
XView Programming
Manual

This page contained the O'Reilly "Books That Help People Get More Out of Computers" page; it is left here to keep the page counts right.

Volume Seven

XView Programming
Manual

By Dan Heller

Updated for XView Version 3.2 by Thomas Van Raalte

O’Reilly & Associates, Inc.

XView Programming Manual
by Dan Heller
Updated for XView Version 3.2 by Thomas Van Raalte

Copyright © 1990, 1991 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

X Series Editor: Tim O’Reilly

Editor: Dale Dougherty

Printing History:

January 1990: First edition.

April 1990: Minor corrections.

July 1990: Second edition. Updated for XView Version 2.

October 1990: Minor corrections.

September 1991: Third edition. Updated for XView Version 3.

March 1992: Minor corrections.

August 1992: Minor corrections.

August 1993: Minor additions. Updated for XView Version 3.2.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

This book is printed on acid-free paper with 50% recycled content, 10-15% post-consumer waste. O’Reilly &
Associates is committed to using paper with the highest recycled content available consistent with high quality.

Volume 7: ISBN 0–937175–87-0 [11/93]

Table of Contents
Volume 7A: Programming Manual

Page

Preface xxxiii

Please Read This Section! xxxiii
How to Use This Manual xxxiv
Assumptions xxxvi
Font Conventions Used in This Manual xxxvi
Related Documents xxxvii
Requests for Comments xxxviii
Obtaining the Example Programs xxxviii
 FTP xxxviii
 FTPMAIL xxxix
 BITFTP xl
 UUCP xl
Acknowledgments xli
Acknowledgments for XView Version 3 Update xlii

Chapter 1 XView and the X Window System 3

1.1 The X Window System 3
 1.1.1 The Server and Client 5
1.2 The Software Hierarchy 7
1.3 Extensions to X 8
1.4 The Window Manager 9
1.5 Handling Events 9
1.6 Development of the XView Toolkit 11
1.7 Versions of the XView Toolkit 12
1.8 OPEN LOOK Graphical User Interface 12

Chapter 2 The XView Programmer’s Model 17

2.1 Object-oriented Programming 17
 2.1.1 Object Class Hierarchy 18
 2.1.2 Object Handles 19
2.2 Attribute-based Functions 21
 2.2.1 Creating and Manipulating Objects 21
 2.2.2 Changing Object Attributes 22
 2.2.3 Types of Attributes 22

2.3 Internal Attribute-Value Lists 23
2.4 Types of Objects 23
 2.4.1 Generic Objects 24
 2.4.2 Window Objects 25
 2.4.3 Frames and Subframes 26
 2.4.4 Subwindows 29
 2.4.4.1 Canvas subwindows 30
 2.4.4.2 Text subwindows 30
 2.4.4.3 Panels 30
 2.4.4.4 Menus 31
 2.4.4.5 Scrollbars 33
 2.4.4.6 Icons 34
 2.4.5 Nonvisual Objects 34
2.5 The Notifier Model 35
 2.5.1 Callback Style of Programming 35
 2.5.2 Why a Notification-based System? 36
 2.5.3 Relationship Among the Notifier, Objects, and the Application 37
 2.5.4 Calling the Notifier Directly 37

Chapter 3 Creating XView Applications 41

3.1 Interface Overview 41
 3.1.1 Compiling XView Programs 41
 3.1.2 XView Libraries 42
 3.1.3 Header Files 42
 3.1.4 Naming Conventions 43
 3.1.4.1 Reserved names 43
 3.1.5 Example of XView-style Programming 43
3.2 Initializing XView 45
 3.2.1 Using xv_init() 46
3.3 Creating and Modifying Objects 47
 3.3.1 Using xv_create() 47
 3.3.2 Using xv_find() 49
 3.3.3 Using xv_destroy() 50
 3.3.4 Using xv_set() and xv_get() 51
 3.3.5 Precedence of Resource Options 53
3.4 xv_main_loop() and the Notifier 54

Chapter 4 Frames 59

4.1 Types of Frames 61
 4.1.1 The Role of the Window Manager 61
4.2 Base Frames 62
 4.2.1 XView Initialization and Base Frames 62
 4.2.2 Headers and Footers 63
 4.2.3 Closed Base Frames 66

 4.2.4 Quit Confirmation 67
4.3 Command Frames 68
 4.3.1 Manually Displaying Frames 69
 4.3.2 The Pushpin 69
 4.3.3 The FRAME_DONE_PROC Procedure 71
 4.3.4 Showing Resize Corners 73
 4.3.5 Minimum and Maximum Frame Sizes 73
4.4 Miscellaneous Attributes 73
4.5 Busy Frames 74
4.6 Frame Sizes 74
4.7 Frame Colors 75
4.8 Child Windows 76
4.9 Window Loop 77
4.10 Removing Decorations 78
4.11 Setting Properties and Saving Command-line Options 78
4.12 Destroying Frames 79
4.13 Frame Resize and Repaint Events 81
4.14 Frame Package Summary 81

Chapter 5 Canvases and Openwin 85

5.1 Canvas Model 86
5.2 Creating a Canvas 88
 5.2.1 Drawing in a Canvas 89
 5.2.1.1 Draw programs 89
 5.2.1.2 Paint programs 90
 5.2.1.3 Text-based programs 90
 5.2.1.4 Visualization programs 90
 5.2.1.5 Rendering graphics 91
5.3 The Repaint Procedure 91
5.4 Controlling Canvas Sizes 98
 5.4.1 Automatic Canvas Sizing 98
 5.4.2 Explicit Canvas Sizing 99
 5.4.3 Tracking Changes in the Canvas Size 100
5.5 Scrolling Canvases 101
5.6 Splitting Canvas Views 102
 5.6.1 Splitting Views Using Scrollbars 102
 5.6.2 Splitting Views Using xv_set() 103
 5.6.3 Getting View Windows 103
 5.6.3.1 Getting the newest view 103
 5.6.3.2 Getting arbitrary views 104
5.7 Handling Input in the Canvas Package 105
 5.7.1 Default Events 106
 5.7.2 Notification of Events 106
5.8 Canvas and Openwin Package Summaries 110

Chapter 6 Handling Input 115

6.1 Introduction to Events in XView 116
6.2 Classes of Events 116
 6.2.0.1 Event IDs 117
 6.2.0.2 Semantic events 117
6.3 Registering Events 118
 6.3.1 Specifying X Event Masks 118
 6.3.2 Specifying XView Events 119
 6.3.2.1 Mouse events 120
 6.3.2.2 Keyboard events 121
 6.3.2.3 Resize and repaint events 122
 6.3.2.4 Client messages 123
 6.3.2.5 Miscellaneous events 123
6.4 The Event Handler 124
6.5 The Event Structure 124
6.6 Determining the Event 125
 6.6.0.1 Event states 126
 6.6.0.2 Modifier keys 126
 6.6.1 Keyboard Events 126
 6.6.1.1 Mouse events 128
 6.6.1.2 Keyboard focus 129
 6.6.1.3 Selection events 130
6.7 Interpreting Client Messages 130
 6.7.1 Sending and Reading Client Messages 130
6.8 Reading Input Directly 131
6.9 Sample Program 133
6.10 Extensions for Events 138
6.11 Selecting Events on Other Clients 139
6.12 Soft Function Keys and Virtual Keyboards 140
 6.12.1 Soft Function Keys 140
 6.12.2 Virtual Keyboards 142
 6.12.2.1 Multiple language support 142
6.13 The Mouseless Model 142
 6.13.1 Keyboard Command Mapping 143
 6.13.2 Mouseless Model Resources 145
 6.13.3 Using the Mouseless Model 145
 6.13.3.1 The role of the window manager 146
 6.13.3.2 Application responsibilities 146
 6.13.4 The Location Cursor 146
 6.13.5 Events 147
6.14 Using Accelerators 147

Chapter 7 Panels 153

7.1 Creating a Panel 155
 7.1.0.1 Fonts and panels 156

 7.1.1 Scrollable Panels 156
7.2 Creating Panel Items 157
7.3 Layout of Panels and Panel Items 159
 7.3.1 Panel Layout 159
 7.3.2 Panel Item Layout 160
7.4 Explicit Panel Item Positioning 161
 7.4.1 Relative Panel Item Positioning 161
 7.4.2 Absolute Panel Item Positioning 162
 7.4.2.1 General positioning of items 163
 7.4.3 Layout of Panel Items with Values 163
7.5 Sizing Panels 164
7.6 Panel Item Values 164
7.7 Iterating Over a Panel’s Items 165
7.8 Panel Item Classes 165
7.9 Button Items 166
 7.9.1 Button Selection 167
 7.9.1.1 Making a button inactive 167
 7.9.2 Menu Buttons 167
 7.9.2.1 Destroying menu buttons 169
 7.9.3 Panel Button Width 170
 7.9.4 Abbreviated Menu Buttons 170
7.10 Choice Items 171
 7.10.1 Display and Layout of Item Choices 171
 7.10.2 Exclusive and Nonexclusive Choices 172
 7.10.3 Abbreviated Choices 173
 7.10.4 Checkbox Choices 174
 7.10.5 Choice Selection and Notification 175
 7.10.6 Foreground Color in Choice Items 175
 7.10.7 Parallel Lists 176
7.11 Scrolling Lists 177
 7.11.1 Displaying List Items 178
 7.11.2 Adding and Deleting List Entries 181
 7.11.3 List Selection 182
 7.11.4 List Notification 183
 7.11.4.1 List item client data 184
 7.11.5 The Scrolling List Menu 184
7.12 Message Items 184
7.13 Slider Items 186
 7.13.1 Slider Selection 187
 7.13.2 Slider Notification 187
 7.13.3 Slider Value 187
7.14 Gauges 188
7.15 Text Items 188
 7.15.1 The Current Keyboard Focus 190
 7.15.2 Text Selection 191
 7.15.3 Text Notification 191
 7.15.4 Writing Your Own Text Notify Procedure 192
 7.15.5 Text Value 193

7.16 Numeric Text Items 193
7.17 Multiline Text Items 193
7.18 Drop Target Items 194
 7.18.1 Programming a Panel Drop Target Item 196
 7.18.1.1 Create the drop target item 196
 7.18.1.2 Specify the glyphs 196
 7.18.1.3 Create the drag and drop object 197
 7.18.1.4 Define the drop target item’s requestor 197
 7.18.1.5 Controlling the glyphs 198
 7.18.1.6 Dropping on the drop target 198
 7.18.1.7 Dragging from the drop target item 198
 7.18.2 Drop Target Notification 198
7.19 Advanced Panel Usage 199
 7.19.1 Attaching Data to Panel Items 199
 7.19.2 Using PANEL_REPAINT_PROC 202
 7.19.3 Painting Panel Items 205
 7.19.4 Panel Event Handling 205
 7.19.5 Using an Interpose Function 207
 7.19.6 Using PANEL_BACKGROUND_PROC 207
 7.19.7 Using PANEL_EVENT_PROC 207
 7.19.8 Event Handling Example 208
7.20 Panel Package Summary 209

Chapter 8 Text Subwindows 215

8.1 Creating Text Subwindows 216
8.2 Setting Text Subwindow Attributes 216
8.3 Text Subwindow Contents 216
8.4 Editing a Text Subwindow 217
 8.4.1 Loading a File 217
 8.4.2 Checking the Status of the Text Subwindow 218
 8.4.3 Writing to a Text Subwindow 219
 8.4.3.1 Setting the insertion point 219
 8.4.4 Reading from a Text Subwindow 219
 8.4.5 Deleting Text 220
 8.4.6 Emulating an Editing Character 221
 8.4.7 Replacing Characters 221
 8.4.8 The Editing Log 222
 8.4.9 Which File is Being Edited? 222
 8.4.9.1 Interactions with the file system 223
8.5 Saving Edits in a Subwindow 223
 8.5.1 Storing Edits 223
 8.5.2 Discarding Edits 224
8.6 Setting the Contents of a Text Subwindow 224
 8.6.1 TEXTSW_FILE_CONTENTS 224
 8.6.2 TEXTSW_CONTENTS 225
 8.6.3 TEXTSW_INSERT_FROM_FILE 225

8.7 Positioning the Text Displayed in a Text Subwindow 226
 8.7.1 Screen Lines and File Lines 226
 8.7.2 Absolute Positioning 226
 8.7.3 Relative Positioning 227
 8.7.4 Which File Lines are Visible? 227
 8.7.4.1 Guaranteeing what is visible 228
 8.7.4.2 Ensuring that the insertion point is visible 228
8.8 Finding and Matching a Pattern 228
 8.8.1 Matching a Span of Characters 228
 8.8.2 Matching a Specific Pattern 229
8.9 Marking Positions 230
 8.9.1 Getting a Text Selection 231
 8.9.2 Setting the Text Selection 232
8.10 Dealing with Multiple Views 232
8.11 Text Subwindow Destroy Confirmation 233
8.12 Notifications from a Text Subwindow 233
 8.12.1 Text Subwindow Interposition 236
8.13 Text Subwindow Package Summary 236

Chapter 9 TTY Subwindows 241

9.1 Creating a TTY Subwindow 241
9.2 Driving a TTY Subwindow 242
9.3 Monitoring the Program in the TTY Subwindow 246
9.4 Talking Directly to the TTY Subwindow 247
9.5 TTY Subwindow Function Key Escape Sequences 249
9.6 TTY Package Summary 250

Chapter 10 Scrollbars 253

10.1 Creating Scrollbars 254
10.2 Relationship Between Scrollbars and Objects 256
10.3 An Example 258
10.4 Managing Your Own Scrollbar 263
 10.4.1 Monitoring When Scrollbar Events Occur 264
 10.4.2 Providing a Scrollbar Compute Procedure 266
 10.4.2.1 Indicating scrollbar motion 268
 10.4.3 Providing a Scrollbar Normalize Procedure 268
10.5 Scrollbar Package Summary 270

Chapter 11 Menus 273

11.1 Menu Types 273
 11.1.1 Pop-up Menus 274
 11.1.2 Pulldown Menus 274

 11.1.3 Pullright Menus 274
11.2 Menu Items 276
 11.2.1 Choice Items 276
 11.2.2 Exclusive Items 276
 11.2.3 Nonexclusive Items 277
11.3 Creating Menus 277
11.4 Displaying Menus 279
11.5 A Simple Program 280
11.6 Creating Menu Items 283
 11.6.1 Using MENU_ITEM 283
 11.6.2 Using MENU_ACTION_ITEM 284
 11.6.3 Using MENUITEM 284
11.7 Adding Menu Items 285
11.8 Pullright Menus 285
11.9 Menu-generating Procedures 287
 11.9.1 Parent Menus 290
 11.9.2 Using MENU_GEN_PROC 290
11.10 Using Toggle Menus 291
11.11 Menu Layout 292
11.12 Making Pin-up Menus 292
11.13 Notification Procedures 294
11.14 Finding Menu Items 297
11.15 Initial and Default Menu Selections 297
11.16 Unpinned Command Frame Dismissal 298
11.17 Destroying Menus 298
 11.17.1 Freeing Allocated Strings 299
 11.17.2 Freeing Pullright Menus 299
 11.17.3 Menu Client Data 300
11.18 Example Program 300
11.19 Menu Package Summary 304

Chapter 12 Notices 307

12.1 Creating and Displaying Notices 308
 12.1.1 Notice Values and Status 311
12.2 Types of Notices 313
 12.2.1 Standard Notices 313
 12.2.1.1 Using a notice callback 315
 12.2.1.2 Selecting the busy frames 316
 12.2.2 Notices That Lock the Screen 316
 12.2.2.1 Notice triggers 318
12.3 Destroying a Notice 320
12.4 Another Example 320
12.5 Notice Package Summary 323

Chapter 13 Cursors 327

13.1 Creating Cursors 327
 13.1.1 simple_cursor.c 328
13.2 Predefined Cursors 330
13.3 The Hotspot and Cursor Location 330
13.4 Color Cursors 333
13.5 Support for Text Drag and Drop 334
13.6 Cursor Package Summary 335

Chapter 14 Icons 339

14.1 Creating and Destroying Icons 339
14.2 The Icon’s Image 340
 14.2.0.1 Color icons 342
 14.2.0.2 ICON_TRANSPARENT 343
 14.2.0.3 ICON_MASK_IMAGE 344
 14.2.1 The Icon Text 344
 14.2.2 ICON_TRANSPARENT_LABEL 345
14.3 Icon Package Summary 345

Chapter 15 Nonvisual Objects 349

15.1 The Display 350
15.2 The Screen Object 350
 15.2.1 Multiple Screens 351
15.3 The SERVER Package 353
 15.3.1 Creating a Server (Establishing a Connection) 353
 15.3.2 Connecting to Multiple Servers 354
 15.3.3 Getting the Server 354
15.4 Server Images 355
 15.4.1 Creating Server Images 356
15.5 The FULLSCREEN Package 359
 15.5.0.1 Debugging and the FULLSCREEN package 361
15.6 Nonvisual Package Summary 362

Chapter 16 Fonts 367

16.1 Creating Fonts 368
 16.1.1 Font Families and Styles 371
 16.1.2 Font Sizes 373
 16.1.3 Scaling Fonts 373
 16.1.4 Fonts by Name 375
16.2 Font Dimensions 375
16.3 Font Package Summary 377

Chapter 17 Resources 381

17.1 Predefined Defaults 381
17.2 XView Resource Database Functions 385
 17.2.1 Boolean Resources 385
 17.2.2 Integer Resources 386
 17.2.3 Character Resources 387
 17.2.4 String Resources 387
 17.2.5 Enumerated Resources 388
17.3 Creating Resource Instances 390

