Study of Bandwidth Measurement and Server Selection of Mirror Sites

Submitted By:

 Srinivasa Guntupalli

 Sunanda Kandimalla

Table of Contents

3Objective

4TCP Diagnostic Utilities

4ping

4traceroute

5pathchar

6Interpreting pathchar output

9Nettimer

9bprobe/cprobe

10Bandwidth Definitions

10Available Bandwidth Measurement

14Mirror Site Concept

15Pseudocode for Branch and Bound Algorithm

15Conclusion

16References :

Objective

Objective of this document is to present the research in the Area of Bandwidth Measurement and Server Selection of mirror sites.This paper is an attempt to put together the relevant study of different components needed for study of Bandwidth Measurement and Server Selection of mirror sites.

To begin with, we will cover some basic TCP/IP diagnostic utilities that provide us an insight on what are the important characteristics we should watch for. Then we introduce the concept of bandwidth measurement and mirror Sites. This is the main subject covered by this paper and we discuss some practical algorithm that have been implemented by some researchers as mentioned in the references. Develop a Branch and Bound algorithm to select a mirror site.

Using branch and bound algorithm, we can select a mirror site for best download.

TCP Diagnostic Utilities

Before starting to deal with the subject Bandwidth Measurement and Server Selection of mirror sites, it is important to discuss the various utilities offered by the TCP/IP suite. These utilities can provide us a wealth of information, which is very useful, for evaluating the scenarios and coming up with solutions to improve performance.

TCP Suite provides a set of diagnostic utilities that help us, to determine different network characteristics. We will discuss some of these utilities here. This will enable us to appreciate and use the kind of information that can be extracted.

ping

One of the basic utilities that are often used for diagnostic purposes is ping. To be able to communicate between two hosts, the basic thing a host needs to know is, whether the other host is reachable. This functionality is provided by ping. Ping program has been written by Mike Muuss. Ping program sends an ICMP request message to a host, expecting an ICMP echo reply to be returned. Ping also measures, the round-trip time to a host. The round trip time gives us an indication of how “far” the other host might be.

Normally if we can ping a host, we wont be able to Telnet or FTP the host. If we can’t telnet a host, ping is the place, where we may want to start our troubleshooting.

As the size of the network grows, most of the times the path our data on the network travels through more than one link. Once the packet is out on the network, there is no real guarantee what path it will take, as it depends on the dynamics of the network. But it would be very interesting to know what path our packet may take. Traceroute allows us to find that kind of information. Traceroute program has been written, by Van Jacobson.

traceroute

Traceroute command takes in the destination host name or IP address and provides us a tentative path that the data traveling from the source server to destination server, might take. Traceroute makes use of the TTL (Time to Live) Field. TTL is really the time taken by the intermediate hosts to ultimately send the data to destination host. Nowadays. Each router that handles the data, is required to decrement the TTL field by either one or the number of seconds the router holds the data. Since most of the times routers hold the datagram, for less than a second, this field can be used as a hop counter. The source host attempts to send a packet initially with TTL of 1 to the destination host. The first router it hits, decrements the TTL field by one and finds out that the TTL has become zero. When this happens it sends an ICMP “time exceeded” message back to the source. When source receives a time exceeded message, it increments the TTL field by one and attempts to send the data again. This process goes on, until the destination host is reached. Another peculiar thing about traceroute is that , the source hosts use a port number, which is usually very high. It is very unlikely that the destination host may have a process running at that port number. When the data reaches the destination host, it recognizes that the data is for itself, and it need not pass it on. But when it attempts to pass the data to process at the said port number, it finds out that nothing is running at that port number. It then sends back an ICMP message “port unreachable” to the source. When this message reaches source, it knows that the data has reached the destination and now it can figure out what path the data took to reach the destination. Traceroute tries to send data to every intermediate host, 3 times and reports the round trip time for all the 3 instances. It also reports all the intermediate hosts it hit, to provide us with the route our data has taken.

As said earlier, there is no guarantee that the two packets sent from one host will follow the same path. In the same way, when a host A sends an ICMP message to host B, the reply from Host B may not follow the same path. Because of this reason the roundtrip time for a message, may not necessarily tell us the exact one way time i.e we can not divide the roundtrip time by 2 and say that this is the one way time. It still does give us an indication of the time, data may take, one way.

