
UNIVERSITY of COLORADO at COLORADO SPRINGS

A WEB BASED ENTERPRISE MANAGEMENT (WBEM)

APPLICATION: WBEM AUTOMATIC

PROCESSOR REPORT (WAPR)

A PAPER SUBMITTED TO

DR. EDWARD CHOW

IN PARTIAL FULFILLMENT OF

THE REQUIREMENT FOR

CS522 COMPUTER COMMUNICATION

DEPARTMENT OF COMPUTER SCIENCE

BY

STEPHEN D. WISE

COLORADO SPRINGS, COLORADO

DECEMBER 2002

Abstract

Web-based Enterprise Management (WBEM) is a technology still in its infancy. The Distributed Management Task Force (DMTF), a large corporate partner organization, is attempting to standardize how managed data is provided and represented to System Administrators. The goal of WBEM is to impose a standard that is non-obtrusive to already developed capabilities and to provide a road map for future implementations of managed data. This paper explores WBEM capabilities and attempts to describe the implementation of a WBEM Client as a representative example of the technology. Additionally, recommendations are made on the viability of future research in WBEM.

CONTENTS
Abstract
i

Contents
ii

List of Illustrations
iii

List of Tables
iii

I.
Introduction
1

II.
Common Information Model
 2

III.
Managed Object Format
2

IV.
WBEM Components
2

V.
WBEM SDK
4

VI.
WBEM API
5

VII. WAPR Implementation
5

VIII. Conclusion
8

IX. Future Research……………………………………………………………………………….10

X. References…………………………………………………………………………………… 11

ILLUSTRATIONS

Figure 1, Basic WBEM Architecture
3

Figure 2, WAPRServer Command Line
5

Figure 3, WAPRClient Command Line
6

Figure 4, Establish a CIM Namespace
6

Figure 5, Establish User Permissions
6

Figure 6, Create a CIM Client Object
6

Figure 7, Establish a Computer System Key
7

Figure 8, Establish a Key for the Processor Provider
7

Figure 9, Establish Handles
7

Figure 10, WPAR Client Processor Report Information
8

TABLES

Table 1, WBEM Services
4

INTRODUCTION

Web-Based Enterprise Management (WBEM) was first introduced in 1996 by a collection of companies headed by Microsoft, Compaq, Cisco Systems, BMC Software and Intel [TOD98]. The vision was to define an open environment for management, where all managing systems and applications could access, control, and share management information with each other using existing technologies and standards. The leader of the WBEM initiative is the Distributed Management Task Force (DMTF). The DMTF is an industry organization leading the development, adoption and unification of management standards and initiatives for enterprise and Internet environments.

WBEM is used to manage components or systems, such as operating systems, computer networks, and hardware devices. Today’s systems require that a system administrator be proficient in many different operating environments and there is not an easy way to manage all the assets in a given network. Typically, proprietary management protocols and interfaces are used for each platform. The goal with WBEM is to provide the ability to manage all systems regardless of the architecture. WBEM is defining a common mechanism for sharing management information. WBEM does not require the use of a runtime environment or programming language model, nor does it mandate the use of any particular management application, console, operating system (OS), or graphical environment. WBEM provides a consistent view of managed environments without locking customers in to one management framework, protocol, or platform [TOD98]. The set of standards that comprise WBEM are the Common Information Model (CIM), a language and methodology used for describing management data, CIM in XML, a specification of how to map CIM to XML [DIS02], and CIM Operations over HTTP, a specification of how to exchange CIM information over the HTTP protocol [DIS99]. These specifications standardize how to describe and exchange management data. This paper will discuss WBEM capabilities and focus on WBEM with respect to CIM and attempt to describe how to create a WBEM client application.

COMMON INFORMATION MODEL

The Common Information Model (CIM) provides a common conceptual framework to classify and define the parts of a networked environment and depict how the parts integrate. The model captures notions that are applicable to all areas of management, independent of technology implementation [SUN99]. CIM puts managed data into 3 categories, the Core Model, the Common Model, and Extensions. The Core Model and the Common Model are collectively known as the CIM Schema. The Core Model is a set of classes, associations, and properties used to describe managed systems. The Common Model provides a set of classes used to define technology-specific schemas such as Systems, Devices, Applications, Networks, and Physical [SUN99]. The Common Model areas are technology and implementation independent. The CIM Extensions are used to connect specific technologies into the model to assist software developers in building management applications.

MANAGED OBJECT FORMAT

Managed Object Format (MOF) is the standard language used to define objects that describe CIM information in text. All CIM components, such as classes, properties, methods, qualifiers, associations and instances, can be specified in the MOF syntax. MOF is not required by the CIM specification but is accepted as the CIM specification language. Additionally MOF can be converted to Java and run in any environment that supports Java [SUN99].