Chapter 18 Selections 393

18.1 The XView Selection Model 395
18.2 How Selection Works (Without a Selection Item) 396
 18.2.1 Highlighting the Selection (Selection Owner) 397
 18.2.2 Making the Selection (Selection Owner) 397
 18.2.3 Requesting the Selection (Selection Requestor) 399
 18.2.3.1 Specifying the target type (selection requestor) 400
 18.2.3.2 SEL_REPLY_PROC (selection requestor) 400
 18.2.3.3 Timeout for a selection response 401
 18.2.3.4 Requesting the CLIPBOARD selection-blocking 401
 18.2.3.5 Requesting the CLIPBOARD selection-non-blocking 402
 18.2.4 Converting the Selection (Selection Owner) 403
 18.2.4.1 The default conversion procedure 404
 18.2.4.2 Sample selection owner with conversion procedure 404
 18.2.5 Handling the Response (Selection Requestor) 406
 18.2.5.1 Handling selection reply procedure errors 408
 18.2.6 If the Selection is Lost (Selection Owner) 410
 18.2.7 Cleanup - When the Selection Completes (Selection Owner) 410
18.3 How Selection Works (With a Selection Item) 411
 18.3.1 The Selection Item 412
18.4 How to Send Data Incrementally (Selection Owner) 415
 18.4.1 How to Handle Incremental Replies (Selection Requestor) 416
18.5 Requesting and Converting Multiple Targets 417
18.6 Additional Transfer Mechanisms (Selection Requestor) 418
18.7 Additional Transfer Mechanisms (Selection Owner) 418
18.8 Sample Selection Owner Program with a Selection Item 418
 18.8.0.1 The notify procedure 421
 18.8.0.2 The conversion procedure 422
 18.8.1 The Done Procedure 423
 18.8.2 The Lose Procedure 423
18.9 Sample Selection Requestor Program 424
 18.9.0.1 Sample reply procedure 427
 18.9.0.2 Sample error procedure 429
18.10 Selection Package Summary 430

Chapter 19 Drag and Drop 433

19.1 Drag and Drop Objects 435
19.2 Registering Drop-sites 436
 19.2.1 Adding and Deleting Regions 436
 19.2.2 Handling Events 437
 19.2.2.1 Preview events 438
 19.2.2.2 Event forwarding 438
 19.2.2.3 Handling drop and preview events 438
19.3 Sourcing the Drag 439
 19.3.1 Initiating the Drop Operation 440
 19.3.2 Interaction with the Selection Package 441
 19.3.3 Defining the Drag/Accept Cursor 441
 19.3.4 Timeout Value 442
19.4 Receiving a Drop 442
 19.4.0.1 The move operation 443
 19.4.0.2 The done procedure 443
19.5 Sample Program-Sourcing a Drag 444
19.6 Sample Program-Drop Site Item and Destination 450
19.7 Drag and Drop Package Summary 456

Chapter 20 The Notifier 459

20.1 Basic Concepts 459
 20.1.1 Mainline Input Handling 459
 20.1.2 Event-driven Input Handling 460
20.2 Functions of the Notifier 460
20.3 How the Notifier Works 461
 20.3.1 Restrictions 461
 20.3.1.1 System calls to avoid 462
20.4 What is a Notifier Client? 463
 20.4.1 Types of Interaction 463
20.5 Signal Handling 464
 20.5.1 Signals to Avoid 464
 20.5.2 A Replacement for signal() 465
 20.5.3 Timers 467
 20.5.4 Handling SIGTERM 470
 20.5.5 Handling SIGCHLD 471
 20.5.5.1 Reaping dead processes 472
20.6 Interaction with RPC 473
20.7 Client Events 474
 20.7.1 Receiving Client Events 475
 20.7.2 Posting Client Events 476
 20.7.2.1 Actual delivery time 477
 20.7.3 Posting with an Argument 477
 20.7.4 Posting Destroy Events 478
 20.7.5 Delivery Time of Destroy Events 479

20.8 Reading and Writing Through File Descriptors 479
 20.8.1 Reading Files 480
 20.8.2 Reading and Writing on Pipes 482
 20.8.3 Exception Occurred Events 487
 20.8.4 Getting an Event Handler 487
20.9 Interposition 488
 20.9.1 Uses of Interposition 489
 20.9.2 Interface to Interposition 489
 20.9.3 Registering an Interposer 489
 20.9.4 Invoking the Next Function 490
 20.9.5 Removing an Interposed Function 491
 20.9.6 An Interposition Example 491
 20.9.7 Interposing on Resize Events 493
 20.9.8 Modifying an Object’s Destruction 493
 20.9.8.1 Interposing a client destroy handler 495
 20.9.8.2 Enabling panel item interposition 497
20.10 Notifier Control 498
 20.10.1 Mass Destruction 499
 20.10.2 Implicit Dispatching 499
 20.10.3 Explicit Dispatching 501
20.11 Emulating a sleep() Call 502
20.12 Advanced Notifier Usage 503
 20.12.1 Prioritization 504
 20.12.1.1 Providing a prioritizer 504
 20.12.1.2 Dispatching events 505
 20.12.1.3 Getting the prioritizer 506
 20.12.2 Scheduling the Notifier 506
 20.12.2.1 Dispatching clients 507
 20.12.2.2 Getting the scheduler 507
20.13 Error Codes 507
20.14 Issues 509

Chapter 21 Color 513

21.1 XView Color Model 513
 21.1.0.1 What is a colormap segment? 514
 21.1.1 Colormap Segment Types 515
 21.1.1.1 Static colormap segments 515
 21.1.1.2 Dynamic colormap segments 515
21.2 Creating Colormap Segments 516
 21.2.0.1 Cms size 516
 21.2.1 Specifying Colors 517
 21.2.1.1 Specifying colors by name 517
 21.2.1.2 Specifying colors by RGB values 517
 21.2.2 Cms Name 519
21.3 Color and Pixel Values 519
 21.3.0.1 Logical vs. real indices 519

 21.3.1 Foreground and Background Colors 520
 21.3.1.1 Colors of control objects 521
21.4 The color_logo.c Program 521
21.5 The Control Colormap Segment 524
 21.5.1 Coloring Panel Items 525
21.6 Using xv_find() with Colormap Segments 527
21.7 Canvases and Colormaps 528
21.8 Multi-visual Support 528
 21.8.1 Using the Visual Attributes 529
21.9 Another Example 529
21.10 Cms Package Summary 534

Chapter 22 Internationalization 537

22.1 Locale Setting 538
 22.1.1 Locale Definition 538
 22.1.2 Enabling Internationalization 538
 22.1.2.1 Setting path of locale-specific files 539
 22.1.3 OpenWindows Localization Properties Sheet 539
 22.1.4 XView Locale Attributes 540
 22.1.5 Command-line Options for Specifying Locale 541
 22.1.5.1 XView locale resources 541
 22.1.5.2 ANSI-C/POSIX 542
 22.1.6 Limits and Restrictions 543
22.2 Localized Text Handling 543
 22.2.1 Localized Text Handling - Application Programmer Interface 544
 22.2.1.1 gettext() 544
 22.2.1.2 dgettext() 545
 22.2.1.3 textdomain() 545
 22.2.1.4 bindtextdomain() 546
 22.2.1.5 Examples 547
 22.2.1.6 XV_LOCALE_DIR 547
 22.2.2 Creating a Text Domain 547
 22.2.3 New and Enhanced XView Attributes for gettext() 549
22.3 Object Layout and Customization 550
 22.3.1 Implicit and Explicit 550
 22.3.2 Layout and Customization API 550
 22.3.2.1 XV_LOCALE_DIR 550
 22.3.2.2 XV_USE_DB 551
 22.3.2.3 XV_INSTANCE_NAME 551
 22.3.3 Command-line Options 552
22.4 Internationalization Attribute Summary 553

Chapter 23 Help Facilities 557

23.1 Using XV_HELP_DATA 558
23.2 HELP Key Binding 558
 23.2.1 Attaching Help Data 559
 23.2.2 More Help 560
 23.2.3 Text Help 561
 23.2.4 Displaying Help Manually 561
 23.2.5 Help File Installation 562
 23.2.5.1 HELPPATH usage with internationalization 563
 23.2.5.2 Setting the application name 563
23.3 Help Package Summary 564

Chapter 24 Error Recovery 567

24.1 XView Errors 567
24.2 Simple Error Handling 568
 24.2.0.1 Using xv_error_format() 569
24.3 X Error Handling 569
24.4 Advanced Error Handling 570
 24.4.0.1 Error types 570
 24.4.1 Calling xv_error() 571
 24.4.1.1 Error severity 572
 24.4.2 Revisiting the Error Handler 572

Chapter 25 XView Internals 579

25.1 Methods 580
 25.1.0.1 Static subclassing 580
 25.1.1 Order of Methods 581
25.2 Internal Attribute-value Lists 582
 25.2.1 Attribute Values 582
 25.2.2 Creating Attribute Lists 583
 25.2.2.1 Attribute lists within attribute lists 583
 25.2.3 Interpreting Attributes 584
 25.2.4 Checking for Bad Attributes 586
 25.2.4.1 Searching for specific attributes 586
 25.2.5 Consuming Attributes 587
25.3 Customizable Attributes 587
25.4 XView Packages 589
 25.4.1 The Xv_pkg Type 589
 25.4.2 Public and Private Data 590
25.5 The Logo Package 591
 25.5.1 Header Files 591
 25.5.1.1 The public header file 591
 25.5.1.2 The private header file 592

 25.5.2 The Implementation File 593
 25.5.3 The Package Declaration 594
 25.5.4 The Initialize Method 595
 25.5.4.1 The logo_redraw() function 598
 25.5.5 The Set Method 599
 25.5.6 The Get Method 601
 25.5.7 The Destroy Method 602
25.6 Example Program Listing 603
25.7 Compiling an Implementation File 604
25.8 The Bitmap Package 605
 25.8.1 The Bitmap Initialize Method 606
 25.8.2 The Bitmap Set Method 607
 25.8.3 The Bitmap Get Method 608
 25.8.4 Creating a Bitmap Instance 609
25.9 The Find Method 610
 25.9.0.1 To find or not to find 610
 25.9.1 Conceptual Implementation 611
 25.9.1.1 Scope of list availability 612
 25.9.2 Actual Implementation 612
25.10 The Image Package 612
 25.10.0.1 The public image header file 613
 25.10.0.2 The private image header file 613
 25.10.0.3 The image package declaration 614
 25.10.1 The Image Initialize Method 614
 25.10.2 The Image Set Method 615
 25.10.3 The Image Get Method 616
 25.10.4 The Image Destroy Method 616
 25.10.5 The Image Find Method 617
 25.10.6 The Image.c Program 618
25.11 The Wizzy Package-A Panel Item Extension 620
 25.11.1 The Public Wizzy Header File 620
 25.11.2 The Private Wizzy Header File 620
 25.11.3 The Wizzy Package Declaration 621
 25.11.4 The Implementation Files 621
 25.11.5 The Wizzy Initialize Method 622
 25.11.6 The Wizzy Set Method 624
 25.11.7 The Wizzy Get Method 625
 25.11.8 The Wizzy Destroy Method 626
 25.11.9 Panel Item Handler Procedures 626
 25.11.9.1 The handle event function 626
 25.11.9.2 The begin preview function 627
 25.11.9.3 The update preview function 627
 25.11.9.4 The cancel preview function 627
 25.11.9.5 The accept preview function 627
 25.11.9.6 The accept menu function 628
 25.11.9.7 The accept key function 628
 25.11.9.8 The clear function 628
 25.11.9.9 The paint function 628

 25.11.9.10 The resize function 629
 25.11.9.11 The remove function 629
 25.11.9.12 The restore function 630
 25.11.9.13 The layout function 630
 25.11.9.14 Accept keyboard focus function 630
 25.11.9.15 The yield keyboard focus function 631
 25.11.10 Panel Item Extension Attributes 631

Appendix A The Selection Service 635

A.1 The XView Selection Model 636
A.2 Using the Selection Service 637
A.3 Getting the Current Selection 638
 A.3.1 The Seln_request Structure 641
A.4 Using selection_query() 646
A.5 Selection Package Summary 652

Appendix B The notice_prompt Function 655

B.1 Creating and Displaying Notices 655
 B.1.1 Response Choices and Values 658
 B.1.2 Notice Triggers 659
B.2 Another Example 661
B.3 Notice Package Summary 664

Appendix C Mouseless Model Keyboard Mappings 667

C.1 Mouseless Model Resources 667
 C.1.1 SunView1 Mappings 668
 C.1.1.1 Keyboard core functions 668
 C.1.1.2 Local navigation commands 668
 C.1.1.3 Text editing commands 668
 C.1.2 Basic Mappings 669
 C.1.2.1 Local navigation commands 669
 C.1.2.2 Text editing commands 669
 C.1.3 Full Mouseless Mappings 670
 C.1.3.1 Keyboard core functions 670
 C.1.3.2 Global navigation commands 670
 C.1.3.3 Miscellaneous navigation commands 671
C.2 Mouseless Model Keyboard Semantic Actions 671
C.3 SunView1 Mappings for the Mouseless Model 672

Appendix D Version 3.2 and the File Chooser 677

D.1 Creating File Choosers 677
D.2 Using a File Chooser 680
D.3 Notification from a File Chooser 683
D.4 Controlling the File Chooser Display List 684
 D.4.1 Monitoring Directory Changes 685
 D.4.2 Filtering 685
 D.4.3 File Chooser Sorting 686
D.5 Modifying the Display List 686
 D.5.1 Dot Files 687
 D.5.2 Abbreviated View 687
D.6 File Chooser Customization 687
D.7 Customizing the File Chooser Dialog 688
 D.7.1 File Chooser Components 690
D.8 Version 3.2 Additions 691
 D.8.1 New Panel List Attributes for Version 3.2 691
 D.8.1.1 Adding new list entries 691
 D.8.1.2 Other panel list changes 694
D.9 Keyboard Menu Accelerators 695
 D.9.0.1 Frame package menu accelerator attributes 695
 D.9.0.2 The menu attributes for menu accelerators 696
 D.9.0.3 Resources 698
 D.9.0.4 Core set menu accelerators 698
 D.9.0.5 Events 699
D.10 File Chooser and Version 3.2 Additions Summary 700

Appendix E OPEN LOOK User-interface Compliance 705

E.1 Level 1 Features Not Supported in XView 3.0 705
 E.1.1 Keyboard and Mouse Customization 705
 E.1.2 Default Buttons in Pop Ups 706
 E.1.3 Help 706
 E.1.4 Window Background 707
 E.1.5 Notices 707
 E.1.6 Text Functions 707
 E.1.7 Control Items 707
 E.1.8 Property Windows 708
E.2 Level 2 Features Supported in XView 3.0 708
E.3 Level 2 Features Not Supported in XView 3.0 709

Appendix F Example Programs 713

F.1 item_move.c 713
F.2 scroll_cells2.c 719
F.3 menu_dir2.c 723

F.4 type_font.c 727
F.5 fonts.c 730
F.6 x_draw.c 734
F.7 The Logo.c Module 738
F.8 The Bitmap.c Module 741
F.9 The panel_dnd.c Program 745

Index 751

Figures

Page
1-1 An X application and a traditional text terminal 3
1-2 Selecting a menu item with the pointer 5
1-3 Applications can run on any system across the network 7
1-4 The software architecture of X applications 7
1-5 The Notifier exists between the server and the XView application 10
1-6 A sample OPEN LOOK workspace 13
2-1 XView class hierarchy 18
2-2 Object creation is top down; attribute setting is bottom up 24
2-3 Fully-featured base frame (includes optional elements) 26
2-4 Sample unpinned command frame 27
2-5 Sample help window 28
2-6 Sample notice 28
2-7 A window with multiple views 29
2-8 A control area above a subwindow 30
2-9 A control area to the right of a pane 30
2-10 A control area in a command window 31
2-11 Example of a pop-up menu with a pullright submenu 32
2-12 Vertical scrollbar components 33
2-13 Flow of control in a conventional program 35
2-14 Flow of control in a Notifier-based program 36
2-15 Flow of input events in an XView application 37
3-1 A frame containing a Quit button 45
4-1 Frame package class hierarchy 59
4-2 Three base frames 59
4-3 Simple base frame created without any FRAME attributes specified 63
4-4 A sample header label display in a frame 64
4-5 Headers and footers on base frame 65
4-6 Default icon and application icon 66
4-7 Base frame with a command frame 68
5-1 Canvas class hierarchy 85
5-2 A canvas subwindow with multiple views 86
5-3 Canvases, views, and paint windows 87
5-4 Window before and after an Expose event 92
5-5 Window with two views before and after an Expose event 93
5-6 A window created with canvas_event.c 110
6-1 A sample function keys window 140
6-2 Sample function keys window with a MORE key 141
6-3 Sample virtual keyboard binding 142
7-1 Panel package class hierarchy 153
7-2 Panel item class hierarchy 153
7-3 Controls in an OPEN LOOK GUI implementation 154
7-4 Layout of panel items 160
7-5 Panel item value rectangle and label rectangle 161

