:do_IRQ(), which is the generic IRQ handler

2. From arch/i386/kernel/entry.S in case the kernel just returned from a syscall

3. Inside the main process scheduler in kernel/sched.c:schedule()
 So if execution passes one of these points, do_softirq() is called, it detects the NET_RX_SOFTIRQ marked and calls net/core/dev.c:net_rx_action() . Here the socketbuffer is dequeued from this cpu's receive queue and afterwards handled to the appropriate packet handler. In case of IPv4 this is the IPv4 packet handler.

[image: image3.png]EAEVESN

Data Handling

Interrupt
Handler (ISR)

hardware irq

NIC

J

raise softirg

netif_n()

I queve < 300

CPU
backlog queue

Fig .3.2a showing the INTERRUPT handling sequence at the DEVICE DRIVER

3.3 The IPv4 packet handler

 The IP packet handler is registered via net/core/dev.c:dev_add_pack() called from net/ipv4/ip_output.c:ip_init(). The IPv4 packet handling function is net/ipv4/ip_input.c:ip_rcv() . After some initial checks (if the packet is for this host, ...) the ip checksum is calculated. Additional checks are done on the length and IP protocol version 4.

 Every packet failing one of the sanity checks is dropped at this point.

If the packet passes the tests, we determine the size of the ip packet and trim the socketbuffer in case the transport medium has appended some padding.

Now it is the first time one of the netfilter hooks is called.

 3.4 Netfilters : Netfilter provides a generic and abstract interface to the standard routing code. This is currently used for packet filtering, mangling, NAT and queuing packets to userspace.

Netfilter Framework

 Netfilter is a framework for packet mangling for linux, outside the normal BSD sockets interface.

Netfilter has three parts

 Each protocol defines “hooks” well-defined points in a packets traversal of that protocol stack (IPv4 defines 5, IPv6 and DECnet hooks are similar).

 Parts of the kernel can register to listen to the different hooks of each protocol (it is possible to examine, alter, discard, allow to pass or queue packet for userspace).

 The ip_queue driver collects packets that have been queued for sending to userspace.
Netfilter Architecture: IP

[image: image4.png]>

PRE_ROUTING

-)I POST_ROUTING

@ FORWARD

LOCAL_IN

¥

LOCAL_OUT

T

Fig 3.4a Netfilters architecture

ROUTE Netfilter Verdicts

· NF_ACCEPT continue traversal as normal
· NF_DROP drop the packet; do not continue traversal

· NF_STOLEN I've taken over the packet; do not continue traversal

· NF_QUEUE queue the packet (usually for userspace handling)

· NF_REPEAT call this hook again
3.5 Packet Selection

 Packet selection system called IP Tables has been build over netfilter framework.

 Kernel modules can register a new table and ask for packet to traverse a given table. ‘filter’ table: hooks into local_in, forward and local_out points. For any given packet the one (and only one) place to filter it. ‘nat’ table: network address translation table in pre_routing, post_routing and local_out. Netfilter implements connection tracking mechanism in separate module using local_out and pre_routing.

 After successful traversal the netfilter hook, net/ipv4/ipv_input.c:ip_rcv_finish() is called. Inside ip_rcv_finish(), the packet's destination is determined by calling the routing function net/ipv4/route.c:ip_route_input(). Furthermore, if our IP packet has IP options, they are processed now. Depending on the routing decision made by net/ipv4/route.c:ip_route_input_slow(), the journey of our packet continues in one of the following functions:

net/ipv4/ip_input.c:ip_local_deliver()
The packet's destination is local, we have to process the layer 4 protocol and pass it to an userspace process.

net/ipv4/ip_forward.c:ip_forward()
The packet's destination is not local, we have to forward it to another network

net/ipv4/route.c:ip_error()
An error occurred, we are unable to find an apropriate routing table entry for this packet.

net/ipv4/ipmr.c:ip_mr_input()
It is a Multicast packet and we have to do some multicast routing.

[image: image5.png]ip_local_deliver()

Lookup

routines

ip_rev()

—

ip_forward()

Fig 3.5 IP LAYER packet handling

 FIB-Forwarding Information Base, is used by Netfilters to make the routing decision.

3.6 TCP segment handler

 Either tcp_rcv() or udp_rcv() is called to handle local packets. For the TCP protocol get_tcp_sock() is called to extract the port number and INET socket from the packet. tcp_data() is called to check that the packet is new data and discard duplicates. Finally, a hash lookup in the socket hash table is performed in order to forward the received packed to the correct INET socket.

3.7 Application Layer data handler

 After the protocol layers have finished with the received packet, INET socket interface will pass it to the BSD socket interface. A function data_ready() will wake up any process that is waiting at the BSD socket for the arriving packet.