Traceroute gives us a fair idea of the path our data may take, and what the round trip time would be. But it does not tell us what is the approximate bandwidth, which will be available for our data to travel. Also we know that, the weakest link in the whole chain gets to decide, how fast the data can travel for our path. A tool called pathchar provides this important information to us.

pathchar

Pathchar extends the operation of traceroute. Pathchar attempts to send packets of different sizes and reports the average round trip time for the packet. It also estimates the bandwidth for the transmission and reports both the average round trip time and the bandwidth , in its results. At the end pathchar also reports the bottleneck bandwidth in the whole path, which is the weakest link in the chain, and is of great importance in studying network characteristics. Since pathchar tries to send packets of different sizes, the time taken by pathchar, to provide results may vary depending on many parameters such as length of the path, the bandwidth of the associated links etc. in general pathchar takes longer time to complete than ping or traceroute.

Although pathchar gives us estimates of the bandwidth available for a given link, the value of bandwidth is dynamic, and can change depending on different factors. We may also observe different response parameters , depending on the time of the day.

pathchar estimates performance characteristics of each node along a path from a source to destination. Pathchar leverages the ICMP protocol's Time Exceeded response to packets whose TTL has expired. Sending a series of UDP packets of various sizes to each hop, pathchar uses knowledge about earlier hops and the round trip time distribution to this hop to assess incremental bandwidth, latency, loss, and queue characteristics across this link.

Interpreting pathchar output

Part I: first line in output

The first line output looks as follows:

 doing 24 probes at each of 64 to 1500 by 92

 ^^ ^^ ^^^^ ^^

 a) b) c) d)

where

a) #probes for each packet size, that is, each query goes through a series of different packet sizes.
b) smallest packet size
c) largest packet size
d) packet size increment

So for this example output (the default), each hop has ~((1500 - 64)/92 * 24) queries (360).

Part II: dynamic output during execution

Pathchar's execution consists of assessing, in order, each link along the path to the specific destination. While pathchar is running, for the particular link it is assessing at the time, it posts a series of 4 numbers on the screen for each of the probes sent to that hop. Example:

 1: 24 156 0 0

 hop: round# size-bytes drops rtt

where

. round is which round of probes it is sending

(counting down from the # of rounds requested (24 by default) to 1).

. packet size is the size of the packet used for that run

(default ranges from 64 to 1500, or can be set in command line)
. drops are the number of packets sent to this hop so far that have been dopped
. rtt is average rtt as measured by ping [@@not sure that's right]

Part III: Pathchar execution output descriptions

 3 paloalto-br1.bbnplanet.net (131.119.0.193)

 | 38 Mb/s, 25.7 ms (63.7 ms), +q 1.24 ms (5.87 KB) *13

 bandwith propagation (rtt) queueing (queue size) *hinge

 4 anl-atms.es.net (134.55.24.2)

. bandwidth available (not maximum, although pathchar is estimating the maximum one can get at this time, because it does many timed samples and essentially takes the lowest RTT delay ones to make its bandwidth estimations)
. propagation delay for link, e.g., here, between hop 3 & 4.
. rtt not including q delay.

Includes propagation delay, input delay and cpu queues on far hop (4), output queue for time exceeded response of these the queue to the cpu is filtered out on the next hop.@@? Of these the cpu queue is filtered out on the next hop, but the input/output queues carry forward incorrectly. @@check with van. More sophisticated deconvolution is required to separate the two.

Should be close to maximum ping-rtt from origin pathchar host to this hop (4).
. queue delays
of: hop 3's output q, hop 4's input and output q,

or: Q-delay = (Q1+Q2+Q3)delays.
. hinge
ratio of the interquartile distance (IDQ) to the median (this ratio is the robust statistics equivalent of the standard deviation, so this ratio is the equivalent of the standard error of the mean). For normal `statistical' fluctuations, it should be around 1, and pathchar prints it if it's larger. In this case it implies that at least 25% of the probes saw a queue larger than 16ms; statistically it's essentially the same as having 1/4 of the data more than 13 standard deviations from the mean (unusual, perhaps some bimodal delay process due to router idiosyncracy).