7-6 Visual feedback for button controls 166
7-7 Sample menu button (unselected and selected) 169
7-8 Sample abbreviated menu button 170
7-9 Sample panel with exclusive choices 172
7-10 Sample panel with nonexclusive choices 173
7-11 Sample panel with abbreviated choice (unselected and selected) 174
7-12 Sample panel with checkbox 175
7-13 Sample panel with scrolling list 177
7-14 Output of program list_glyphs.c 180
7-15 Sample panel with message item 186
7-16 Sample panel with message item-High Pressure 186
7-17 Sample panel with slider item 188
7-18 Sample panel with text item 189
7-19 Panel multiline text item 194
7-20 Sample panel with drop target items 195
7-21 Panel with gray background 204
7-22 Output of item_move.c in use 208
8-1 A sample text subwindow 215
8-2 Textsw class hierarchy 216
8-3 A caret marks the insertion point 217
8-4 A text selection 231
9-1 TTY package class hierarchy 241
9-2 Output of sample_tty.c 243
9-3 Output of textsw_to_ttysw.c 245
10-1 An OPEN LOOK scrollbar 253
10-2 Relationship between a scrollbar and the object it scrolls 255
10-3 Scrollbar class hierarchy 256
10-4 Splitting a text subwindow twice 257
10-5 Model for scroll_cells.c 258
11-1 The Window menu 274
11-2 Menu buttons each with a pulldown menu 274
11-3 Pushpins in a menu and a submenu 274
11-4 Exclusive settings on a menu 276
11-5 Nonexclusive settings on a submenu 277
11-6 Menu class hierarchy 278
11-7 Output of simple_menu.c when the menu is popped up 282
11-8 Output of xv_menu.c 296
12-1 Notice class hierarchy 307
12-2 A sample notice window 308
12-3 Output of simple_notice.c while the notice is up 311
13-1 Cursor class hierarchy 327
14-1 Three bordered default icons 339
14-2 Icon package class hierarchy 339
15-1 Nonvisual objects class hierarchy 349
16-1 Font package class hierarchy 368
16-2 The Courier font in different styles and sizes 371
18-1 Dragging the pointer to select text 393
18-2 Selection owner class hierarchy 398

18-3 Selection requestor class hierarchy 399
18-4 Selection item class hierarchy 413
19-1 Dragging a file onto an application 433
19-2 Loading a file by dropping 434
19-3 DRAGDROP class hierarchy 435
19-4 DROP_SITE_ITEM class hierarchy 435
20-1 Output of animate.c 471
20-2 Flow of control in interposition 488
21-1 CMS package class hierarchy 513
22-1 OPEN LOOK localization menu 539
23-1 A sample Help window 557
25-1 Calling order for init, set, get, destroy, and find 581
25-2 The bits in an attribute 582
25-3 Output of logo.c 604
A-1 Byte stream after selection_ask() returns the current text selection 641
A-2 How selection_query() is used 647
B-1 Output of simple_notice.c while the notice is up 657
D-1 File chooser Save dialog 678
D-2 File chooser Open dialog 680

Examples

Page
3-1 The quit.c program 44
3-2 xv_create() creates XView objects 47
4-1 The simple_frame.c program 62
4-2 Creating a base frame after calling xv_init() 62
4-3 Setting separate values for a frame header 65
4-4 Creating a footer 65
4-5 Creating a subframe 68
4-6 Using several frame attributes 70
4-7 The subframe.c program 72
4-8 Changing a frame’s color 75
5-1 The line.c program 96
5-2 Repainting objects within a damaged region 97
5-3 The canvas_event.c program 107
6-1 The canvas_input.c program 133
7-1 The quit.c program 155
7-2 The btn_menu.c program 168
7-3 The list_glyphs.c program 179
7-4 The message_item.c program 185
7-5 The multiline.c program 194
7-6 The client_data.c program 200
7-7 The panel_repaint.c program 202
8-1 Client notify procedure for a text subwindow 233
9-1 The sample_tty.c program 242
9-2 The textsw_to_ttysw.c program 244
9-3 The ttycurses.c program 247
10-1 The scroll_cells.c program 259
10-2 The scrollto.c program 264
10-3 Scrollbar compute scroll procedure example 267
10-4 Scrollbar normalize procedure example 269
11-1 The simple_menu.c program 280
11-2 How to create a menu containing a pushpin 292
11-3 The xv_menu.c program 294
11-4 Creating individual menu items 299
11-5 The menu_dir.c program 300
12-1 The simple_notice.c program 310
12-2 Creating a standard notice 314
12-3 A notice using a callback 315
12-4 Creating a screen-locking notice 317
12-5 The trigger_notice.c program 318
12-6 The notice.c program 320
13-1 The simple_cursor.c program 328
13-2 The hot_spot.c program 331
13-3 Using drag and drop text cursors 334

14-1 The icon_demo.c program 340
14-2 Color cursors 342
14-3 Redefining an icon’s size to include its label 344
15-1 Getting a pointer for a particular frame object (screen.c) 351
15-2 Display a base frame on two screens 352
15-3 The svrimage.c program 358
15-4 The fullscreen.c program 360
16-1 The simple_font.c program 369
17-1 The default_text.c program 384
17-2 The default_size.c program 388
18-1 Requesting the CLIPBOARD selection--blocking 401
18-2 Non-blocking selection request 402
18-3 Selection owner program 405
18-4 Sample reply procedure - SelectionReplyProc 407
18-5 Sample selection reply error handler 409
18-6 Sample done procedure - SelectionDoneProc 411
18-7 An incremental conversion procedure 415
18-8 Incremental reply - IncrReply.c 416
18-9 Sample program - sel_hold.c 419
18-10 The notify procedure - NotifyProc() 421
18-11 Sample conversion procedure - SelectionConvertProc 422
18-12 Sample selection requestor program - sel_req.c 424
18-13 Sample requestor notify procedure 426
18-14 Sample make request notify procedure 427
18-15 Selection reply procedure 427
18-16 Sample error procedure - SelectionError.c 429
19-1 Sourcing a drag 444
19-2 A drop-site item example 450
20-1 The animate.c program 468
20-2 Demonstrating a wait3 handler 472
20-3 The notify_input.c program 481
20-4 The ntfy_pipe.c program 483
20-5 Transferring control through the Notifier 492
20-6 The interpose.c program 495
20-7 The ntfy_do_dis.c program 500
20-8 Emulating a sleep 502
21-1 The color_logo.c program 521
21-2 The color_panel.c program 525
21-3 The color_objs.c program 529
22-1 Using XV_INSTANCE_NAME 551
24-1 Example error parsing function 573
25-1 The logo.c program 603
25-2 The bitmap.c program 609
25-3 The image.c program 619
A-1 The simple_seln.c program 639
A-2 The text_seln.c program 642
A-3 The long_seln.c program 647
B-1 The simple_notice.c program 656

B-2 The trigger_notice.c program 659
B-3 The notice.c program 661
D-1 Portion of file_chooser.c program 680
D-2 An extention item program 689
D-3 Program that adds values to a panel list 691
F-1 The item_move.c program 713
F-2 The scroll_cells2.c program 719
F-3 The menu_dir2.c program 723
F-4 The type_font.c program 728
F-5 The fonts.c program 730
F-6 The x_draw.c program 734
F-7 The Logo.c module 738
F-8 The Bitmap.c module 741
F-9 The panel_dnd.c program 745

Tables

Page
2-1 XView Objects, Owners, Packages, and Data Types 20
2-2 Generic Functions 21
3-1 Reserved Prefixes 43
3-2 Default Ownership of Objects 48
4-1 Frame Attributes 81
5-1 Canvas Attributes 110
5-2 Openwin Attributes 111
6-1 Event Structure Fields 125
6-2 Mouseless Keyboard Commands with Action ACTION_NULL_EVENT 144
6-3 SunView1 Commands That Conflict with the Mouseless Model 144
6-4 Mouseless Actions Handled by the Window Manager 146
7-1 Text Item Notification Level 191
7-2 Return Values for Text Item Notify Procedures 192
7-3 Default Event to Action Mapping 206
7-4 Panel Procedures and Macros 209
7-5 Panel Package Attributes 209
7-6 New and Changed Panel Package Attributes (Version 3.2) 211
8-1 Range of Values for Status Variables 218
8-2 Textsw_action Attributes 234
8-3 Text Subwindow Procedures and Macros 236
8-4 Text Subwindow Attributes 237
9-1 TTY Subwindow Procedures 250
9-2 TTY Subwindow Attributes 250
10-1 Scrollbar Procedures 270
10-2 Scrollbar Attributes 270
11-1 Menu Procedures and Macros 304
11-2 Menu Attributes 304
12-1 Notice Attributes (used with NOTICE_LOCK_SCREEN = FALSE) 314
12-2 Screen-Locking Notice Attributes (for NOTICE_LOCK_SCREEN = TRUE) 317
12-3 Notice Attributes 324
13-1 Cursor Procedure 335
13-2 Cursor Attributes 335
14-1 Icon Attributes 345
15-1 Screen Attributes 362
15-2 Server and Server Image Attributes 362
15-3 Fullscreen Attributes 362
16-1 Default Font Sizes 374
16-2 Font Attributes 377
17-1 Resources and Default Values Understood by XView 382
18-1 Selecting Text 394
18-2 Error Codes 408
18-3 Selection Procedures 430
18-4 Selection Attributes 430

19-1 Drag and Drop Semantic Events 437
19-2 dnd_send_drop() Return Values 440
19-3 DROP_SITE_ITEM and DRAGDROP Procedures and Macros 456
19-4 DROP_SITE_ITEM and DRAGDROP Attributes 456
20-1 Notifier Error Codes 508
21-1 Cms Attributes 534
22-1 XView Locale Attributes 540
22-2 Locale Command-line Options 541
22-3 XView Locale Resources 542
22-4 POSIX Categories 542
22-5 Internationalization Attributes 553
23-1 Modified Help Keystrokes 559
23-2 Help Attributes and Procedures 564
25-1 Panel Item Extension Attributes 631
A-1 Selecting Text 636
A-2 Selection Service Procedures 652
A-3 Selection Service Attributes 652
B-1 Notice Attributes, Procedures, and Macros 664
D-1 File Chooser Procedures and Macros 700
D-2 File Chooser Attributes 700
D-3 History and History Menu Attributes 700
D-4 File List Attributes 701
D-5 Path Attributes 701
D-6 Version 3.2 Panel List Attributes 701
D-7 Version 3.2 Menu Accelerator Attributes 701

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

Preface

XView (X Window-System-based Visual/Integrated Environment for Workstations) is a
user-interface toolkit to support interactive, graphics-based applications running under the X
Window System. This toolkit, developed by Sun Microsystems, Inc., is derived from earlier
toolkits for the SunView windowing system. With over 2000 SunView applications in the
workstation market, there are many programmers already familiar with the SunView applica-
tion programmer’s interface (API).

XView has many advantages for programmers developing new applications in X, such as a
mature and proven API based on the development experience of SunView programmers. It
features an object-oriented style interface that is straightforward and simple to learn.

Like any X toolkit, XView provides a set of pre-built, user-interface objects such as can-
vases, scrollbars, menus, and control panels. The appearance and functionality of these
objects follow the OPEN LOOK Graphical User Interface (GUI) specification. Jointly devel-
oped by Sun Microsystems and AT&T as the graphical user interface standard for System V
Release 4, OPEN LOOK provides users with a simple, consistent, and efficient interface for
performing tasks within an application.

XView is based upon Xlib, the lowest level of the X Window System available to the pro-
grammer. While developing XView user interfaces does not require Xlib programming expe-
rience, there are good reasons for learning more about Xlib, especially if your application
renders graphics.

Please Read This Section!

This manual provides a basic introduction to developing applications using the XView
Toolkit. You do not need any knowledge of SunView, and prior experience with the X Win-
dow System is helpful, but also not required. Nonetheless, like any complex system, a pro-
grammer needs to know a lot to program effectively in XView.

For each functional area in XView, there are chapters that present the basic concepts and sug-
gest some common ways to implement and use a particular function. Also addressed are
some snags to watch out for when implementing certain combinations of functions. Care was
taken to keep the content of the chapters brief and to the point. Simple and straightforward
functions are not discussed in depth.

Preface

Preface xxxiii

The XView Reference Manual is a companion to this manual. It contains complete descrip-
tions for all of the XView attributes and procedures, as well as additional reference material.

The XView Programming Manual has been updated to cover XView Version 3, and includes
several appendices providing compatibility information for previous XView versions.
XView Version 3 contains many features not available in previous versions, including: a
notice package, a selection package and a drag and drop package. The new Version 3 pack-
ages are presented in the corresponding chapters in this manual.

If you can’t figure out how to accomplish a task because it is not documented here, don’t
despair—that does not mean it cannot be done. Some features in XView are not addressed in
this book—especially the more advanced ones. You are encouraged to experiment with the
toolkit and discover new ways of using XView.

How to Use This Manual

The chapters in the book are designed to be read sequentially. However, that is not a strong
requirement. Reading ahead probably won’t affect your understanding of the material,
although later chapters might reference earlier material.

The following paragraphs briefly describe the contents of this book:

Chapter 1, XView and the X Window System, provides a conceptual overview of the X
Window System, the role of the XView Toolkit, and the OPEN LOOK graphi-
cal user interface. It provides a general introduction to basic X terminology,
but it does not go into great detail about X.

Chapter 2, The XView Programmer’s Model, provides an overview of XView as an
object-oriented programming system. The programmer creates and modifies
objects that implement the OPEN LOOK interface. This chapter also dis-
cusses windows as objects that receive events. It introduces callback func-
tions as the method of registering application-specific event handlers.

Chapter 3, Creating XView Applications, begins from the application developer’s point
of view and explains the basic elements of an XView application. It
describes what is involved in initializing XView and creating XView objects
such as frames and subwindows.

Chapter 4, Frames, explains how to create window frames. There are two basic types of
frames: base frames and command frames. Each application has at least one
base frame that manages subwindows, panels, and other objects. It presents
the routines used to create and manage frames.

Chapter 5, Canvases and Openwin, presents canvases as the most basic type of subwin-
dow or window pane. It presents the canvas model, which permits a drawing
surface larger than what is visible in the canvas subwindow.

Chapter 6, Handling Input, explains how events are handled by X, the Notifier, and
XView objects.

xxxiv XView Programming Manual

Chapter 7, Panels, explains a variety of OPEN LOOK controls that are implemented as
items on a control panel. It demonstrates how to create and use buttons,
check boxes, choices, lists, messages, toggles, text items , and sliders. A set
of panel attributes controls the behavior in common with all panel items.
There are also item-specific attributes.

Chapter 8, Text Subwindows, describes how to create a text subwindow and how to use
its text editing features.

Chapter 9, TTY Subwindows, describes the tty subwindow that performs terminal emula-
tion functions.

Chapter 10, Scrollbars, covers the creation and use of scrollbars. A scrollbar is a window
attached to another window, such as a canvas or text subwindow or a panel.
The scrollbar package only manages the scrollbar; the application must
gauge the impact of scrolling on its windows.

Chapter 11, Menus, explains how to implement various sorts of pop-up menus.

Chapter 12, Notices, explains how pop-up windows serve as notices or dialog boxes.

Chapter 13, Cursors, shows various OPEN LOOK pointers and demonstrates their use.

Chapter 14, Icons, describes the use of bitmap images as application icons. When an
application is closed, or iconified, the application is represented on the screen
as an icon.

Chapter 15, Nonvisual Objects, describes objects that do not contain windows: Server,
Screen, and Fullscreen.

Chapter 16, Fonts, describes how to load and use fonts from the X server.

Chapter 17, Resources, describes the implications of X resources for an XView applica-
tion. Resources allow individual users to control and customize their envi-
ronment.

Chapter 18, Selections, discusses how XView applications communicate with other appli-
cations, including window managers and applications that are not OPEN
LOOK-compliant. It shows how XView provides for selections according to
the Inter-Client Communication Conventions Manual.

Chapter 19, Drag and Drop, discusses how XView applications implement dragging and
dropping, where data is transferred by selecting an item and moving it to
another workspace location. This is one method XView provides for applica-
tions to communicate with other applications.

Chapter 20, The Notifier, describes the Notifier and advanced event handling. It
describes the relationship of the Notifier and X to the host operating system.

Chapter 21, Color, discusses issues concerning color in windows and other XView
objects.

Chapter 22, Internationalization , discusses the internationalization features of XView.

Chapter 23, Help Facilities, discusses the help mechanism available in XView packages.

Preface

Preface xxxv

Chapter 24, Error Recovery, discusses error handling in XView packages.

Chapter 25, XView Internals, discusses the internals to the XView packages and intro-
duces the concepts involved in writing your own packages.

Appendix A, The Selection Service, describes the selection service which provides compa-
tibility with older versions of XView that did not have a SELECTION Pack-
age.

Appendix B, Notices, describes the notice procedure notice_prompt() which pro-
vides compatibility with older versions of XView that did not have a NOTICE
Package.

Appendix C, Mouseless Model Keyboard Mappings, presents the mouseless model key-
board mappings.

Appendix D, XView Version 3.2 Additions, describes the changes and additions for XView
Version 3.2, including the File Chooser documentation.

Appendix E, OPEN LOOK User Interface Compliance, discusses XView’s compliance with
the OPEN LOOK GUI Functional Specification .

Appendix F, Example Programs, presents supplementary programs.

Assumptions

Readers should be proficient in the C programming language, although examples are pro-
vided for infrequently used features of the language that are necessary or useful when pro-
gramming with X. In addition, general familiarity with the principles of raster graphics is
helpful. Finally, if you do not understand how to use Xlib routines to render graphics, then
writing useful programs might be difficult, although you should be able to build OPEN LOOK
user interfaces easily.

Font Conventions Used in This Manual

Italic is used for:

• UNIX pathnames, filenames, program names, user command names, and options
for user commands.

• New terms where they are introduced.

Typewriter Font is used for:

• Anything that would be typed verbatim into code, such as examples of source
code and text on the screen.

xxxvi XView Programming Manual

• XView packages.*

• The contents of include files, such as structure types, structure members, sym-
bols (defined constants and bit flags), and macros.

• XView and Xlib functions.

• Names of subroutines of the example programs.

Italic Typewriter Font is used for:

• Arguments to XView functions, since they could be typed in code as shown but
are arbitrary.

Helvetica Italics are used for:

• Titles of examples, figures, and tables.

Boldface is used for:

• Chapter and section headings.