4.0 Proposed Methodology to do Multi-path routing over multi devices

 Information gathered

The following functions, in alphabetical order are called when application tries to write a message say using sock_write().

dev_queue_xmit() - net/core/dev.c (579)

 calls start_bh_atomic()

 if device has a queue

 calls enqueue() to add packet to queue

 calls qdisc_wakeup() [= qdisc_restart()] to wake device

 else calls hard_start_xmit()

 calls end_bh_atomic()

DEVICE->hard_start_xmit() - device dependent, drivers/net/DEVICE.c

 tests to see if medium is open

 sends header

 tells bus to send packet

 updates status

inet_sendmsg() - net/ipv4/af_inet.c (786)

 extracts pointer to socket sock

 checks socket to make sure it is working

 verifies protocol pointer

 returns sk->prot[tcp/udp]->sendmsg()

ip_build_xmit - net/ipv4/ip_output.c (604)

 calls sock_alloc_send_skb() to establish memory for skb

 sets up skb header

 calls getfrag() [= udp_getfrag()] to copy buffer from user space

 returns rt->u.dst.output() [= dev_queue_xmit()]

ip_queue_xmit() - net/ipv4/ip_output.c (234)

 looks up route

 builds IP header

 fragments if required

 adds IP checksum

 calls skb->dst->output() [= dev_queue_xmit()]

qdisc_restart() - net/sched/sch_generic.c (50)

 pops packet off queue

 calls dev->hard_start_xmit()

 updates status

 if there was an error, requeues packet

sock_sendmsg() - net/socket.c (325)

 calls scm_sendmsg() [socket control message (scm)]

 calls sock->ops[inet]->sendmsg() and destroys scm

+++sock_write() - net/socket.c (399)

 calls socki_lookup() to associate socket with fd/file inode

 creates and fills in message header with data size/addresses

 returns sock_sendmsg()

tcp_do_sendmsg() - net/ipv4/tcp.c (755)

 waits for connection, if necessary

 calls skb_tailroom() and adds data to waiting packet if possible

 checks window status

 calls sock_wmalloc() to get memory for skb

 calls csum_and_copy_from_user() to copy packet and do checksum

 calls tcp_send_skb()

tcp_send_skb() - net/ipv4/tcp_output.c (160)

 calls __skb_queue_tail() to add packet to queue

 calls tcp_transmit_skb() if possible

tcp_transmit_skb() - net/ipv4/tcp_output.c (77)

 builds TCP header and adds checksum

 calls tcp_build_and_update_options()

 checks ACKs,SYN

 calls tp->af_specific[ip]->queue_xmit()

tcp_v4_sendmsg() - net/ipv4/tcp_ipv4.c (668)

 checks for IP address type, opens connection, port addresses

 returns tcp_do_sendmsg()

udp_getfrag() - net/ipv4/udp.c (516)

 copies and checksums a buffer from user space

udp_sendmsg() - net/ipv4/udp.c (559)

 checks length, flags, protocol

 sets up UDP header and address info

 checks multicast

 fills in route

 fills in remainder of header

 calls ip_build_xmit()

 updates UDP status

 returns err

The following functions, in alphabetical order are called when application tries to read a message say using sock_read().

>>> DEVICE_rx() - device dependent, drivers/net/DEVICE.c

 (gets control from interrupt)

 performs status checks to make sure it should be receiving

 calls dev_alloc_skb() to reserve space for packet

 gets packet off of system bus

 calls eth_type_trans() to determine protocol type

 calls netif_rx()

 updates card status

 (returns from interrupt)

inet_recvmsg() - net/ipv4/af_inet.c (764)

 extracts pointer to socket sock

 checks socket to make sure it is accepting

 verifies protocol pointer

 returns sk->prot[tcp/udp]->recvmsg()

ip_rcv() - net/ipv4/ip_input.c (395)

 examines packet for errors:

 invalid length (too short or too long)

 incorrect version (not 4)

 invalid checksum

 calls __skb_trim() to remove padding

 defrags packet if necessary

 calls ip_route_input() to route packet

 examines and handle IP options

 returns skb->dst->input() [= tcp_rcv,udp_rcv()]

net_bh() - net/core/dev.c (835)

 (run by scheduler)

 if there are packets waiting to go out, calls qdisc_run_queues()