---------- ------------ | rtr hop 3| | rtr hop 4 | | |<-------|UUUU:Q3 | ->-|---Q1:UUUU|------->|Q2:UUUU | ---------- ------------

Part IV: command line arguments

-a:
-A:
-d:
-D: filename for debug output
-f: initial hop #
-F: probefilter
-i: intersampletime
-l: max ttl
-L: locality
-m: maxsize maximum packet size in bytes
(if absent, pathchar determines path MTU)
-M: minsize default: smallest possible
(want large differential between max and min size,
o/w a node w/queue will impact later nodes)
-n: don't dns-resolve
-p: port @@?
-q: #queries, default 32
-Q: bytes,
if (-), packet size increment per query, defaults to 92.
if (+), number of sizes, defaults to 32
-s: lsrr?
-S: fit spacing
-t: tos
-v: verbose mode
-V: verbose?
-w: seconds wait time
Part V: sample output

riesling ~ 79% 14:24: pathchar ka9q.ampr.org

pathchar to ka9q.ampr.org (129.46.90.35)

 mtu limitted to 1500 bytes at local host

 doing 32 probes at each of 64 to 1500 by 44

 0 192.172.226.24 (192.172.226.24)

 | 9.3 Mb/s, 269 us (1.83 ms)

 1 pinot (192.172.226.1)

 | 85 Mb/s, 245 us (2.46 ms), 1% dropped

 2 sdscdmz-fddi.cerf.net (198.17.46.153)

 | 45 Mb/s, -13 us (2.70 ms)

 3 qualcomm-sdsc-ds3.cerf.net (134.24.47.200)

 | 8.8 Mb/s, 1 us (4.07 ms)

 4 krypton-e2.qualcomm.com (192.35.156.2)

 | 5.2 Mb/s, 1.02 ms (8.42 ms)

 5 ascend-max.qualcomm.com (129.46.54.31)

 | 53.2 Kb/s, 4.20 ms (243 ms)

 6 karnp50.qualcomm.com (129.46.90.33)

 | 12 Mb/s, -172 us (243 ms), +q 8.96 ms (13.0 KB) *3, 6% dropped

 7 unix.ka9q.ampr.org (129.46.90.35)

7 hops, rtt 11.1 ms (243 ms), bottleneck 53.2 Kb/s, pipe 4627 bytes

riesling ~ 80% 15:30:
Part VI: Important interpretation Notes

Getting reasonable estimates

It takes many probes for pathchar to ascertain bandwidth of a fast link (>50Mb/s). Since we don't yet have method for pathchar to automatically decide its fit estimate is `good enough', you need to manually set the number of probes (via the -q flag) based on a guess about the path bandwidth & workload. The default of 32 probes leads to ~2 minutes/hop of probing, sufficient for links up to 10Mbs.

Rough guidelines:

use -q 64 for relatively quiet, fddi or slower paths.

use -q 128 for busy (especially for fast link beyond a busy, slower link), fddi or slower paths, or quiet and faster than fddi.

use -q 256 or -q 512 for links faster than fddi on a busy path (i.e., not the fast link(s), but upstream busy links -- the most damage is done by slow busy links upstream of the fast link you're trying to measure).

parenthetical stickiness on one hop

If at a given node, pathchar prints something like

 9: 6 1208 28 102 ->206.34.78.27 (54358)

it means that the source address has changed in the ICMP time exceeded reply. Pathchar remembers the first address it encounters for this hop, and prints this message (and otherwise ignores the response) when that address doesn't reply. The number in parentheses is the total number of responses from the 'wrong' address(es). Once this hop completes, pathchar prints out the list of 'wrong' addresses & the number of replies from each, together with the estimates for the first address. If the first address pathchar sees was a low probability alternate path, it can take a long time to do a full cycle of probes to it (the round number would decrement slowly).

Nettimer

nettimer is useful for measuring end-to-end network performance. It can simulate or passively collect network traffic, and can also actively probe the network using a packet-pair 'tailgating' technique. There is no requirement for any special information from the network and no limitation to a particular transport protocol. Currently implemented metrics include bottleneck bandwidth and link bandwidth. Collected data is output using 'ns' database format.

bprobe/cprobe

bprobe estimates the maximum possible bandwidth along a given path. cprobe estimates the current congestion along a path. Currently these tools rely on two features of the IRIX operating system for SGI hardware.