Related Documents

The C Programming Language by B. W. Kernighan and D. M. Ritchie

The following documents are included on the X11 source tape and are also available from
Sun Microsystems, Inc. and Addison-Wesley Publishing Company, Inc.:

OPEN LOOK Graphical User Interface Functional Specification

OPEN LOOK Graphical User Interface Style Guide

The following books in the X Window System series from O’Reilly and Associates, Inc. are
currently available:

Volume Zero — X Protocol Reference Manual
Volume One — Xlib Programming Manual
Volume Two — Xlib Reference Manual
Volume Three — X Window System User’s Guide
Volume Four — X Toolkit Intrinsics Programming Manual
Volume Five — X Toolkit Intrinsics Reference Manual
Volume Six — Motif Programming Manual
Quick Reference — The X Window System in a Nutshell

When referring to all members of a particular package, such as CANVAS, the notation CANVAS_ will be used.
This should not be interpreted as a C-language pointer construct.

Preface

Preface xxxvii

Requests for Comments

Please write to tell us about any flaws you find in this manual or how you think it could be
improved, to help us provide you with the best documentation possible.

Our U.S. mail address, phone numbers, and e-mail addresses are as follows:

O’Reilly and Associates, Inc.
103 Morris Street, Suite A
Sebastopol, CA 95472
in USA and Canada 1-800-998-9938,
international +1 707-829-0515

UUCP: uunet!ora!xview Internet: xview@ora.com

Obtaining the Example Programs

The example programs in this book are available electronically in a number of ways: by ftp,
ftpmail, bitftp, and uucp. The cheapest, fastest, and easiest ways are listed first. If you read
from the top down, the first one that works for you is probably the best. Use ftp if you are
directly on the Internet. Use ftpmail if you are not on the Internet but can send and receive
electronic mail to internet sites (this includes CompuServe users). Use BITFTP if you send
electronic mail via BITNET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is
shown, with what you should type in boldface.

% ftp ftp.uu.net
Connected to ftp.uu.net.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.uu.net:eileen): anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: eileen@ora.com (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /published/oreilly/xbook/xview
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.
ftp> get xview.ora.examples.tar.Z
200 PORT command successful.
150 Opening BINARY mode data connection for xview.ora.examples.tar.Z.
226 Transfer complete.
ftp> quit
221 Goodbye.
%

xxxviii XView Programming Manual

If the file is a compressed tar archive, extract the files from the archive by typing:

% zcat xview.ora.examples.tar.Z | tar xvf –

System V systems require the following tar command instead:

% zcat xview.ora.examples.tar.Z | tar xovf –

If zcat is not available on your system, use separate uncompress and tar commands.

FTPMAIL

FTPMAIL is a mail server available to anyone who can send and receive electronic mail to
and from Internet sites. This includes most workstations that have an email connection to the
outside world, and CompuServe users. You do not need to be directly on the Internet. Here’s
how to do it.

You send mail to ftpmail@decwrl.dec.com . In the message body, give the name of the anon-
ymous ftp host and the ftp commands you want to run. The server will run anonymous ftp for
you and mail the files back to you. To get a complete help file, send a message with no sub-
ject and the single word “help” in the body. The following is an example mail session that
should get you the examples. This command sends you a listing of the files in the selected
directory, and the requested examples file. The listing is useful in case there’s a later version
of the examples you’re interested in.

% mail ftpmail@decwrl.dec.com
Subject:
reply jerry@ora.com (where you want files mailed)
connect ftp.uu.net
chdir /published/oreilly/xbook/xview
dir
binary
uuencode (or btoa if you have it)
get xview.ora.examples.tar.Z
quit
%

A signature at the end of the message is acceptable as long as it appears after “quit.”

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the
mail headers and concatenate them into one file, and then uudecode or btoa it. Once you’ve
got the desired file, follow the directions under FTP to extract the files from the archive.

VMS, DOS, and Mac versions of uudecode, btoa, uncompress, and tar are available. The
VMS versions are on gatekeeper.dec.com in /archive/pub/VMS .

Preface

Preface xxxix

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting
files, and it sends you back the files by electronic mail. BITFTP currently serves only users
who send it mail from nodes that are directly on BITNET, EARN, or NetNorth. BITFTP is a
public service of Princeton University. Here’s how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a complete
help file, send HELP as the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA
USER anonymous
PASS your Internet email address (not your bitnet address)
CD /published/oreilly/xbook/xview
DIR
BINARY
GET xview.ora.examples.tar.Z
QUIT

Once you’ve got the desired file, follow the directions under FTP to extract the files from the
archive. Since you are probably not on a UNIX system, you may need to get versions of
uudecode, uncompress, btoa, and tar for your system. VMS, DOS, and Mac versions are
available. The VMS versions are on gatekeeper.dec.com in /archive/pub/VMS .

Questions about BITFTP can be directed to Melinda Varian, MAINT@PUCC on BITNET.

UUCP

UUCP is standard on virtually all UNIX systems, and is available for IBM-compatible PCs and
Apple Macintoshes. The examples are available by UUCP via modem from UUNET;
UUNET’s connect-time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your
company has an account with UUNET, you will have a system with a direct UUCP connection
to UUNET. Find that system, and type:

uucp uunet\!˜published/oreilly/xbook/xview/xview.ora.examples.tar.Z yourhost\!˜/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file
should appear some time later (up to a day or more) in the directory /usr/spool/uucppub-
lic/yourname. If you don’t have an account but would like one so that you can get electronic
mail, then contact UUNET at 703-204-8000.

If you don’t have a UUNET account, you can set up a UUCP connection to UUNET using the
phone number 1-900-468-7727. As of this writing, the cost is 50 cents per minute. The
charges will appear on your next telephone bill. The login name is “uucp” with no password.
For example, an L.sys/Systems entry might look like:

uunet Any ACU 19200 1-900-468-7727 login:--login: uucp

xl XView Programming Manual

Your entry may vary depending on your UUCP configuration. If you have a PEP-capable
modem, make sure s50=255s111=30 is set before calling.

It’s a good idea to get the file /published/oreilly/xbook/ls-lR.Z as a short test file containing
the filenames and sizes of all the files in the directory.

Once you’ve got the desired file, follow the directions under FTP to extract the files from the
archive.

Acknowledgments

I always wanted to do this—but for my first record album! :-)

This book was influenced by an amalgamation of several sources: The SunView Program-
mer’s Manual for design and structure of the chapters, the people on the XView development
team at Sun Microsystems for technical detail and the latest up-to-the-minute changes, and
my personal experience in programming for narrative content. Chapter 1, XView and the X
Window System, is based on Chapter 1 of Volume Four, X Toolkit Intrinsics Programming
Manual, by Adrian Nye.

This book was created using SoftQuad’s sqtroff, a PostScript laser printer and a Sun 3/60
color workstation.

Special thanks to everyone at O’Reilly & Associates for their diligent efforts. In particular,
Dale Dougherty, Daniel Gilly, Laurel Katz, Lenny Muellner, Chris Reilley, Ruth Terry, and
Sue Willing. Many others pitched in for the final push to complete this book.

At Sun Microsystems, I’d like to thank Richard Probst who helped make this entire project
possible, Tom Jacobs, for keeping everything in order and reading all that e-mail, Tony
Hillman, and the rest of the reviewing squad.

Also, Bart Schaefer, for taking care of Mush while I’ve been too busy. Mike Ilnicki for con-
tinuing to play racquetball with me. Penguin’s frozen yogurt for nutrition. David Letterman
for being on at the perfect time: dinner.

. . . and most of all, I’d like to thank Tim O’Reilly—the only one who could talk me, a
cast-in-stone programmer, into trying my hand at technical writing. Thanks for the confi-
dence in me.

Preface

Preface xli

Acknowledgments for XView Version 3 Update

Thanks to John Stone for all his help in preparing this manual. John dealt with formatting
issues and helped produce several review drafts. Special thanks also go to Darci Chapman
for her assistance. Jon Lee edited several chapters of the draft.

Dale Dougherty kept the big picture in sight and managed this project. Thanks to Chris Reil-
ley who did the illustrations. Lenny Muellner, Sue Willing, Michael Sierra, and Eileen Kra-
mer put the final manual together.

The XView developers at Sun Microsystems spent many hours reviewing the new chapters as
well as the draft of the complete, updated manual. In particular, Chris Kasso added exten-
sively to the new Version 3 material and answered numerous questions. Thanks to Isa
Hashim who made many additions and corrections. Mitch Jerome was very helpful and pro-
vided a large amount of new material. Darren Austin, Sri Atreya, Shirley Joe, and Shanmugh
Natarajan reviewed several drafts and helped in numerous ways. Stan Raichlen helped to test
the code and update the figures. Thanks also go to Tony Hillman, Bhaskar Prabhala, and
Greg Kimura. Carole Coffland, Dave Borders, Jeremy Uejio, Dipti Ranganathan, Richard
Goldstein, and Martha Venegas read the draft of this manual and made helpful suggestions.
Despite all the reviews, any errors that remain are my own.

xlii XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

1
XView and the X Window System

The XView Toolkit allows a programmer to build the interface to an application without hav-
ing to learn many of the details of the underlying windowing system. However, it is valuable
to have some understanding of X before attempting to build applications under XView. This
chapter introduces many of the most important concepts on which the X Window System is
based and describes the computing environment for X applications. It also describes the role
of the XView Toolkit in the X Window System.

For the most part, this chapter assumes that you are new to programming the X Window Sys-
tem. This chapter describes the basics of the X Window System—further details will be
described as necessary later in the manual. However, this book does not repeat the detailed
description of Xlib programming found in Volume One, Xlib Programming Manual. If you
already have some experience programming the X Window System, you might wish to begin
at Chapter 2, The XView Programmer’s Model.

1.1 The X Window System

X controls a bit-mapped display in which every pixel (dot on the screen) is individually con-
trollable. This allows drawing of pictures in addition to text. Until recently, individual con-
trol of screen pixels was widely available only on personal computers (PCs) and high-priced
technical workstations, while more general-purpose machines were limited to output on text-
only terminals. X brings the same world of graphic output to both PCs and more powerful
machines. Figure 1-1 shows an X application in comparison with a traditional text terminal.

Like other windowing systems, X divides the screen into multiple input and output areas
called windows, each of which can act as an independent virtual terminal. Using a terminal
emulator, windows can run ordinary text-based applications. However, windows can also run
applications designed to take advantage of the graphic power of the bitmapped display.

X takes user input from a pointer, which is usually a mouse but could just as well be a track-
ball or tablet. The pointer allows the user to point at certain graphics on the screen and use
the buttons on the mouse to control a program without using the keyboard. This method of
using programs is often easier to learn than traditional keyboard control, because it is more
intuitive. Figure 1-2 shows a typical pointer being used to select a menu item.

XView
 and the

X W
indow

 System

XView and the X Window System 3

Dear Mr. Sekino:
.LP
This letter details the book distribution agreement we
reached in our
discussions on June 9, 1989 and in subsequent
communications
The terms are as follows:
.Ls N
.Li
/fBExclusivity/fP.
Toppan shall be the esclusive distributor
in Japan for all titles published by O'Reilly and
Associates, Inc. (ORA).
ORA will refer all sales inquiries
from Janpanese customers to Toppan. The only exption is
that we will
@
"sekinol" 108 lines, 3726 characters
Grouch-0 8%!g

text terminal

X window system

total 49

 1 sbin/ 3 etc/ 1 preserve/

 1 5include 1 hosts/ 1 pub/

 1 5lib/ 2 include/ 1 sccs

 1 Xlir3@ 1 kvm 1 share/

 1 adm@ 4 lib/ 1 spool@

 6 bin/ 1 local/ 1 sqps

 1 boot/ 8 lost+found/ 1 stand/

 1 demo/ 1 man@ 1 sys@

 1 diag/ 1 mdc/ 1 tmp@

 1 dict 1 old/ 2 ucb/

colorful-96%

xterm

Clear Area

Invert Area

Set Area

Copy Area

Overlay Area

Move Area

Line

Filled Circle

Circle

Flood Fill

Set Hot Spot

Quit

Write Output

Clear All

Invert All

Set All

Figure 1-1. An X application and a traditional text terminal

Workspace

Utilities

Properties...

Exit...

cmdtool(CONSOLE)-/bin/csh

total 49

 1 sbin/ 3 etc/ 1 preserve/

 1 5include 1 hosts/ 1 pub/

 1 5lib/ 2 include/ 1 sccs

 1 Xlir3@ 1 kvm 1 share/

 1 adm@ 4 lib/ 1 spool@

 6 bin/ 1 local/ 1 sqps

 1 boot/ 8 lost+found/ 1 stand/

 1 demo/ 1 man@ 1 sys@

 1 diag/ 1 mdc/ 1 tmp@

 1 dict 1 old/ 2 ucb/

colorful-96%

colorful:/usr

colorful-19%

Figure 1-2. Selecting a menu item with the pointer

4 XView Programming Manual

Of course, X also handles keyboard input. The pointer is used to direct the input focus of the
keyboard (often called the keyboard focus) from window to window with only one applica-
tion at a time able to receive keyboard input.

In X, as in many other window systems, each application need not (and in fact usually does
not) consist of only a single window. Any part of an application can have its own separate
window, simplifying the management of input and output within the application code. Such
child windows are only visible within the confines of their parent window. Each window has
its own coordinate system where the origin is the upper-left corner of the window inside its
border. In basic X, windows are rectangular and oriented along the same axes as the edges of
the display. The application or the user can change the dimensions of windows.

Many of the above characteristics are also true of several other window systems. What has
made X a standard is that X is based on a network protocol—a predefined set of requests and
replies—instead of system-specific procedure calls. The X Protocol can be implemented for
different computer architectures and operating systems, making X device-independent.
Another advantage of a network-based windowing system is that programs can run on one
architecture while displaying on another. Because of this unique design, the X Window Sys-
tem can make a network of different computers cooperate. For example, a computationally-
intensive application might run on a supercomputer but take input from and display output on
a workstation across a network.

1.1.1 The Server and Client

To allow programs to be run on one machine and display on another, X was designed as a net-
work protocol between two processes, one of which is an application program called a client,
and the other, the server. The server is a resource server, controlling a user’s resources (such
as the display hardware, keyboard, and pointer) and making these resources available to user
applications. In other words, the X server isolates the device-specific code from the applica-
tion.

The server performs the following tasks:

• Allows access to the display by multiple clients. The server can deny access from clients
running on certain machines.

• Interprets network messages from clients and acts on them. These messages are known as
requests. Some requests command the server to do two-dimensional drawing or move
windows, while others ask the server for information.

• Passes user input to clients sending network messages known as events, which represent
key or button presses, pointer motion, and so forth. Events are generated asynchronously,
and events from different devices might be intermingled. The server must de-multiplex
the event stream and pass the appropriate events to each client.

• Maintains complex data structures, including windows and fonts, so that the server can
perform its tasks efficiently. Clients refer to these abstractions by ID numbers. Server-
maintained abstractions reduce the amount of data that has to be maintained by each cli-
ent and the amount of data that has to be transferred over the network.

XView
 and the

X W
indow

 System

XView and the X Window System 5

In X, the term display is often used as a synonym for server, as is the combined term display
server. However, the terms display and screen are not synonymous. A screen is the actual
piece of hardware on which the graphics are drawn. Both color and monochrome displays
are supported. A server might control more than one screen. For example, one server might
control a color screen and a monochrome screen for a user who wants to be able to debug an
application on both types of screens without leaving his or her seat.

The communication path between a client and the server is called a connection . Several cli-
ents may be connected to a single server. Clients may run on the same machine as the server
if that machine supports multitasking, or clients may run on other machines in the network.
In either case, the X Protocol is used by the client to send requests to draw graphics or to
query the server for information; it is used by the server to send user input or replies to
requests back to the client. All communication from the client to the server and from the
server to the client takes place using the X Protocol.*

It is common for a user to have programs running on several different hosts in the network,
all invoked from and displaying their windows on a single screen (see Figure 1-3). Clients
running remotely can be started from the remote machine or from the local machine using the
network utilities rlogin or rsh.

Personal Computer

Supercomputer

Large Minicomputer

Display Server

Local
Client

Figure 1-3. Applications can run on any system across the network

*The X Protocol is independent of the networking hardware and runs on top of any network that provides point-to-
point packet communication. TCP/IP and DECnet are the only networks currently supported. For more information
about the X Protocol, see Volume Zero, The X Protocol Reference Manual.

6 XView Programming Manual

This use of the network is known as distributed processing. The most important application
of this concept is to provide graphic output for powerful systems that cannot have built-in
graphics capabilities. However, distributed processing can also help solve the problem of
unbalanced system loads. When one host machine is overloaded, the users running clients on
that machine can arrange for programs to run on other hosts.

1.2 The Software Hierarchy

There are many different ways to write X applications because X is not restricted to a single
language, operating system, or user interface. The only requirement of an X application is
that it generate and receive X Protocol messages.

Figure 1-4 shows the layering of software in an X application. Xlib is the lowest-level C lan-
guage interface to X. The main task of Xlib is to translate C data structures and procedures
into X Protocol events; it then sends them off and receives protocol packets in return that are
unpacked into C data structures. Xlib provides full access to the capabilities of the X Proto-
col but does little to make programming easier. It handles the interface between an applica-
tion and the network and includes some optimizations that encourage efficient network
usage. The list of functions that Xlib performs is so extensive that if the programmer were
responsible for handling all these pieces directly, application programs would be too large
and prone to performance degradation and potential bugginess. For this reason, toolkits are
used to modularize the more common functions that handle the user interface portion of an
application.

XView is one of a half-dozen or so toolkits available for the X Window System. If you are
familiar with other toolkits, you will recognize that the XView Toolkit is equivalent to the Xt
Intrinsics and a widget set. Like the Intrinsics, XView is built upon Xlib. It is an object-
oriented toolkit that provides reusable, configurable user interface components, equivalent to
widgets.*

Toolkits handle many things for the programmer. They provide a framework for combining
pre-built user interface components with application-specific code. For example, if the appli-
cation needs to prompt the user for a filename, a toolkit should provide a component (a com-
mand frame) that is functionally capable of displaying the query to the user and providing the
user’s response to the application.