 (see sending section)

 while the backlog queue is not empty

 let other bottom halves run

 call skb_dequeue() to get next packet

 if the packet is for someone else (FASTROUTED) put onto send queue

 loop through protocol lists (taps and main) to match protocol type

 call pt_prev->func() [= ip_rcv()] to pass packet to appropriate

 protocol

 call qdisc_run_queues() to flush output (if necessary)

netif_rx() - net/core/dev.c (757)

 puts time in skb->stamp

 if backlog queue is too full, drops packet

 else

 calls skb_queue_tail() to put packet into backlog queue

 marks bottom half for later execution

sock_def_readable() - net/core/sock.c (989)

 calls wake_up_interruptible() to put waiting process on run queue

 calls sock_wake_async() to send SIGIO to socket process

sock_queue_rcv_skb() - include/net/sock.h (857)

 calls skb_queue_tail() to put packet in socket receive queue

 calls sk->data_ready() [= sock_def_readable()]

>>> sock_read() - net/socket.c (366)

 sets up message headers

 returns sock_recvmsg() with result of read

sock_recvmsg() - net/socket.c (338)

 reads socket management packet (scm) or packet by

 calling sock->ops[inet]->recvmsg()

tcp_data() - net/ipv4/tcp_input.c (1507)

 shrinks receive queue if necessary

 calls tcp_data_queue() to queue packet

 calls sk->data_ready() to wake socket

tcp_data_queue() - net/ipv4/tcp_input.c (1394)

 if packet is out of sequence:

 if old, discards immediately

 else calculates appropriate storage location

 calls __skb_queue_tail() to put packet in socket receive queue

 updates connection state

tcp_rcv_established() - net/ipv4/tcp_input.c (1795)

 if fast path

 checks all flags and header info

 sends ACK

 calls _skb_queue_tail() to put packet in socket receive queue

 else (slow path)

 if out of sequence, sends ACK and drops packet

 check for FIN, SYN, RST, ACK

 calls tcp_data() to queue packet

 sends ACK

tcp_recvmsg() - net/ipv4/tcp.c (1149)

 checks for errors

 wait until there is at least one packet available

 cleans up socket if connection closed

 calls memcpy_toiovec() to copy payload from the socket buffer into

 the user space

 calls cleanup_rbuf() to release memory and send ACK if necessary

 calls remove_wait_queue() to wake process (if necessary)

udp_queue_rcv_skb() - net/ipv4/udp.c (963)

 calls sock_queue_rcv_skb()

 updates UDP status (frees skb if queue failed)

udp_rcv() - net/ipv4/udp.c (1062)

 gets UDP header, trims packet, verifies checksum (if required)

 checks multicast

 calls udp_v4_lookup() to match packet to socket

 if no socket found, send ICMP message back, free skb, and stop

 calls udp_deliver() [= udp_queue_rcv_skb()]

udp_recvmsg() - net/ipv4/udp.c (794)

 calls skb_recv_datagram() to get packet from queue

 calls skb_copy_datagram_iovec() to move the payload from the socket buffer

 into the user space

 updates the socket timestamp

 fills in the source information in the message header

 frees the packet memory

 I am now currently looking into the ways one can define or add hooks using Netfilter. I want to investigate where the above packet traversal information is observed and Netfilters interact, so that multi path routing over multiple devices can be achieved incase one uses Netfilters for routing packets using NAT…

Resources

Computer Networks

Tanenbaum, Andrew, Prentice-Hall Inc., Upper Saddle River, NJ, 1996.

Linux Kernel Internals

Beck, Michael, et al., Addison-Wesley, Harlow, England, 1997.

Running Linux

Welsh, Matt, Dalheimer, Matthias, and Kaufman, Lar, O'Reilly & Associates, Inc., Sebastopol, CA, 1999.

High Speed Networks

Stallings, William, Prentice-Hall Inc., Upper Saddle River, NJ, 1998.

Linux Core Kernel Commentary

Maxwell, Scott, CoriolisOpen Press, Scottsdale, AZ, 1999.

Linux Device Drivers

Rubini, Alessandro, O'Reilly & Associates, Inc., Sebastopol, CA, 1998.

Unix Network Programming, Vol. 1 (2d Ed.)

Stevens, W. Richard, Prentice-Hall Inc., Upper Saddle River, NJ, 1998.

Linux Documentation Project
http://metalab.unc.edu/mdw/index.html

Linux Headquarters

http://www.linuxhq.com

Linux HOWTOs

ftp://metalab.unc.edu/pub/Linux/docs/HOWTO

Linux Kernel Hackers' Guide

http://metalab.unc.edu/mdw/LDP/khg/HyperNews/get/khg.html

Linux Router Project

http://www.linuxrouter.org

New TTCP

http://users.leo.org/~bartel

Red Hat Software

http://www.redhat.com

Requests for Comment

http://www.rfc-editor.org/isi.html

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

•THE SWITCH - by Rich Seifert (Chapter on Link Aggregation)

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

•http://cs.uccs.edu/~cs522/multipath/doc/johnnyChenThesis.pdf
•http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf

PAGE
2

_1100971433

_1100973925

_1100970511