Bandwidth Definitions

Bottleneck Bandwidth: The ideal bandwidth of the lowest bandwidth link (bottleneck link) on a route between two hosts. This quantity is independent of traffic.
Available Bandwidth: Maximum bandwidth that a host can transmit at along a route.
Alternatively,How fast a connection should transmit to preserve network stability.
Available Bandwidth Measurement

The available bandwidth of a path between two hosts is an important network parameter for optimizing resource utilization in traffic engineering and for admission control in quality of service. Since available bandwidth is very dynamic that is determined by link capacity and the current traffic volume but necessarily by bottleneck bandwidth although it is capped by it, any practical measurement must keep overhead low while achieving reasonably good results. This is because available bandwidth has to be measured more often, especially during periods of dramatic change, to make the results useful. Consequently, the intervals between successive measurements must be dynamically adjustable to maintain the timeliness and usefulness of the results. This is in contrast to bottleneck bandwidth measurement in which the results can serve a relatively longer time and the specific times for performing the measurement can be chosen, e.g., during periods of low traffic volume.

Pathchar is a measurement tool that can be used to measure the bottleneck bandwidth of the links along a path.During the measurement, a number of probing rounds with different packet sizes are used towards each intermediate node in the path until the desired destination is reached. Downey did extensive experiment with it and showed that Pathchar could yield reasonably good results. However, because it is developed for measuring link capacity, the overhead is extremely high, which is prohibitive for available bandwidth, and cannot be directly applied to available bandwidth in its present form. Similarly, the method by Dovrolis, et al. is primarily for bottleneck bandwidth measurement and cannot be directly applied to available bandwidth due to high overhead and long measurement time.

In Bprobe and Cprobe ,multiple rounds of probing are used to calculate the bottleneck and the available bandwidth, respectively. A result is computed based on all the probing rounds at different speeds and with different packet sizes. Consequently, measurement overhead is very high. Furthermore, always probing at the bottleneck speed in Cprobe incurs unnecessarily high overhead, which would cause severe packet delay and loss to all traffic. Also, Cprobe requires the knowledge about the bottleneck bandwidth, which requires accurate bottleneck bandwidth results before the measurement and, consequently, may cause unnecessary overhead for bottleneck bandwidth measurement to ensure the validity of its results.

MEASUREMENT ALGORITHM

The algorithm for available bandwidth measurement was presented with some preliminary simulation results. In the algorithm, we use the active probing approach with the techniques of variable speed probing and zoomin/ zoom-out. For variable speed probing, we send a series of probing packets at variable speeds, from low to high. Since they are sent at different speeds, the first packet and the second to the last define the range of the bandwidths required to carry the probing traffic through the path without causing congestion. Here, the bandwidth requirement of each packet is determined by the size of the packet and the time interval between it and the next one. Therefore, the probing packets will impose increasingly higher bandwidth requirements on the path due to the increases in speed (or decreases in packet intervals). When the bandwidth requirement of a packet exceeds the available bandwidth, congestion starts to occur so that we can observe different RTTs (round trip delays) before and after the congestion. Based on this phenomenon, we can derive the available bandwidth by detecting the point where congestion starts to occur based on the RTTs. This congestion point then provides us with the needed information for available bandwidth estimation because, before the congestion, all probing packets should have about the same RTTs and, after the congestion, although the RTTs may be different, the general trend will be consistent and the RTTs should be larger than those before the congestion due to additional queuing delays. Note that, in our illustration, we use the variable speed scheme although the variable packet size is equally effective in getting the different bandwidth requirements by the probing packets on the measured path. We could also use a combination of variable speeds and packet sizes to get the desired bandwidth requirements more flexibly and efficiently. In general, the bandwidth requirement of a probing packet is determined by the size of the packet S and the time interval t between it and the packet that immediately follows it: S/t.

Assuming a fixed packet size S, if the time interval between packets Pi and Pi+1 is ti , 1<= i<n and ti>ti+1, the bandwidth requirement of packet Pi is: S/ti.