Any user interface component also needs to manage the interpretation of events delivered
from the window system. When events are generated, the toolkit decides whether or not to
propagate the event to the application or to use it for its own internal purposes. To continue
the example, when the user types a filename in the command frame, events are generated in
which the interface must decide whether that object should interpret the input or whether it
should be sent to the application. A toolkit thus comprises a mechanism to dispatch events
and a set of prebuilt interface objects that define the look and feel of an application.

*Widget sets are sometimes loosely referred to as toolkits. However, a toolkit comprises the functions of the Xt In-
trinsics layer and one widget set (e.g., the Athena widget set). There are several different widget sets from various
vendors that are designed to work with Xt. For more information on Xt Intrinsics-based toolkits, see Volume Four, X
Toolkit Intrinsics Programming Manual.

XView
 and the

X W
indow

 System

XView and the X Window System 7

Mouse KeyboardDisplay

cmdtool(CONSOLE)-/bin/csh

total 49
 1 sbin/ 3 etc/ 1 preserve/

 1 5include 1 hosts/ 1 pub/
 1 5lib/ 2 include/ 1 sccs

 1 Xlir3@ 1 kvm 1 share/
 1 adm@ 4 lib/ 1 spool@

 6 bin/ 1 local/ 1 sqps
 1 boot/ 8 lost+found/ 1 stand/

 1 demo/ 1 man@ 1 sys@
 1 diag/ 1 mdc/ 1 tmp@

 1 dict 1 old/ 2 ucb/

colorful-96%

Workspace

Utilities

Properties...

Exit...

colorful:/usr

colorful-19%

Network

Application

XView Toolkit

Xlib

Device

X11 Server Window Manager

Figure 1-4. The software architecture of X applications

Note that using a toolkit does not preclude calling Xlib directly to accomplish certain tasks
such as drawing. In XView, graphics rendering is done most efficiently by using Xlib draw-
ing routines, for instance.

1.3 Extensions to X

Another thing to know about X is that it is extensible . The code includes a defined mecha-
nism for incorporating extensions, so that vendors are not forced to modify the existing sys-
tem in incompatible ways when adding features. An extension requires an additional piece
of software on the server side and an additional library at the same level as Xlib on the client
side. After an initial query to see whether the server portion of the extension software is
installed, these extensions are used just like Xlib routines and perform at the same level.

Among the extensions currently being developed are support for 2D spline curves, for 3D
graphics, and for Display PostScript. These extensions can be used in toolkit applications
just like Xlib can.

8 XView Programming Manual

1.4 The Window Manager

Because multiple applications can be running simultaneously, rules must exist for arbitrating
conflicting demands for input. For example, does keyboard input automatically go to which-
ever window the pointer is in, or must the user explicitly select a window for keyboard input?

Unlike most window systems, X itself makes no rules about this kind of thing. Instead, there
is a special client called the window manager that manages the positions and sizes of the
main windows of applications on a server’s display. The window manager is just another cli-
ent, but by convention, it is given special responsibility to mediate competing demands for
the physical resources of a display including screen space, color resources, and the keyboard.
The window manager allows the user to move windows around on the screen, resize them,
and usually start new applications. The window manager also defines much of the visible
behavior of the window system, such as whether windows are allowed to overlap or are tiled
(side by side), and whether the keyboard focus simply follows the pointer from window to
window or whether the user must click a pointer button in a window to change the keyboard
focus (click-to-type).

Applications are required to give the window manager certain information that helps the win-
dow manager mediate competing demands for screen space or other resources. For example,
an application specifies its preferred size and size increments. These are known as window
manager hints because the window manager is not required to honor them. The XView
Toolkit provides an easy way for applications to set the window manager hints.

The conventions for interaction with the window manager and with other clients have been
standardized by the X Consortium as of July 1989 in a manual called the Inter-Client Com-
munications Conventions Manual (ICCCM, for short). The ICCCM provides basic policy
intentionally omitted from X itself, such as the rules for transferring data between applica-
tions (selections), transfer of keyboard focus, layout schemes, colormap installation, and so
on. As long as applications and window managers follow the conventions set out in the
ICCCM, applications created with different toolkits will be able to coexist and work together
on the same server. Toolkit applications should be immune to the effects of the change from
earlier conventions.

1.5 Handling Events

The window that X provides is the connection between the XView application and the X
server. The reason X windows are important to XView is that these windows are the input
targets for the user’s focus. They are the actual objects that get events from the user and pass
the events through to the XView world.

An X event is a data structure sent by the server that describes something that just happened
that is of interest to the application. The sources of events are the user’s input, the window
system, the operating system, and the application programs. For example, the user’s pressing
a key on the keyboard or clicking a mouse button generates an event, and a window’s being
moved on the screen also generates events if it changes the visible portions of other applica-
tions. It is the server’s job to distribute events to the various windows on the screen.

XView
 and the

X W
indow

 System

XView and the X Window System 9

In XView, between the server and the application, there is an event dispatch mechanism
called the Notifier, as shown in Figure 1-5.

XView

Client

Server

NetworkPipe

 XView
 Notifier

Translate
Events

Distribute
Events

Application
Event

Procedure

Application
Event

Procedure

Application
Event

Procedure

Signal

Figure 1-5. The Notifier exists between the server and the XView application

After the set-up phase of the application, where you create XView objects such as buttons or
scrollbars and determine how they will interact with your application code, you have several
choices for input distribution. The simplest method is to hand off control of your application
to XView. From then on, the XView Notifier automatically distributes events to the objects
created by the application. These objects process many events internally so that your appli-
cation does not need to get involved.

The key point is that your application is only told about events for which it specifically
requested to be notified. By responding to these events, the application can perform its tasks.
For example, if the user types the letter A in a window, X will pass the event to XView, which

10 XView Programming Manual

in turn can pass it to the application. An application’s event handler can interpret this event
and display the letter typed in the window. Finally, control returns to the top level so the next
event can be read. This is a typical cycle of events that happens for each event generated by
the user.

If the application created a scrollbar, then it would track certain events, such as when the
scroll button is pressed. XView actually sends a request to the X server to create the X win-
dow that will become part of the scrollbar object. In the application’s request, it can ask to
be notified about or to ignore certain user events in the X window created.

The window system dictates which window gets an event. If the window currently has the
keyboard focus and that window does not want to process the event, it has the option of
throwing away the event or dropping it to the window below it. This is usually the parent of
the window. For instance, if a panel item gets a keyboard press (the user typed an A) and if
the panel item does not want to deal with the event, then the panel item might be configured
so that the event is passed to the item’s parent: the panel itself.

The Notifier does not just do input distribution; it also allows selection of different input
sources. In addition to handling window system events, your application can also handle a
number of interrupts that might be generated by the operating system. Your application can
respond to signals, input on a file descriptor and interval timers. You could also pass events
between clients in the same process, interpose on a Notifier client to change its behavior, and
receive notification on the death of a child process which you have spawned. The use of
some of these input sources requires you to call the Notifier directly. The Notifier is covered
again in the next two chapters as well as in Chapter 20, The Notifier.

1.6 Development of the XView Toolkit

Over the years, Sun Microsystems, Inc. has developed several toolkits, each more well-
defined, more functional, and aesthetically superior than the last. SunView 1 was perhaps the
first well-accepted user interface toolkit Sun provided. It had all the basic elements neces-
sary to make a functional user interface —including a well-defined API (application pro-
grammer’s interface). It introduced the attribute-value interface, which we’ll examine in
more detail in Chapter 2, The XView Programmer’s Model. It has very few procedure calls.
For instance, you use a single function to create all user interface objects. You have the
option of using default values, in which case the object is created with only a few lines of
code, or of setting the values of specific attributes as required. These attributes can be set at
the time the object is created, or later on, by using a different function.

The SunView 1 Toolkit was based on SunWindows, a kernel-based window system. It
required that a single computer control both the application and the user’s display and key-
board. The X Window System represents a new generation of window systems. It is server-
based, which means that the client application can run on a different system than the server
that controls the display.

Today there are several thousand SunView applications, and one of the aims of XView is to
make it easy to bring those applications to the X Window System marketplace. In addition,

XView
 and the

X W
indow

 System

XView and the X Window System 11

Sun has made the source code to the XView Toolkit freely available. It will be shipped as
part of the standard MIT X distribution as well as with UNIX System V Release 4.

XView provides a set of windows that include:

• Canvases on which programs can draw.

• Text subwindows with built-in editing capabilities.

• Panels containing items such as buttons, choice items, and sliders.

• TTY subwindows that emulate character-based terminals.

These windows are arranged as subwindows within frames, which are themselves windows.
Frames can be transitory or permanent. Transient interactions with the user can also take
place in menus which can pop up anywhere on the screen. We will look more at all XView
objects when we cover the XView programming model in the next chapter.

1.7 Versions of the XView Toolkit

Since XView was first released, many applications have been developed for XView and
many others have been ported from SunView, as well as from other software platforms.
XView development has continued at Sun; new packages have been written, extensions have
been added, and the existing packages have been improved based on user’s needs. This man-
ual is written for the latest release of XView, Version 3, and it includes descriptions for all
the important improvements available in this XView release.

1.8 OPEN LOOK Graphical User Interface

An important feature of the XView Toolkit is that it implements the OPEN LOOK Graphical
User Interface (GUI). The OPEN LOOK GUI aims to provide users with a simple, consistent,
and efficient interface. An example of an OPEN LOOK workspace is shown in Figure 1-6.
OPEN LOOK is supported by Sun and AT&T as the graphical user interface standard for Sys-
tem V Release 4. Users and developers benefit from a standard because it ensures consistent
behavior across a number of diverse applications. Programmers can concentrate on the
design of the application without having to “invent” a user interface.

A well-defined user interface should be generalized enough so that it can be implemented on
any operating system, windowing system, or graphics display. Because OPEN LOOK is not
bound by any of these constraints, XView was built based entirely on specifications that
could be mapped easily into the X Window System.

12 XView Programming Manual

Figure 1-6. A sample OPEN LOOK workspace

The visual design of OPEN LOOK is restrained. The design of each component in the user
interface is simple and uncomplicated. The interface is based on a few simple concepts that
result in a system that is easy to learn initially. And an XView application is relatively
simple and easy to implement because many of the default values of interface components
are adequate for most applications.

We will attempt to summarize the OPEN LOOK interface where appropriate in this document.
However, the definitive document on OPEN LOOK for application programmers is the
OPEN LOOK Graphical User Interface Style Guide. This book provides guidelines for devel-
opers on using the elements of the OPEN LOOK GUI in applications. Where appropriate, we
will show examples, such as Figure 1-6, which are taken from the OPEN LOOK GUI Specifica-
tion Guide.

XView
 and the

X W
indow

 System

XView and the X Window System 13

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

2
The XView Programmer’s Model

XView is intended to simplify application development under the X Window System by pro-
viding the programmer with a set of predefined user interface components. These compo-
nents implement the “look and feel” of the OPEN LOOK Graphical User Interface, developed
by Sun Microsystems, Inc. and AT&T.

This chapter presents a model of XView for the programmer. It is important to understand
this model before you begin writing XView applications. However, you might wish to skim
the concepts presented in this chapter and proceed to Chapter 3, Creating XView Applica-
tions, to examine sample programs.

2.1 Object-oriented Programming

To the programmer, XView is an object-oriented toolkit. XView objects can be considered
building blocks from which the user interface of the application is assembled. Each piece
can be considered an object from a particular package. Each package provides a list of pro-
perties from which you can choose to configure the object. By selecting objects from the
available packages, you can build the user interface for an application.

XView is based on several of the fundamental principles of object-oriented programming:

• Objects are represented in a class hierarchy.

• Objects are opaque data types.

• Objects have attributes which can be set via message passing functions.

• Objects may have callback procedures that are triggered by events.

We will look at how these concepts are implemented in XView in the sections that follow.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 17

2.1.1 Object Class Hierarchy

XView defines classes of objects in a tree hierarchy. For example, frame is a subclass of the
more general class window, which in turn is a subclass of drawable. Drawable, like user
interface object classes, is a subclass of the Generic Object class. Figure 2-1 shows the
XView class hierarchy and the relationships between the classes. Each class has identifying
features that make it unique from other classes or packages. In XView, a class is often called
a package, meaning a set of related functional elements. However, there are XView pack-
ages that are not members of the object class hierarchy, such as the Notifier package.

Server

Cursor

Generic
Object

Screen

(Drawable)

Fullscreen

Font

Menu

Selection
Item

(Selection)

Drop Site

Notice

Frame

Openwin

Tty

Icon

Scrollbar

DRAGDROP

Window

Server
Image

Selection
Owner

Selection
Requestor

Canvas

Textsw

Cms

Generic
Panel Item

Your
Panel Item

Panel

Figure 2-1. XView class hierarchy

Some objects are visual and others are not. Examples of visual objects include windows,
scrollbars, frames, panels, and panel items. Nonvisual objects are objects which have no
appearance, per se, but they have information which aids in the display of visual objects.
Examples of nonvisual objects include the server, screen, and font objects. The screen, for
example, provides information such as the type of color it can display or the default fore-
ground and background colors that objects might inherit. The display can provide informa-
tion about what fonts are available for objects that display text.

18 XView Programming Manual

All objects, both visual and nonvisual, are a part of this object classing system. The system is
extensible, so you can create new classes that might or might not be based on existing
classes.

XView uses static subclassing and chained inheritance as part of its object-oriented model.
All objects of a particular class inherit the properties of the parent class (also known as a
superclass). The Generic Object XV_OBJECT contains certain basic properties that all objects
share. For example, the same object can appear in many places on the screen to optimize
storage. To keep a record of this, the Generic Object maintains a reference count of its
instances. Since all objects have an owner, the parent of the object is stored in a field of the
generic part of the object. As the needs of an object get more specific to a particular look or
functionality, lower-level classes define properties to implement it.

Each class contains properties that are shared among all instances of that object. For
example, panels are a part of the PANEL package, which has properties that describe, among
other things, its layout (horizontal or vertical) or the spacing between items (buttons) in the
panel. All panels share these properties, even though the state of the properties might differ
for each instance of the object.

As mentioned earlier, XView uses subclassing so that each package can inherit the properties
of its superclass. The PANEL package is subclassed from the WINDOW package, which has pro-
perties specific to all windows, such as window dimensions, location on the screen, border
thickness, depth, visual, and colormap information. The WINDOW package is subclassed from
the root object XV_OBJECT, as are all objects, and the panel can access generic information
such as the size and position of itself.

2.1.2 Object Handles

When you create an object, the XView function returns a handle for the object. Later, when
you wish to manipulate the object or inquire about its state, you pass its handle to the appro-
priate function. This reliance on object handles is a way of information-hiding . The handles
are opaque in the sense that you cannot see through them to the actual data structure which
represents the object.

Each object type has a corresponding type of handle. Since C does not have an opaque
type, all the opaque data types mentioned above are typedef’d to the XView type
Xv_opaque or Xv_object.

In addition to the opaque data types, there are several typedefs that refer not to pointers
but to structures: Event, Rect, and Rectlist. Generally pointers to these structures are
passed to XView functions, so they are declared as Event *, Rect *, etc. The reason that
the asterisk (*) is not included in the typedef is that the structures are publicly available.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 19

Table 2-1 lists each XView object, its owner, the package that defines it, and its data type.

Table 2-1. XView Objects, Owners, Packages, and Data Types

Name Owner Package Data Type

canvas frame CANVAS Canvas

canvas view window or screen CANVAS_VIEW Canvas_view

cms window CMS Cms

cursor window or screen CURSOR Xv_Cursor

drag drop window DRAGDROP Dnd

drop site item window DROP_SITE_ITEM Drop_site_item

font root window FONT Xv_Font

frame frame or root window FRAME Frame

base frame frame or root window FRAME_BASE

command frame frame or root window FRAME_CMD

property frame frame or root window FRAME_PROPS

fullscreen root window FULLSCREEN Fullscreen

icon window or screen ICON Icon

menu server MENU Menu

command menu null MENU_COMMAND_MENU Menu

choice menu null MENU_CHOICE_MENU Menu

pullright menu menu item MENU Menu

toggle menu null MENU_TOGGLE_MENU Menu

menu item menu MENUITEM Menu_item

openwin frame OPENWIN Openwin

notice window NOTICE Xv_Notice

panel frame PANEL Panel

panel button panel PANEL_BUTTON Panel_button_item

panel choice panel PANEL_CHOICE Panel_choice_item

panel drop site panel PANEL_DROP_SITE Panel_drop_site_item

panel item panel PANEL_ITEM Panel_item

panel list panel PANEL_LIST Panel_list_item

panel message panel PANEL_MESSAGE Panel_message_item

panel multi-line text panel PANEL_MULTILINE_TEXT Panel_multiline_

text_item

panel numeric text panel PANEL_NUMERIC_TEXT Panel_numeric_

text_item

panel slider panel PANEL_SLIDER Panel_slider_item

panel text panel PANEL_TEXT Panel_text_item

screen null SCREEN Screen

scrollbar panel or canvas SCROLLBAR Scrollbar

selection window SELECTION Selection

selection owner window SELECTION Selection_owner

selection requestor window SELECTION Selection_requestor

selection item selection owner SELECTION_ITEM Selection_item

server null SERVER Server

server image screen SERVER_IMAGE Server_image

20 XView Programming Manual

Table 2-1. XView Objects, Owners, Packages, and Data Types (continued)

Name Owner Package Data Type

text subwindow frame TEXTSW Textsw

tty frame TTY Tty

window frame WINDOW Xv_Window

2.2 Attribute-based Functions

A model such as that used by XView, which is based on complex and flexible objects, pres-
ents the problem of how the client is to manipulate the objects. The basic idea behind the
XView interface is to provide a small number of functions, which take as arguments a large
set of attributes. For a given call to create or modify an object, only a subset of all applicable
attributes will be of interest.