WBEM COMPONENTS
The main WBEM components are the CIM Object Manager (CIMOM), the WBEM Providers and WBEM Clients as shown in figure 1. A WBEM Provider is the interface between a managed resource and the CIMOM and a WBEM Client is the interface between the manager and the CIMOM. The CIMOM is responsible for calling the correct provider(s) in response to the client’s requests and also to call the correct client(s) when events occur.

The CIMOM is the central part of WBEM. It has a repository containing all CIM schemas. The repository may also be used for CIM instance data created by the clients or providers. CIM instance data saved in the repository is called static data. Data obtained by the providers directly from the real managed resource is called dynamic data. The CIMOM accesses or modifies static data at the request of a client. Additionally, the CIMOM calls the correct provider if a client requests to access or modify dynamic data. The WBEM Provider is the interface between the managed resource and the CIMOM. The provider retrieves the dynamic data from the managed resource and returns it to the CIMOM upon request. The CIMOM and providers reside on the same computer but do not have a standard interface. The DMTF has defined CIM Operations by HTTP as the standard protocol between the CIMOM and WBEM Client. Other examples of acceptable communication mechanisms are Remote Method Invocation (RMI) for Java implementations and DCOM for Microsoft’s implementation. HTTP driven CIM Operations guarantee compatibility between any client and any CIMOM. A WBEM Client may be set up to receive notification on a status change of special interest. The CIMOM pushes the data to the WBEM client set up to receive the notification.

WBEM SDK

The Sun WBEM Software Development Kit (SDK) is provided with Solaris 8 or available for download at http://wwws.sun.com/software/solaris/wbem/download.html. The kit supports creation of management applications for any WBEM-enabled management device. All management applications run in the Java environment and can be created as standalone applications or integrated with Solaris WBEM Services. The Solaris WBEM Services are applications provided by Sun Microsystems Inc. to support WBEM management application development. See table 1 for a list of Solaris WBEM Services.

	Service
	Description

	Sun WBEM User Manager and Solaris Management Console (SMC) Users Tool
	Applications that allow system administrators to add and delete authorized users to set their access privileges to managed resources.

	Solaris Management Console (SMC) Log Viewer
	An application that displays log files. Using the log viewer, a user can view details of a log record, including the name of the user who issued a logged command and the client computer on which a logged event occurred.

	Managed Object Format (MOF) Compiler
	Program that parses a file containing MOF statements, converts the classes and instances defined in the file to Java classes, and then adds the Java classes to the CIM Object Manager Repository, a central storage area for management data.

WBEM API

Programmers use the APIs to create objects that represent a managed resource such as a CPU, printer or disk drive. All applications created using the WBEM API can be shared across any system that is CIM compliant. The APIs are broken into 3 categories: The CIM API defines common classes and methods that applications use to represent all basic CIM elements and is used to create objects on the local system; The Client API provides methods that applications use to transfer data to and from the CIMOM. The Client APIs transfer objects that are created on the local system to the CIMOM; The provider API provides interfaces that the CIMOM and object provider use to communicate with each other [SUN99].

WAPR IMPLEMENTATION

The WBEM Automatic Processor Report (WAPR) is a client-server implementation in Java. The WAPR Server can be run on any Java enabled workstation in the UCCS laboratories. The WAPR Client must be executed on zeppo because it is the only workstation that runs SOLARIS 8 that is WBEM enabled. The WAPR Server takes one optional argument that defines which port number to use when establishing a socket. See figure 2. The Server defaults to port 1500 if a port number is not provided. Once the socket is open and available, the Server listens for reports forwarded by the WAPR Client. The Server displays the information from the report upon receipt.

The WAPR Client uses four parameters passed in on the command line, the host where the WAPR Server is running, the port number the WAPR Server is listening, a user name, and password. See figure 3.

The first operation attempted by the client is to connect to a CIM namespace. See figure 4.

The account and password are used to authenticate a user’s role and set permissions in the namespace. See figure 5.

Finally the CIM Namespace, user principals, and password credentials are used to create a CIMClient object. See figure 6.

However to access provider information from the CIMOM keys must be established. The WAPR Client is attempting to access the processor information on zeppo. Therefore to obtain access to the provider information an access key must be defined for the computer system, see figure 7.

Once the WAPR Client established the computer system key, a key to the processor provider was established. See figure 8.

The keys are used to establish handles, one for the computer system and the other for the processor information. See Figure 9.

The WAPR Client has obtained access to the computer system and processor when both keys are established. The CIMOM can be queried for information regarding the health and status of the processor. The WAPR Client packetizes the information and forwards zeppo’s processor information to wetterhorn for display. The information contained in the processor report is identified in figure 10.

CONCLUSION

Open source implementations of WBEM exist. The implementation languages and targeted operating environments differ. Additionally each of the open source implementations has varying degrees of maturity.