Assuming n probing packets {P1, P2, …, Pn} of size S but decreasing time intervals, the bandwidth requirement of the packets on the measured path increases as the packets travel to the server and return to the client or the probing agent. After collecting the RTTs for the probing packets by the probing agent, we use curve matching between the one for sending the probing packets (the sending curve) and the one for receiving the acknowledgement packets (the receiving curve) to detect congestion and derive available bandwidth. One way to calculate the time intervals is to assume that the intervals decrease linearly in equal amount in time. Then, with S, n and (BL, BH), BL>0 and BH>BL, we can compute the time intervals using the formula:

Ti = S/(n – 2) ((n – i – 1)/BL + (i – 1)/ BH)

We can assume other relationships between the time intervals and use the same technique to compute them. One such a method is to assume that the intervals decrease linearly in equal amount in bandwidth. We are also studying other probing packet patterns and distributions that can yield better, or optimized, performance in terms of measurement results and overheads as an optimization problem. The zoom-in technique is used when the measurement detects the congestion but the result doesn’t meet the required resolution. Therefore, if (BL, BH) is set too large, the resolution will be poorer with a fixed number of probing packets. To improve the resolution, we use zoom-in to initiate an additional round of probing with a smaller (BL, BH) around where the congestion occurred. With the new (BL, BH), a new set of time intervals ti , 1<=i<=n-1, will be computed. This process will continue until a measurement result is obtained that meets the specified resolution. That is, our algorithm will automatically determine whether zoom-in is needed after each round of probing. The number of probing rounds is then determined by the number of probing packets n, the packet size S, the resolution requirement, the initial (BL, BH) and the fluctuation of the traffic. The zoom-in process is a necessary step for the improvement of the measurement result. Zoom-out is the opposite of zoom-in and is used for the detection of congestion when the current round cannot identify one. This is possible when the probing speed is too slow (curves with total matching) or too fast (curves without any matching). Since we don’t have any knowledge about link capacity, we don’t know what the highest bandwidth should be set. Even if we know, we don’t want to unconditionally probe at the highest bandwidth for its disruptive consequence. Therefore, this technique will try to dynamically expand the bandwidth range to automatically adapt to any bandwidth in a gentle manner. Zoom-out enlarges the bandwidth range (BL, BH). It could also move the bandwidth range downward if the previous probing is too fast or upward if too slow. The enlargement and movement of the bandwidth range could also be used together. Similar to zoom-in, a single zoom-out may still fall short. Therefore, the algorithm would automatically determine if zoom-out is needed and, if yes, an additional probing round is initiated with a new bandwidth range and corresponding time intervals. The zoom-out process is a necessary step for the detection of congestion.

Note that zoom-in and zoom-out will be interchangeably invoked and there is not a general rule regarding which one would be used first and in what order; their invocation is only determined by the current measurement result. It may also be affected by the volatility of the traffic. Depending on the starting bandwidth range and the selection for the next round, the number of rounds of zoom-in and zoom-out could differ significantly.

The algorithm that combines the techniques of variable speed probing and zoom-in/zoom-out is thus summarized as follows:

(1) Using n probing packets of size S and picking a bandwidth range based on past measurement results or other knowledge or heuristics, invoke the basic variable speed probing technique and curve matching to detect congestion. The selection of the initial bandwidth range is not essential but a better selection could result in fewer rounds of probing and, consequently, lower overhead.

(2) If congestion is detected, calculate the result and determine its resolution. If the resolution requirement is met, the algorithm concludes and the result is reported as the measured available bandwidth. In our experiment, the available bandwidth is the average of the bandwidth requirements of the probing packets immediately before and after the congestion. The available bandwidth could also be computed based on more than one packet around the area of congestion to neutralize the effect of traffic volatility and noise during the measurement.

(3) If congestion is detected but the resolution requirement is not met, the zoom-in procedure is invoked in which a smaller bandwidth range (BL, BH) is used for the next round. The algorithm continues with (1).

(4) If congestion is not detected, the zoom-out procedure is invoked in which a larger or a different bandwidth range (BL, BH) is picked through the examination of the current measurement. The algorithm continues with (1).

It is therefore clear that higher overhead could result from higher resolution requirement and from the flexibility of automatic adaptation of the algorithm to any bandwidth, both of which are desirable features in any measurement algorithm. Without the resolution requirement, zoom-in could be avoided. So could zoom-out without self-adaptation to any bandwidth. No previous work can achieve the same functionality and flexibility as the zoom-in and zoom-out.