2.2.1 Creating and Manipulating Objects

There is a common set of functions that allows the programmer to manipulate any object by
referencing the object handle. The functions are listed in Table 2-2.

Table 2-2. Generic Functions

Function Role

xv_init() Establishes the connection to the server, initializes the Notifier and the
Defaults/Resource-Manager database, loads the Server Resource
Manager database, and parses any generic toolkit command line
options.

xv_create() Creates an object.
xv_destroy() Destroys an object.
xv_find() Finds an object that meets certain criteria; or if the object doesn’t exist,

creates it.
xv_get() Gets the value of an attribute.
xv_set() Sets the value of an attribute.

Using these six routines, objects can be created and manipulated from all packages available
in XView. When the programmer wants to create an instance of an object from a certain
package, the routine xv_create() is used. For example:

Panel panel;
panel = xv_create(panel_parent, PANEL, NULL);

Here, an instance of a panel has been created from the PANEL package. All its attributes are
set to the panel’s default properties because no object-specific attributes have been specified.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 21

A handle to the new panel object is returned and stored in the variable panel. This handle
is not a pointer and does not contain any useful information about the object itself.

The next section goes into detail about the use of xv_set() and xv_get(). Chapter 3,
Creating XView Applications, discusses the use of xv_init(), xv_destroy(), and
xv_find().

2.2.2 Changing Object Attributes

The programmer uses the handle returned from the xv_create() function as a parameter
to the functions xv_get() and xv_set() to get and set attributes of the object.

panel = xv_create(...)
xv_set(panel, PANEL_LAYOUT, PANEL_HORIZONTAL, NULL);

Here, the handle to the panel (panel) is used to change a PANEL package attribute,
PANEL_LAYOUT, whose value is set to PANEL_HORIZONTAL. The attribute and value form an
attribute-value pair. The functions xv_create(), xv_destroy(), xv_find(),
xv_set(), and, to some extent, xv_get() use attribute-value pairs. The functions can
have any number of pairs associated with the function call. These variable argument lists are
always terminated by a NULL pointer as the last argument in the list. Note that NULL, not the
constant 0 (zero), should be used as the terminating argument.

The effect of this function call is to change the layout of the panel from the previous value,
whatever it might be, to horizontal.

2.2.3 Types of Attributes

Attributes can be divided into three categories. Those that apply to all XView objects are
termed generic attributes. Attributes that are supported by many, but not all objects, are
termed common attributes. Attributes that are associated with a particular package or class of
objects are called specific attributes.

XView uses naming conventions to simplify the identification of the task of an attribute.
Those attributes that apply to a specific package have their name prefixed by the package
name. The attributes have prefixes that indicate the type of object they apply to, i.e., CAN-
VAS_*, CURSOR_*, FRAME_*, ICON_*, MENU_*, PANEL_*, SCROLLBAR_*, TEXTSW_*,
TTY_*, etc.

Common and generic attributes apply to several different object types and are prefixed by
XV_. For example, the generic attribute XV_HEIGHT applies to all objects since all objects
must have a height. In contrast, attributes that apply only to windows are prefixed by WIN_.
Attributes such as WIN_HEIGHT and WIN_WIDTH apply to all windows regardless of whether
they happen to be panels or canvases.

The value part of an attribute-value pair can differ from attribute to attribute. The reason for
this is that the attribute may describe a wide range of values. If the attribute describes the
height or width of an object, the value associated with the attribute will be an integer.

22 XView Programming Manual

However, sometimes the attribute requires a variable-length list of values—this too must be
NULL-terminated.

Look at the following code fragment that specifies an attribute-value list at the creation of a
panel item:

Panel_item panel_item;
panel_item = xv_create(panel, PANEL_CHOICE_STACK,

XV_WIDTH, 50,
XV_HEIGHT, 25,
PANEL_LABEL_X, 100,
PANEL_LABEL_Y, 100,
PANEL_LABEL_STRING, "Open File"
PANEL_CHOICE_STRINGS, "Append to file",

"Overwrite contents",
NULL,

NULL);

All the attributes except PANEL_CHOICE_STRINGS take a single value. The
PANEL_CHOICE_STRINGS attribute takes a list of strings, and that list is NULL-terminated.
The last NULL terminates the list of attribute-value pairs passed to the xv_create() func-
tion.

Don’t worry for now what each of these attributes does. Simply notice the mixture of generic
attributes (XV_WIDTH and XV_HEIGHT) and class-specific attributes (all the PANEL_* attri-
butes). Because all packages are subclasses of the XV_OBJECT package, the XV_* attributes
can be used with all xv_create() calls.

2.3 Internal Attribute-Value Lists

For a discussion of the way that XView handles attribute-value lists internally, see Chapter
25, XView Internals. The subject is important for those who wish to write XView extensions
or utilize the advanced features of the error package, but programmers interested in general
XView programming usage can skip that chapter.

2.4 Types of Objects

The following section describes on a conceptual level the different types of objects that
XView offers. In many cases, figures taken from the OPEN LOOK GUI Specification Guide
are used to show the appearance of the object. Details about the objects themselves, how to
create them, their properties, their default values, and so forth are discussed in later chapters
that are specific to those object packages. A list of the objects that can be created include:

• Generic Objects

• Windows

• Frames

• Openwins

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 23

• Canvases

• Text Windows

• Menus

• Scrollbars

2.4.1 Generic Objects

The Generic Object is the root object of the class hierarchy. One never creates an instance of
a Generic Object because, by itself, it has no function. Figure 2-2 shows the path taken when
an object is created.

Server

Cursor

Generic
Object

Screen

(Draw
able)

Fullscreen

Font

M
enu

Selection
Item

(Selection)

Drop Site

Notice

Fram
e

Openw
in

Tty

Icon

Scrollbar

DRAGDROP

W
indow

Server
Im

age

Selection
Ow

ner

Selection
Requestor

Canvas

Textsw

Cm
s

Generic
Panel Item

Your
Panel Item

Panel

Server

Cursor

Generic
Object

Screen

(Draw
able)

Fullscreen

Font

M
enu

Selection
Item

(Selection)

Drop Site

Notice

Fram
e

Openw
in

Tty

Icon

Scrollbar

DRAGDROP

W
indow

Server
Im

age

Selection
Ow

ner

Selection
Requestor

Canvas

Textsw

Cm
s

Generic
Panel Item

Your
Panel Item

Panel

Attribute
Setting

Object
Creation

Figure 2-2. Object creation is top down; attribute setting is bottom up

First, the Generic Object is created; then the subclass of that object is created all the way
down until the object class of the type of object desired is created. At that point, a complete
instance of the object has been created with all the default properties of the classes set. If
there were any attribute-value pairs specified in the xv_create() call, those attributes are

24 XView Programming Manual

set in reverse order—the attributes specific to the class of the instance of the object are set
first, followed by its parent’s class attributes and so on, until the generic attributes are set.

Consider the code below, which creates a panel:

extern Xv_Font font;
Panel panel;

panel = xv_create(frame, PANEL,
XV_Y, 5,
WIN_HEIGHT, 50,
PANEL_FONT, font,
NULL);

When the panel is created, the first thing created is a generic object. Next a window instance
is created, followed by a panel object. Each is created with the default properties of the
object specific to each class.

Here, the reverse traversal takes place, and the attributes specified in the xv_create() call
for each class are set to override the default properties inherited from the class. First, the
panel package attributes are set. The panel’s default font is controlled by the attribute
PANEL_FONT; its assigned value, font, must be previously initialized. Then the window
package attributes are set. The panel’s window width is controlled by the attribute
WIN_WIDTH which is not explicitly set, so its assigned value defaults to
WIN_EXTEND_TO_EDGE. This value indicates that the width of the window should always be
the width of its parent. The height of the window, however, is specified. So the window
package sets the height to be 50 pixels.

Finally, the generic attributes are set. The panel’s x and y location, indicating where it should
be placed within its parent, is controlled by setting the XV_X and XV_Y attributes. The
example sets the y position only; the x position is not set because the window package is told
to extend the width of the panel to the edges of its parent. The parent in this case is the
object frame (which is presumed to be from the FRAME package).

2.4.2 Window Objects

Many XView objects contain X windows in order to display themselves and receive events.
Examples include frames, tty windows, scrollbars, and icons.

The XView window class, like the Generic Object class, is a hidden class: a window object
is never explicitly created. Rather, an object that is a subclass of the window class is created.
This includes most visual objects with the exception of panel items.

Nonvisual objects are so named because they do not contain, or are not a subclass of, win-
dows. Fonts, for example, are displayed in windows, or in a memory image or somewhere
that contains a bitmap, but fonts do not contain or require windows to be used.

Some attributes of windows include depth (XV_DEPTH), the border width around their perim-
eter (WIN_BORDER_WIDTH) as well as foreground and background colors.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 25

2.4.3 Frames and Subframes

There are two kinds of frames:

• Base Frames

• Pop-up Frames

With one exception, all frames are free-floating windows that contain subwindows that are
bound by the frame and tiled (they do not overlap one another). Base frames reside on the
root window and are not constrained by any other window, though all frames can overlap one
another. The base frame is also known as the application’s frame. (More than one base
frame may be associated with an application.) Subframes are frames whose owner is a
frame; they are controlled by the base frames of the application. For example, extraneous
dialog boxes (subframes) will go away if the main application’s base frame is iconified
(closed). Figure 2-3 shows an example of a fully-featured base frame from the OPEN LOOK
GUI Specification Guide.

Figure 2-3. Fully-featured base frame (includes optional elements)

Chapter 4, Frames, goes into more detail about the elements of a frame and how to set attri-
butes and override default values. It should be noted that many features of the frame are
attributes of the window manager. Figure 2-3 assumes an OPEN LOOK-compliant window
manager; if another window manager is used, base frames might not look the same. XView

26 XView Programming Manual

defines attributes that give hints to the window manager to provide such features as title bar
information, resize corners, and so on. If a non-OPEN LOOK window manager is used, there
is no guarantee that these attributes will have any effect.

Pop-up frames are typically used to perform one or more transient functions. They are not
intended to stay up after the set of functions has been completed, although they might remain
up if the user or the application so chooses. This functionality can be handled by a pushpin at
the upper-left corner of the frame. There are different kinds of pop-up frames:

Command Frames give operands and set parameters needed for a command. This is
implemented as a subframe that contains a default panel.

Help Frames display help text for the object under the pointer. This is implemented
as a text subwindow within a subframe.

Notices are special pop-up windows that are used to confirm requests, to dis-
play messages and conditions that must be brought to the user’s atten-
tion and handled immediately. These require immediate attention and
can suspend the application by disallowing the focus from leaving the
Notice.

Figure 2-4 shows a sample unpinned command frame from the OPEN LOOK GUI Specifica-
tion Guide.

Figure 2-4. Sample unpinned command frame

The user may select the option, and the frame will be dismissed (be undisplayed). The push-
pin at the upper-left corner is out of its hole. If the pushpin were in, the command frame
would remain visible even after the user selects an action to take. Figure 2-5 shows a sample
pinned help frame from the OPEN LOOK GUI Specification Guide.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 27

Figure 2-5. Sample help window

Figure 2-6 shows a sample notice from the OPEN LOOK GUI Specification Guide.

Figure 2-6. Sample notice

The user can do nothing but choose either Save or Cancel. Choosing either one will cause
the notice to be dismissed immediately.

28 XView Programming Manual

2.4.4 Subwindows

Subwindows differ from frames in several basic ways. They never exist independently; they
are always owned and maintained by a frame or another window, and they may not them-
selves own frames. While frames can be moved freely around the screen, subwindows are
constrained to fit within the borders of the frame to which they belong. Also, in contrast to
frames, subwindows are tiled—they may not overlap each other within their frame. Within
these constraints (which are enforced by a run-time boundary manager), subwindows may be
moved and resized by either a program or a user.

Canvas subwindows and text subwindows are subclassed from the OPENWIN package, a hid-
den class which implements the notion of splittable views described by OPEN LOOK. Figure
2-7 shows an example of one canvas object providing separate views into one graphic image.
Each view into the object has scrollbars attached. The scrollbars provide the ability to scroll
independently from all the other views attached to the subwindow and to split the views
again.

Figure 2-7. A window with multiple views

All the views, however, are still a part of the same OPENWIN object. Using the scrollbars, the
user can split or join different views.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 29

2.4.4.1 Canvas subwindows

The canvas is the most basic type of subwindow. It provides a drawing surface—a place in
which the result of Xlib graphics calls can be displayed. A canvas object can be configured
to permit the application to draw on an area larger than the size of the visible window. The
entire region representing the drawing surface is a window called the paint window. The vis-
ible portion of the paint window is the view window. It is the view window that appears in
the canvas subwindow. In the previous figure, the paint window contains a picture of an
astronaut. Multiple view windows each show a particular region of the paint canvas. The
view windows are independent of each other. See Chapter 5, Canvases and Openwin, for a
full discussion and illustration of the Canvas model.

2.4.4.2 Text subwindows

Another basic window type is a text subwindow. It provides basic text editing capabilities
using the OPEN LOOK text editing model.

2.4.4.3 Panels

A panel (or control area) is an unbordered region of a window where controls such as but-
tons and settings are displayed. The panel also controls the arrangement of its controls in a
horizontal or vertical fashion. The panel shown in Figure 2-8 presents the typical positioning
of the control area—the top of a base frame with a canvas subwindow under it.

Figure 2-8. A control area above a subwindow

The panel shown in Figure 2-9 presents a control area that is to the right of a canvas subwin-
dow.

30 XView Programming Manual

Figure 2-9. A control area to the right of a pane

Control areas within panes usually contain varied combinations of the following controls:

• Buttons

• Check boxes

• Drop Target Items

• Exclusive and nonexclusive choice lists

• Gauges

• Sliders

• Text and numeric fields

A command frame (subframe) contains only a panel and no other subwindows. Figure 2-10
shows a control area in a command frame. It contains text fields, choice lists, and buttons.
See Chapter 7, Panels, for a discussion of panel items and the PANEL package.

2.4.4.4 Menus

Menus are subclassed from the Generic Object. A menu by itself is a windowless object.
Only when the menu is activated by the user is it bound to a window. This implementation
avoids creating multiple X11 windows (one for each menu) since not all the menus will be
displayed at once. XView has three types of menus:

1. Pop-up menus that are displayed when the user presses the menu button in a window.

2. Pullright menus that are displayed as a menu to the right of a menu.

3. Pulldown menus that are displayed below a menu button on a panel.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 31

Figure 2-10. A control area in a command window

Figure 2-11 shows an example of a pop-up menu on the left; on the right, a pullright submenu
is displayed.

Pushpins can be used in some menus, allowing them to be pinned so that the menu remains
on the screen for repeated use.

Figure 2-11. Example of a pop-up menu with a pullright submenu

32 XView Programming Manual

2.4.4.5 Scrollbars

Scrollbars implement the OPEN LOOK metaphor of an elevator on a cable. These components
are shown in Figure 2-12.

Figure 2-12. Vertical scrollbar components

A scrollbar is an object that can exist independently or attach itself to various types of
subwindows. The scrollbar is subclassed from the WINDOW class since it is a visual object.
However, because its functionality is very tightly bound to other objects, the scrollbar is
sometimes considered to be a property of those objects. OPENWIN subclasses (canvas and
text-based packages) require scrollbars to provide splittable views, and scrollbars can be
created automatically by such objects. Typically, it is your responsibility to pass a hint to the
object that it should create the scrollbar using the appropriate attribute-value pair. Neverthe-
less, scrollbars can be manually attached or detached to OPENWIN objects, or they can be
created independently of these objects for other purposes entirely.

The SCROLLBAR package manages only the scrollbar window. It does not control the window
to which it is attached. When a scrolling action results from the user clicking on a portion of
the scrollbar, the window to which the scrollbar is attached must modify its data (a view in
most cases). It is not the scrollbar’s responsibility to notify the window it is attached to. The
scrollbar informs the object interested in its scrolling by use of callback routines that the
owner of the scrollbar must install.

Scrollbars can be oriented vertically or horizontally, but some packages might not allow a
particular scrollbar orientation. Text subwindows, for example, contain vertical scrollbars by
default but do not permit horizontal scrollbars.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 33

2.4.4.6 Icons

An icon is a small image representing the application when the application’s frame is in a
closed, or iconified, state. The ICON package is very small. It is subclassed from the WINDOW
package because it is a window that displays graphics and accepts input. The only attributes
that you can set in the ICON package specify the image to display in the window and the
geometry of the image. Other important attributes that an icon can have (such as width,
height, label, and font) are attributes of the generic class.

2.4.5 Nonvisual Objects

There are several nonvisual objects that cannot be represented on the screen but are sub-
classed from the Generic Object:

CMS Colormap segments (cms) are objects that are associated with windows
which provide their color specifications. Cms objects may be shared by
multiple windows.

DROP_SITE_ITEM The drop site item is a rectangle that is an area used for dragging an
object and dropping data associated with the object onto the drop site’s
application.

FONT The font package allows the programmer to request fonts of varying
attributes such as font family and style. Fonts can be accessed by name,
size or scaling.

SCREEN This object describes the visual and other characteristics of the physical
screen. This object is separate from the Xlib SCREEN object.

SELECTION This package allows clients to transfer data between applications.

SERVER This package interacts with the X server. The window-server is the pro-
gram that does the drawing to the screen and receives the user’s input.
The server also maintains font information and user-configurable
resources, which can be set for specific applications.

These objects are closely tied with the X Window System, and they are manipulated by mak-
ing requests to set or get attributes from X.