OpenWBEM

· Developer: Caldera International, Inc
· Licence: BSD Style License
· Implementation language: C++
· Target operating systems: Linux, Caldera Open UNIX/UnixWare, Caldera OpenServer and Sun Solaris. OpenWBEM is currently being ported to FreeBSD and Mac OS X/Darwin.
· Documentation: API documentation

Pegasus

· Developer: The Open Group
· Licence: MIT open source license
· Implementation language: C++
· Target operating systems: Linux, AIX, HPUX, Windows NT, and Windows 2000.
· Documentation: API documentation (not complete). Developer’s documentation (not complete).

SNIA CIMOM

· Developer: Storage Networking Industry Association (SNIA)
· Licence: The SNIA Public License
· Implementation language: Java
· Target operating systems: Any
· Documentation: Developer’s documentation.

WBEM Services

· Developer: Sun Microsystems, Inc.
· Licence: Sun Industry Standards Source License (SISSL) v1.2
· Implementation language: Java
· Target operating systems: Any
· Documentation: API documentation and developer’s documentation.
I believe the best way to proceed for further research is to become involved with one or more of the open source initiatives that are supporting WBEM development. The commercial vendors do not seem to be interested in academic endeavours unless the college has enough money to pay for the tools already developed. The university can use the open source avenue as a way to become a contributor to this emerging technology. Specifically the university should become involved with the open source implementations already targeting Linux. The Linux approach appears to be the least costly and most viable to produce further research tools that will provide an environment for experimentation and discovery.

FUTURE RESEARCH

There are many WBEM areas I’d like to explore further for my Masters Project or Thesis. I believe enhancing my current application suite to use cimXML and the HTTP protocol would be extremely interesting and worthwhile. The first step in the process is to install an open source CIMOM on all the Linux machines the UCCS laboratories. This approach will provide a distributed test bed to assess WBEM Client and Provider implementation. The project can include a user interface to display each WBEM enabled clients status and perhaps integrate remote controlling features for the workstations that are WBEM enabled.

REFERENCES

[TOD98] Todd, Greg. What Is WBEM?, Windows & .Net Magazine, July 1998

[SUN99] Sun Microsystems Inc. WBEM on Sun Developer’s Guide, Palo Alto California, 1999

[DIS02] Distributed Management Task Force Inc. Specification for the Representation of CIM in XML, Version 2.1, May 2002

[DIS99] Distributed Management Task Force Inc. Specification for CIM Operations Over HTTP, Version 1.0, August 1999

Figure 1, Basic WBEM Architecture

…

Java/JNI

SNMP

CIM Object Manager

Table 1, WBEM Services

Java WBEM Client Interface

CIM Repository

Management Application

Java WBEM Provider Interface

Other

Objects

JMX

Objects

SNMP

Objects

Prompt $> java WAPRServer 5678

Figure 2, WAPRServer Command Line

Prompt $> java WAPRClient wetterhorn 5678 anon ymous

Figure 3, WAPRClient Command Line

Figure ?, Establishing a CIM Namespace

CIMNameSpace cns = new CIMNameSpace(hostName);

Figure 4, Establish a CIM Namespace

CIMNameSpace cns = new CIMNameSpace(hostName);

Figure 5, Establish User Permissions

UserPrincipal up = new UserPrincipal(args[2]); PasswordCredential pc = new PasswordCredential(args[3]);

Figure 6, Create a CIM Client Object

cc = new CIMClient(cns, up, pc, protocol);

Vector computerSystemKeys = new Vector();

CIMProperty computerSystemKey=newCIMProperty("CreationClassName");

computerSystemKey.setValue(new CIMValue("Solaris_ComputerSystem"));

computerSystemKeys.addElement(computerSystemKey);

computerSystemKey = new CIMProperty("Name"); computerSystemKey.setValue(new CIMValue(hostName)); computerSystemKeys.addElement(computerSystemKey);

Figure 7, Establish a Computer System Key

Figure 8, Establish a Key for the Processor Provider

Vector processorKeys = new Vector();

CIMProperty processorKey = new CIMProperty("CreationClassName");

processorKey.setValue(new CIMValue("Solaris_Processor"));

processorKeys.addElement(processorKey);

processorKey = new CIMProperty("SystemCreationClassName");

processorKey.setValue(new CIMValue("Solaris_ComputerSystem"));

processorKeys.addElement(processorKey);

processorKey = new CIMProperty("SystemName");

processorKey.setValue(new CIMValue(hostName));

processorKeys.addElement(processorKey);

processorKey = new CIMProperty("DeviceID");

processorKey.setValue(new CIMValue("0"));

processorKeys.addElement(processorKey);

Figure 9, Establish Handles

CIMObjectPath computerSystemCOP = new

 ObjectPath("Solaris_ComputerSystem", computerSystemKeys);

CIMObjectPath processorCOP = new CIMObjectPath("Solaris_Processor",

 processorKeys);

Figure 10, WPAR Client Processor Report Information

Hostname: zeppo

Creation Class: Solaris_ComputerSystem

Device ID: 0

ClockSpeed: 296 MHz

Processor Status: online

CU Load: 10%