EXPERIMENT

A testbed has been setup to measure the available bandwidth of a dedicated link, i.e., the measured link. With the testbed environment, we are able to control the traffic volume and type over the measured link, apply the algorithm and compare the measurement results with the real available bandwidth numbers to evaluate the performance and conduct various other experiments. The testbed is depicted in Fig. 1 in which, in addition to the probing agent and the server, there are three other components: the traffic generator, the traffic captor and a display. The traffic generator is used to send a specified type and volume of traffic to the server and only the generated traffic and the probing traffic go over the measured link. Thus, the measurement algorithm can be evaluated with different types of traffic. The traffic captor is used to capture all the traffic to the server over the measured link and to calculate the real available bandwidth by subtracting the total traffic captured from the link capacity of the measured link. The results are then sent to the display and plotted along with the measurement results sent from the probing agent for comparison and evaluation.

[image: image1.jpg]Mesred Link

Netwerk Router | Server

Fig 1 Testhed environment

Mirror Site Concept

Because of the advent of Internet, we live in a very heavily networked world. Because of this, the communication has become very efficient and so is the access to data. It is possible to access information, available on the computers connected to Internet. To access such information, all we need to do is open a TCP connection to the computer, on which the information we are interested in resides and request the data we require. After the data transmission is over, the TCP connection is closed.

This is a very simple example. Because of the ability to perform such tasks, one of the most popular uses of networks is in Software Distribution. In this scenario, the manufacturer of the software product, loads its product in the server and allows its customers to download the same onto their computers. This process has many cost and efficiency benefits. The vendor spends very little money and efforts on packaging a product, shipping and handling etc. for the customer, it is advantageous too because he does not have to wait until the vendor ships the software and he actually gets it. As the number of requests to these kinds of download grows, it becomes imperative to analyze what kind of performance the clients would get if more than one processes tried to download the same file. This gives birth to idea of mirror sites.

The mirroring approach deploys multiple servers storing the same data at geographically distributed locations, in an effort to both distribute the load of requests across servers and to make network connections shorter in length. This ultimately results in reduction of network traffic. Typically, client request service from a single mirror site. The speed at which the download can happen, depends on the bandwidth of that site and the bandwidth of other nodes in the path to the mirror site from the source. The choice of mirror site may seem obvious, when the number of mirror sites available is small, but many times the obvious choice may not be the best choice, and significant improvements may be possible by careful selection. Ability to allow accessing only one mirror site , is a typical limitation of the mirroring process. Even if the site at which the file is available has a larger bandwidth, some where down the path we may completely lose that advantage due to a slow intermediate host.

To select a best mirror site, a branch and bound algorithm needs to be developed assuming that you know the available bandwidths across each link from the client to the server.Using this algorithm, a best mirror site can be selected.The pseudocode for the algorithm is given below.

Pseudocode for Branch and Bound Algorithm

Start at the Intial Node

Check the Available Bandwidths to the next hop on the path and Choose the Node that has More Available Bandwidth

Repeat the above step until the destination has been reached

Conclusion

Study of the above algorithm, clearly points out that, there is sufficient room for improvement and research in this area. Software Distribution is clearly one of the segments that can benefit from use of these algorithms. It has become clear that, best selection of mirror site improves the download performance.

Today’s network technology is changing and improving very rapidly. We are able to communicate much faster and do many things , than we were able to do before. The more it changes, we will be presented with new challenges, how to efficiently use the capacity that we have. The subject of this paper, is just one area to make efficient use of the available bandwidth capacity to select best mirror site.

I believe that putting this paper together has helped me start thinking in the correct direction, for any future research that I may perform in this area. It has clarified my concepts about the possibilities that we can explore for process improvement. I also think that this was a good opportunity to learn about a completely new problem and study solutions for it. I hope, this document will also help, in understanding the intricacies involved in bandwidth measurement and server selection, to a reader, new to this subject.

References :

1. Available Bandwidth Measurement, Implementation and Experiment
 Jingsha He, Yingping Lu†, C. Edward Chow‡ and Takafumi Chujo -

http://cs.uccs.edu/~chow/pub/measurement/doc/abwicc2002.pdf

2. Van Jacobson, “Pathchar,” -

 http://www.caida.org/tools/utilities/others/pathchar/
3.TCP/IP Illustrated Volume I – Richard Stevens