34 XView Programming Manual

2.5 The Notifier Model

XView is a notification-based system. The Notifier acts as the controlling entity within a
user process, reading input from the operating system and formatting it into higher-level
events, which it distributes to the different XView objects.*

2.5.1 Callback Style of Programming

In the conventional style of interactive programming, the main control loop resides in the
application. An editor, for example, will read a character, take some action based on the
character, then read the next character, and so on. When a character is received that repre-
sents the user’s request to quit, the program exits. Figure 2-13 illustrates this conventional
approach.

process input

quit request?

end

read input

start

Figure 2-13. Flow of control in a conventional program

Notification-based systems invert this straight line control structure. The main control loop
resides in the Notifier, not the application. The Notifier reads events and notifies, or calls out
to, various procedures which the application has previously registered with the Notifier.
These procedures are called notify procs or callback procs. This control structure is shown in
Figure 2-14.

*XView events are in a form that you can easily use: an ASCII key has been pressed, a mouse button has been pressed
or released, the mouse has moved, the mouse has entered or exited a window, etc. Events are described in detail in
Chapter 6, Handling Input.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 35

process event call appropriate
callback procedure

did callback
procedure request

quit?

No

Yes

return to application

register
callback procs
with Notifier

call Notifier

Application Code

read input

Notifier

start

end

Figure 2-14. Flow of control in a Notifier-based program

2.5.2 Why a Notification-based System?

If you are not used to it, this callback style of programming takes some getting used to. Its
big advantage is that it takes over the burden of managing a complex, event-driven environ-
ment. In XView, an application typically has many objects. In the absence of a centralized
Notifier, each application must be responsible for detecting and dispatching events to all the
objects in the process. With a centralized Notifier, each component of an application
receives only the events the user has directed towards it.

36 XView Programming Manual

2.5.3 Relationship Among the Notifier, Objects, and the Application

It is not necessary for you to interact with the Notifier directly in your application. XView
has a two-tiered scheme in which the packages that support the various objects—panels, can-
vases, scrollbars, etc.—interact with the Notifier directly, registering their own callback pro-
cedures. The application, in turn, registers its own callback procedures with the object.

Typically, when writing an XView application, you first create the various windows and other
objects you need for your interface and register your callback procedures with the objects.
Then you pass control to the Notifier. The work is done in the various callback procedures.

Let’s illustrate the relationship of the Notifier. Figure 2-15 illustrates how the Notifier
receives X events from the X server, as well as operating system “events” such as signals or
input on file descriptors. Event procedures are supplied by XView packages as well as the
application itself.

The main point of Figure 2-15 is to clarify the double-tiered callback scheme. How you reg-
ister the callback procedures will be explained in Chapter 5, Canvases and Openwin, and
Chapter 7, Panels.

One point worth mentioning is the distinction between the event procedures for the canvases
and the notify procedures for the panel items. They are all callback procedures, but they
have different purposes. The canvas’s event procedure does not do much work—basically, it
calls out to the application’s event procedure each time an event is received. The application
sees every event and is free to interpret the events however it likes.

The event procedure for panels, on the other hand, does quite a bit of processing. It deter-
mines which item should receive the event and places its own interpretation on events—the
middle mouse button is ignored, and the left mouse button down over an item is interpreted
as a tentative activation of the item, etc. It does not call back to the notify procedure for the
item until it receives a left mouse button up over the item. So panel item notify procedures
are not so much concerned with the event that caused them to be called as with the fact that
the button was pushed, a new choice made, etc.

2.5.4 Calling the Notifier Directly

As mentioned previously, for many applications, you will not need to call or be called by the
Notifier directly —the Notifier calls back to the subwindows, which in turn call back to your
application.

However, if you need to use signals or be notified of the death of a child process which you
have spawned, you do need to call the Notifier directly.

The Notifier also provides calls that allow you to insert your own routine in the event stream
ahead of a window. This technique is known as interposition.

When and how to call the Notifier directly is covered in Chapter 20, The Notifier.

XView
 Program

m
er’s

M
odel

The XView Programmer’s Model 37

formats UNIX input into XView events, passes each event to the
event procedure of the appropriate window

Notifier

UNIX events: input
on file descriptions

User types, moves mouse, presses mouse buttons . . .

XView events

XView

Application

application’s notify
procedures for panel items

event
procedures for
subwindows

application’s
event
procedure

Drawing
Canvas

Paint
Canvas

event
proc for
Drawing
Canvas

event
proc for

Paint
Canvas

notify
proc for
item n

notify
proc for
item 1

Control
Panel

Figure 2-15. Flow of input events in an XView application

38 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

3
Creating XView Applications

This chapter covers the XView programming interface. It describes the basic XView distri-
bution and how you use it to compile and link XView applications. It also presents the
proper structure for XView applications. The structure can be summarized as:

• Initialize XView using xv_init().

• Create a top-level window (FRAME) to manage subwindows.

• Add subwindows as children of the FRAME.

• Add objects to subwindows.

• Specify notification callbacks and select input events.

• Call xv_main_loop() to start the dispatching of events.

This chapter also discusses error recovery procedures.

3.1 Interface Overview

This section gives an overview of the XView programming interface. It covers reserved
words and naming conventions in XView. It also includes a complete sample program,
which we will look at more closely when describing the calling sequence for a program.

3.1.1 Compiling XView Programs

To compile an XView program, you must link with the XView library and the OPEN LOOK
graphics library. These libraries comprise the entire XView Toolkit. XView is written for
X11, of course, so you need to add the standard X library, which contains all the Xlib rou-
tines.

Thus, to compile a typical XView application whose source is myprog.c, you use the com-
mand:

% cc myprog.c –lxview –lolgx –lX11 –o myprog

Creating XView
Applications

Creating XView Applications 41

3.1.2 XView Libraries

The XView library is made up of two other libraries: libxvol.a and libxvin.a. XView func-
tions are found mostly in the library libxvol.a. These libraries include the code to create and
manipulate high-level objects such as frames, panels, scrollbars and icons. These packages
in turn call routines in libxvin.a to create and manipulate windows and interact with the
Notifier. These libraries are both included in the library libxview.a. The XView libraries call
routines in the Xlib library (libX11.a) that do the drawing on the screen.

The library specified by -lolgx is the OPEN LOOK graphics library. This library has rou-
tines that draw all the OPEN LOOK objects such as scrollbars and panel items. This library is
not called from the client application; it is only called by the internals to XView.

Many of the images used by this library come from special fonts that must be installed on
your X11 server. All servers newer than X11R4, as well as the X11/NeWS server, should
have these fonts.

3.1.3 Header Files

The basic definitions needed by an XView application (windows, frames, menus, icons and
cursors) are obtained by including the header file <xview/xview.h>. All XView applications
should have the line:

#include <xview/xview.h>

This header file includes many other header files that set up standard types. It also declares
external functions and includes some system-specific header files that are required by all the
XView header files.* Once <xview/xview.h> has been included, other include files specific to
the packages are included. Each object package has its own header file to declare object
types, to provide definitions for frequently used macros and to make external definitions for
routines that are specific to that object’s package. Frequently these files include other files,
which in turn may include other packages or system header files.

For instance, if your code uses the FRAME, PANEL and FONT packages, then these include files
must be specified:

#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>
#include <xview/font.h>

However, investigation shows that some header files include other header files by default.
For example, <xview/xview.h> includes <xview/frame.h>. There are “wrappers” inside the
XView header files which prevent any one of them from being included more than once.

*XView also includes C++ bindings for all its public functions.

42 XView Programming Manual

3.1.4 Naming Conventions

All the examples throughout this manual follow a consistent method in the naming of data
types, package names, and even variable names. Because of the large number of packages
and data types, you could easily confuse what a lexical string represents. Therefore, you are
advised to follow certain criteria when naming variables and declaring data types that are not
specific to XView. Whatever naming convention you choose, you should always try to be
consistent.

3.1.4.1 Reserved names

XView reserves names beginning with the object types, as well as certain other prefixes, for
its own use. The prefixes in Table 3-1 should not be used by applications in lowercase,
uppercase, or mixed case.

Table 3-1. Reserved Prefixes

attr_ icon_ server_image_

canvas_ menu_ string_

cms notice_ termsw_

cursor_ notify_ text_

defaults_ panel_ textsw_

dnd_ pixrect_ tty_

dragdrop_ pr_ ttysw_

drop_ pw_ win_

ei_ r1_ window_

es_ rect_ wmgr_

ev_ screen_ xv_

event_ scroll_

font_ scrollbar_

frame_ selection_

fullscreen_ seln_

generic_ server_

To help you choose what not to use for data types and other lexical tokens in your applica-
tion, review Table 2-1, “XView Objects, Owners, Packages, and Data Types.”

3.1.5 Example of XView-style Programming

The flavor of the XView programming interface is illustrated by the code in Example 3-1.
This program, quit.c, creates a frame containing a panel with one item: a button labeled Quit.

There are a few things to notice in the program. First, note the NULL that terminates the attri-
bute lists in the xv_create() and xv_set() calls. The most common mistake in using
attribute lists is to forget the final NULL. This will not be flagged by the compiler as an error.

Creating XView
Applications

Creating XView Applications 43

The results are actually unpredictable, but the most common result is that XView will gener-
ate a run-time error message and the program will exit.

Second, the object returned by the xv_create() for the PANEL_BUTTON is not stored into a
variable. This is primarily because it is not needed by any other portion of the code. One of
the most common programming inefficiencies is the use of global variables when they are not
needed. If you are not going to reference an object created via xv_create(), you should
not retain its handle. If you need its handle, but only temporarily, then it should be a local
variable, not a global or static one. For example, the panel variable (type Panel) is
used as a local variable.

Example 3-1. The quit.c program

/*
* quit.c -- simple program to display a panel button that says "Quit".
* Selecting the panel button exits the program.
*/
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>

Frame frame;

main (argc, argv)
int argc;
char *argv[];
{

Panel panel;
void quit();

xv_init (XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create (NULL, FRAME,
FRAME_LABEL, argv[0],
XV_WIDTH, 200,
XV_HEIGHT, 100,
NULL);

panel = (Panel)xv_create (frame, PANEL, NULL);

(void) xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, quit,
NULL);

xv_main_loop (frame);
exit(0);

}

void
quit()
{

xv_destroy_safe(frame);
}

Figure 3-1 shows the output resulting from quit.c. In the sections that follow, we are going to
look at how this program demonstrates the structure of XView programs.

44 XView Programming Manual

Figure 3-1. A frame containing a Quit button

3.2 Initializing XView

Initializing the XView system should be done as soon as possible in the application. The
xv_init() function performs many tasks, including:

• Opening the connection to the server.

• Initializing the Notifier.

• Initializing the Resource Manager database.*

The form of xv_init() is:

Xv_Server
xv_init(attrs)

<attribute-value list> attrs;

By default, xv_init() opens a connection to the server described by the DISPLAY envi-
ronment variable. With the appropriate command-line options (discussed later), a different
server may be specified. No matter which server is ultimately used, xv_init() returns a
handle to that server object.

All subsequent XView objects that are created will use this server by default. This includes
the physical screen(s) and resources. If you want your application to span multiple servers,
you need to open a separate connection to those servers via the SERVER package. For further
information on how to do this and other details of the SERVER package, see Chapter 15, Non-
visual Objects, for details.

*See Chapter 17, Resources, for more information about the resource database.

Creating XView
Applications

Creating XView Applications 45

3.2.1 Using xv_init ()

Initialization should be done before the application attempts to parse its own command-line
options. Since many programs tend to have command-line parameters, a program tends to
report unknown parameters as illegal arguments. Because XView parameters can also be
specified on the command line to the application, the program must be able to distinguish
between the application’s parameters and XView’s parameters.

xv_init() accepts the attributes XV_INIT_ARGS and XV_INIT_ARGC_PTR_ARGV for pur-
poses of parsing command-line arguments. These attributes both take two parameters as val-
ues: argc and argv. These are typically the same ones passed into main(). Using the
XV_INIT_ARGC_PTR_ARGV attribute, the xv_init() function can be told to modify argc
and argv by removing parameters that are XView-specific, like so:

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

When xv_init returns, argv contains only those parameters that are not specific to
XView, and the application can now assume that all remaining arguments are specific to the
application. So a hypothetical command line might look like this:

% program –display maui:0

The command line is first parsed by xv_init(), and in this case, all arguments are stripped
from the argv variable, leaving just argv[0], whose value is program. argc is modi-
fied to have the value 1 (it was originally 3). The example command-line parameters change
the default server to be the X server running on the machine named maui.

The macro XV_INIT_ARGS is similar:

xv_init(XV_INIT_ARGS, argc, argv, NULL);

Here, argc and argv are not modified at all and are returned unchanged by xv_init().
Therefore, the value, not the address, of argc is used. This method is less advantageous for
initializing XView because it leaves the application with the responsibility of parsing XView
command-line parameters later.

NOTE

Once XView has been initialized, subsequent calls to xv_init() are ignored,
as are all parameters consisting of XV_INIT_ARGS or XV_INIT_

ARGC_PTR_ARGV.

A common error that users make is to enter bad command-line arguments. These arguments
can be specific to XView or specific to the application, so XView handles the XView-specific
argument and then expects the programmer to handle application-specific arguments.

Upon receiving a bad argument, XView prints an error message, indicating what XView-
specific values are legal, and then calls exit(1). The function that provides this message is
specified by the attribute XV_USAGE_PROC. In most cases, you want to leave this alone
because it is not the way you handle application-specific arguments.

46 XView Programming Manual

The attribute XV_ERROR_PROC is used to install an error recovery routine. See Chapter 24,
Error Recovery, for details about error handling.

3.3 Creating and Modifying Objects

After the system has been initialized, objects can be created and modified using
xv_create(), xv_find(), xv_get(), and xv_set(). A closer look at
xv_create() and xv_find() shows how these functions can be used to create new
objects or find existing objects with particular attributes from various packages.

3.3.1 Using xv_create()

xv_create() is typically used as shown in Example 3-2.

Example 3-2. xv_create() creates XView objects

#include <xview/xview.h>

main(argc, argv)
char *argv[];
{

Frame frame;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);
frame = (Frame)xv_create(NULL, FRAME, NULL);
xv_main_loop(frame);

}

In Example 3-2, a frame is created from the FRAME package and no additional attribute-value
pairs are specified. Therefore, all the default properties from the frame class are set into the
instance of this new frame when it is created.

The form of xv_create() is:

Xv_object
xv_create(owner, package, attrs)

Xv_object owner;
Xv_pkg package;
<attribute-value list> attrs

In most cases, owner is another XView object. As shown in the example, when the frame is
created, it has no owner, per se. This means that the owner should default to a pre-specified
owner that XView has in mind. Defaulting is not always possible, but for this base frame, the
default owner is the root window of the current server. As a child of the root window, the
frame is under the constraints that the window manager might impose upon it (the colormap,
for example).

Objects must have an owner for several reasons. One reason is that the X server may not be
running on the same machine as the application (client) program. Therefore, because XView
is running on the client side, objects that are created by the application have to contact the

Creating XView
Applications

Creating XView Applications 47

server. There could be more than one server to contact if the application supports multiple
displays or runs on several machines simultaneously. To do this, XView needs to know what
server or screen a particular object is associated with.

Another reason is that certain attributes are inherited from the owner, such as color and event
masks. It is up to the individual package to determine what it inherits from its owner.

When owner is NULL, the owner of the object being created is either defaulted to a predeter-
mined owner, or the object is said to have delayed binding. That is, the object is not associ-
ated with any other object until it is displayed on the screen. A scrollbar that is created with
a NULL owner will not be displayed until it is attached to an object, and this object becomes
its owner. Most objects are required to have owners at the time of their creation. Frames,
windows and fonts must have a valid (default) owner because they need to access the
screen’s default colors, available fonts and so on.

Table 3-2 shows the default owner if owner is NULL in the call to xv_create.

Table 3-2. Default Ownership of Objects

Object’s Package Owner If Owner is NULL

CANVAS Frame The window manager of
xv_default_screen

CMS Screen xv_default_screen

CURSOR Window, screen or anything that The window manager of
returns XV_ROOT xv_default_screen

DRAGDROP Window NULL owner not allowed

DROP_SITE_ITEM Window NULL owner not allowed

FRAME Another frame or the root window The window manager of
xv_default_screen

Panel Items Panel NULL owner not allowed

MENU Ignores its owner Always use NULL

NOTICE Window NULL owner not allowed

PANEL Frame xv_default_screen

Menu Items Menu Allows delayed binding

ICON Same as cursor Same as cursor

SCROLLBAR An openwin object Allows delayed binding

SCROLLABLE_PANEL Frame NULL owner not allowed

SCREEN, Server xv_default_server

FULLSCREEN

SELECTION_ITEM Selection Owner NULL owner not allowed

SELECTION_OWNER Window NULL owner not allowed

SELECTION_REQUESTOR Window NULL owner not allowed

SERVER Ignores its owner Always use NULL

48 XView Programming Manual

Table 3-2. Default Ownership of Objects (continued)

Object’s Package Owner If Owner is NULL

SERVER_IMAGE Screen xv_default_screen

TEXT Frame The window manager of
xv_default_screen

The object that is returned from xv_create() is an opaque data type called Xv_object.
The return value should be coerced into the type of the object being created.

Each time xv_create() is used, it creates a new and entirely different object. The type of
object that is returned depends on the package specified.

Panel panel;
panel = (Panel)xv_create(frame, PANEL, NULL);

Here, a panel is created as a child of a frame. As in the previous example, there are no attri-
bute-value pairs specified, so the panel is created with all the default values intrinsic to a gen-
eric panel object from the PANEL package. The panel is then installed inside the frame
accordingly. Panel items can be installed inside the panel as:

Panel_item button;
button = (Panel_item)xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, quit,
NULL);

Here, xv_create() is used to create a panel item of type PANEL_BUTTON. This is a special
type of object that is created inside of panels only. That is why the owner of the item is the
panel created in the previous example. In the attribute-value list provided in this example,
the label is set by specifying the PANEL_LABEL_STRING attribute and a string as the value
portion of the pair. Similarly, the callback routine specified is the routine called quit().
Because the intent of panel buttons is to select them with the pointer, the callback routine is
the function to call if the user presses the mouse button in the panel button item.

3.3.2 Using xv_find()

In all the examples so far, the routine xv_create() has been used to create new objects of
different types or classes. However, it might not always be possible to know whether or not a
particular object has been created. The best way to handle such cases is to use xv_find().
If the object has been created, xv_find() returns the handle to the pre-existing object; if
not, xv_find() creates it. The definition of the routine follows:

Xv_opaque
xv_find (owner, package, attrs)

Xv_object owner;
Xv_pkg package;
<attribute-value list> attrs;

Creating XView
Applications

Creating XView Applications 49

As you can see, the form of xv_find() is the same as xv_create(). Fonts are objects
that usually only need to be created once and are then used throughout the application wher-
ever necessary. For example, say the application needs to use the font named fixed (because
it is usually available on any X server and is almost guaranteed to be found). Several places
in the application need to use the font, but only one instance of the font needs to be created.
To avoid multiple instances of the object, the following function call is made:

Xv_Font my_font;
my_font = xv_find(frame, FONT,

FONT_NAME, "fixed",
NULL);

This code segment demonstrates how xv_find() tries to find an existing font named fixed
that has already been created by the application. If the application has not yet created this
font, then xv_find() acts just like xv_create(), and a new font is created. This func-
tion is not intended to replace xv_create() at all. It is intended to be used in the case
where only one instance of an object is desired and that one instance is shared throughout the
application. While you could use xv_find() rather than xv_create() in the other
examples shown so far, the problem arises if you need two copies of a particular instance of
an object. For example, if you were going to create another PANEL using all the default val-
ues of the PANEL package, then xv_find() would return the previously created panel. Any
new objects attached to that panel would also be attached to the other panel because they are,
in fact, one and the same.

As shown, fonts are frequent users of the xv_find() function.*

3.3.3 Using xv_destroy()

The correct way for an XView application to exit is to destroy all objects created and call
exit() with an appropriate exit status. The function xv_destroy() destroys an instance
of an XView object. The function xv_destroy_safe() does the same thing but ensures
that it is safe to do so.† In general, it is better to be safe than sorry. The definition of these
routines are as follows:

int
xv_destroy_safe(object)

Xv_opaque object;

int
xv_destroy(object)

Xv_opaque object;

The return value from the routines is either XV_OK or XV_ERROR. Example 3-2 in Section
3.1.5, “Example of XView-style Programming,” shows a base frame containing a panel
subwindow with one panel button created inside it. The callback routine for the panel item,
quit(), is intended to exit the application. Rather than actually calling exit(), a more
elegant way to exit would be to destroy all the objects that have been created. If a text

*Chapter 16, Fonts, describes how to create fonts using xv_find().
†Chapter 20, The Notifier, discusses the difference between a safe and an immediate destruction of an object.

50 XView Programming Manual

subwindow had its text modified since the last update, this would give the package an oppor-
tunity to prompt the user for an update. Or you might install a routine that interposes any
request for destruction on a particular object (such as a frame).*

The quit() routine looks like this:

void
quit()
{

if (xv_destroy_safe(frame) == XV_OK)
exit(0);

}

Rather than calling xv_destroy_safe() on all objects, it is only called for the base
frame. Because the base frame is the owner of all the other objects, xv_destroy() and
xv_destroy_safe() descend into the objects’ children and destroys all of them with the
same call.

Use the function xv_destroy_safe() to destroy objects from within the object’s call-
back procedures. xv_destroy_safe() will delay destroying the object until it is safe to
do so (that is, not while in the object’s callback). For example, when a frame is destroyed
from within the frame’s FRAME_DONE_PROC, you need to use xv_destroy_safe() to
ensure that the frame object is removed. (See FRAME_DONE_PROC in the next chapter for a
description of a frame’s “done” callback.)

xv_destroy() may be called at any time without notice. It may result from actions the
user takes with the window manager, from a separate process or from events sent by other
applications.

3.3.4 Using xv_set() and xv_get()

As discussed in the previous chapter, attributes about objects can be set, reset and retrieved
using the calls xv_set() and xv_get(). The definition of these routines are:

Xv_opaque
xv_set(object, attrs)

Xv_object object;
<attribute-value list> attrs;

Xv_opaque
xv_get(object, attr)

Xv_object object;
Attr_attribute attr;

xv_set() is just like xv_create() with respect to the attribute-value parameters. Use
xv_set() to set or change the value of one or more attributes of an object that has already

*Chapter 20, The Notifier, describes how to install destroy interpose functions.

Creating XView
Applications

Creating XView Applications 51

been created. The following code segment uses a single xv_set() call to change three
attributes of a frame:

#include <xview/xview.h>

main()
{

Frame frame;
frame = xv_create(NULL, FRAME, NULL);
...
xv_set(frame,

FRAME_LABEL, "XView Demo",
FRAME_SHOW_LABEL, TRUE,
FRAME_NO_CONFIRM, TRUE,
NULL);

...
xv_main_loop(frame);

}

xv_get() is different from xv_set() in that the value parameter is not passed to the
function—instead, the value is returned from xv_get():

Xv_Window root_win;
Frame frame;
Rect *rect;

/* create the base frame for the application */
frame = xv_create(NULL, FRAME, NULL);

/* get the root window of the base frame of the application */
root_win = (Xv_Window *) xv_get(frame, XV_ROOT);

/* get the dimensions (rectangle) of the root window */
rect = (Rect *) xv_get(root_win, XV_RECT);

Because xv_get() returns the value of the attribute specified, only one attribute of the
object can be retrieved by an xv_get() call. The return value for the function is going to
be an opaque data type, so it must be typecast into the type expected. However, note that the
value XV_ERROR might be returned in the event that the object passed is not a valid object or
if an attribute does not apply. In this case, the return value should be checked to see if it is
XV_ERROR. One potential problem is that the value of XV_ERROR might happen to be the
same as the expected return value. Fortunately, an error returned from xv_get() is
unlikely in a properly written application.

In many packages, certain properties may be retrieved but not set. For example, you may use
xv_get() for the property WIN_FRAME to get the window’s frame but you may not use
xv_set() to set the window’s frame. In this case, xv_set returns XV_ERROR. In the more
likely event that the call was successful in setting attributes using xv_set(), then the value
XV_OK will be returned.

For some XView attributes that take strings as values in xv_create() or xv_set(), the
string is copied, but for other attributes, the passed pointer is used directly. Since XView’s
internal memory allocation methods may change in future releases, you should not write code

52 XView Programming Manual

that depends in any way on it. The following example shows the type of code that should be
avoided, since it depends on XView’s internal memory allocation method:

/*
* Set panel label string on panel button
*/
xv_set(panel_button, PANEL_LABEL_STRING, array_ptr, NULL);

/*
* DO NOT attempt the following
*
* Check if the memory pointer for the panel button label
* is the same as array_ptr */

if (array_ptr == xv_get(panel_button, PANEL_LABEL_STRING)) {
...

}

3.3.5 Precedence of Resource Options

In the X Window System, the user can configure the interface according to options available
in specific applications. The user accomplishes this through a resource database that resides
in the X server. XView provides several ways for the programmer to set default values and
to accommodate the user’s specifications for properties such as frame colors, fonts and win-
dow geometry among others (for more information on resources, see Chapter 17, Resources).
There are several ways that properties can be set, including: using xv_set() on an attri-
bute corresponding to the property, using command-line options, using values from the
.Xdefaults file or using the values specified when calling xv_create(). In addition,
XView or the window manager may determine some default values for certain properties.
Among these different ways of setting options, programatically, the following precedence
from highest to lowest is maintained:

1. A call to xv_set().

2. Any command-line options.

3. Values specified in the .Xdefaults file.

4. Values specified or inherited in a call to xv_create().

5. Toolkit or window manager defaults.

NOTE

The precedence above does not apply for locale commmand line options.
See Chapter 22, Internationalization , for more details on locale command-
line options.

Creating XView
Applications

Creating XView Applications 53

3.4 xv_main_loop() and the Notifier

Once all the objects have been created, you are ready to have all the windows displayed and
have event processing begin. At this point, the program calls xv_main_loop(). The job
of xv_main_loop() is to start the Notifier. Once the Notifier has started, the program will
begin to receive and process events such as Expose, MapNotify, ConfigureNotify,
KeyPress, and so on. The X server generates these events and sends them to the client.
While it is up to the client to handle all events that the X server sends to it, the Notifier layer
of XView handles much of this work automatically.

The Notifier’s main job is to process these events and dispatch them to the client if it has reg-
istered a callback routine for that event type with the Notifier. Otherwise, the Notifier might
ignore the event. Of course, XView attempts to provide reasonable default actions for all
events that the application typically does not want to deal with. For example, a simple appli-
cation that contains nothing but a command frame (which has nothing but a panel/control
area) might not care to handle resize events if the user resizes the window. XView must
handle this so it can resize the panel and/or reposition the panel items within it.

Those events that the application would be most interested in are things like KeyPress and
ButtonPress events of various types. For events like these, the application should install
callback routines for the Notifier to call if one of those events has taken place.

In the examples shown, the only callback routine installed is the one in the panel item,
quit(). When selected, the Notifier notifies the application by calling the callback routine
associated with the object in which the event took place. In this case, the Notifier calls the
routine quit() and the application has control of the program again. As one might expect,
the Notifier has relinquished control of the program while the application’s callback routine
is being called. The Notifier does no more event processing at all until the callback routine
has returned. However, the programmer can query events from within the callback routine if
necessary.

If the code within the callback routine creates new objects or destroys existing objects, noth-
ing will happen on the display until the callback routine is finished and returns control to the
Notifier.

Just because the Notifier handles the delivery of events to the application, that does not mean
that the application will be notified of all events that might occur. The application is only
notified of the events that it has registered with the Notifier. Events that the client can regis-
ter with the Notifier include CreateWindow, MapWindow, ConfigureWindow,
QueryFont, GetInputFocus, and so on. These are general X events, not XView-
specific events. However, XView has a corresponding event definition for the purpose of
registering events with the Notifier. Event registration is covered in detail in Chapter 20, The
Notifier. Event types and specifications are discussed in Chapter 5, Canvases and Openwin,
and Chapter 6, Handling Input.

When a frame is displayed on the screen, a MapNotify event is generated by the X server
(since the frame is mapped, or displayed, to the screen). However, there has been no callback
routine specified to handle the map event, so the Notifier passes it back to XView, which
handles it internally. This default action, in fact, does nothing special; it simply allows the
frame to be displayed. Further events are generated: expose events, visibility events (for the

54 XView Programming Manual

frames that are covered up by the new frame), enter and leave events when the user moves
the mouse in and out of the frame, motion events, and so on. If none of these events have an
application-defined callback routine associated with them, the Notifier handles them.

Note that when objects such as frames or canvases are created, only the objects themselves
and the associated attributes of those objects are created. What is not created are the objects’
windows. These are not created until after xv_main_loop() is called. This is due to the
fact that one of the events that is generated is the realize event—this indicates that an object
has been realized to the screen and a window has been (or needs to be) generated. The
objects’ packages internally handle the creation of windows at the appropriate time. Since
that does not occur until after the call to xv_main_loop(), there should be no attempts to
render graphics into objects’ windows before then.

Creating XView
Applications

Creating XView Applications 55

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

4
Frames

A frame is a container for other windows. It manages the geometry and placement of
subwindows that do not overlap and are fixed within the boundary of the frame. The
OPEN LOOK specification refers to subwindows, or panes, as tiled windows because they do
not overlap one another. Subwindow types include canvases, text subwindows, panels, and
scrollbars. These subwindows cannot exist without a parent frame to manage them. Figure
4-1 shows the class hierarchy for the FRAME package.

Generic
Object (Drawable) Window Frame

Figure 4-1. Frame package class hierarchy

Figure 4-2 shows an example of a screen that displays three frames, each one containing at
least one subwindow. Note that frames do overlap. The File Manager frame has the key-
board focus, as indicated by the title bar having its foreground and background colors
reversed. The setting of the keyboard focus is handled by the window manager, not the
FRAME package. In this case, an OPEN LOOK window manager is using click-to-type to set
the keyboard focus. This is demonstrated by the cursor’s location within an unselected frame
(the Edit: File frame).

The FRAME package provides the following capabilities:

• A communication path between the application and the window manager.

• A mechanism to receive input for the application.

• A visual container for user interface objects.

• A method to group windows with related functionality.

• A mechanism to manage footers.

Fram
es

Frames 59

Figure 4-2. Three base frames

A frame depends upon the window manager for its decorations and many basic operations.
The FRAME package does not manage headers (title bars), resize corners or the colors of those
objects. These are all strictly functions of the window manager. The application gives hints
to the window manager about some of these attributes through the FRAME package (including
not to display decorations at all if so desired), but results vary depending on which window
manager the user is running. The examples in this book assume the user is running an
OPEN LOOK window manager.

Frames do not manage events; this task is left up to the windows that the frame manages.
That is, frames do not get mouse and keyboard events and propagate them to child windows.
While frames are subclassed from the window package, the frame’s window rarely sees any
events at all, and if they do, these are not intended to be processed by the application pro-
grammer.

60 XView Programming Manual

4.1 Types of Frames

Basically, two types of frames are available in XView: base frames and command frames.
The main frame of the application is called the base frame. The base frame resides on the
root window; its handle is passed to xv_main_loop() to begin application processing.

A special kind of frame, called a command frame, is created with a panel subwindow by
default. Command frames are useful as help frames, property frames and such defined by
OPEN LOOK. Programmatically, a command frame is no different from a frame with one
subwindow that is a panel.

A base frame’s parent is the root window, whereas a subframe’s parent is another frame
(either a base frame or a subframe). When a frame goes away (quit or close), all of its child
windows, including subframes, also go away. For example, assume you create a command
subframe to display application-specific help. When this command subframe is activated, it
might display explanatory text along with an OK button to dismiss the help. If you close the
base frame, the help subframe also closes.

XView allows for multiple frames that are not children of the base frame. For instance, you
could create a help frame that is independent of the application’s base frame. The parent of
this frame is the root window of the display and not the base frame. The help frame will
remain visible even if the base frame goes away. The term subframe defines a relationship
among frames at creation time and a slight difference in functionality.

4.1.1 The Role of the Window Manager

It is important to understand what effect the window manager has in determining the appear-
ance and behavior of an XView frame. As mentioned earlier, many attributes defined in the
FRAME package are really hints to the window manager. The window manager is responsible
for frame and window decoration, as well as the size and placement of windows on the
screen (screen geometry). That is, it is the window manager’s job to provide such decora-
tions as title bars and to set attributes such as the color of decorations. It also handles resiz-
ing windows, moving windows, closing windows (iconifying) and so on. The application can
ask the window manager to do things in a certain way, but the window manager is not obli-
gated to act on these requests.

For your application and the window manager to communicate properly, the window man-
ager must comply with the specifications in the Inter-Client Communication Conventions
Manual (ICCCM).* Since the window manager is a client of the X server just as the applica-
tion is a client, the two clients must follow specified conventions to communicate with one
another. The FRAME package assumes it is communicating with an OPEN LOOK-compliant
window manager. If not, some of the frame attributes might not work as described here.

*The Inter-Client Communication Conventions Manual is reprinted as Appendix L of Volume Zero, X Protocol Ref-
erence Manual.

Fram
es

Frames 61

For example, using an OPEN LOOK window manager, a command subframe is a pop-up win-
dow that has a pushpin in the upper-left corner. The state of the pushpin (unpinned or
pinned) determines whether or not the window remains on the screen after the command has
been executed. The pin objects are provided by the OPEN LOOK window manager. If XView
applications are run with another window manager, they might not necessarily be pinnable.

4.2 Base Frames

Let’s first create a base frame using the default attribute settings. To create a frame, use
xv_create, specifying the owner of the frame and identifying the FRAME package. The
program in Example 4-1 shows how to create a simple base frame.

Example 4-1. The simple_frame.c program

#include <xview/xview.h>

main()
{

Frame frame;
frame = (Frame)xv_create(NULL, FRAME, NULL);
xv_main_loop(frame);

}

Specifying NULL as the owner argument tells the FRAME package to use the default value,
which specifies the root window on the current screen. The macro FRAME is defined to be
FRAME_BASE, which is the base FRAME package in XView.

Note that the header file associated with the FRAME package, <xview/frame.h>, is included
indirectly by <xview/xview.h>. (A separate inclusion has no harmful effect, however.)

The frame displayed by this program is shown in Figure 4-3.

4.2.1 XView Initialization and Base Frames

The first XView object to be created by an application is typically the base frame. However,
xv_init() is always called first to get any command-line parameters, initialize the con-
nection to the X server, set resources, and so on. The code segment in Example 4-2 shows
how argc and argv can be used in conjunction with xv_init().

Example 4-2. Creating a base frame after calling xv_init()

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
...
xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);
frame = (Frame)xv_create(NULL, FRAME, NULL);

62 XView Programming Manual

Example 4-2. Creating a base frame after calling xv_init() (continued)

...
xv_main_loop(frame);
exit(0);

}

Figure 4-3. Simple base frame created without any FRAME attributes specified

In this sample code segment, the program expects no parameters that are specific to the pro-
gram. Any parameters that the user supplies are expected to be specific to XView or X.
When xv_init() is called with attribute XV_INIT_ARGC_PTR_ARGV, &argc and argv
are passed as values; upon return, argv is stripped of the parameters that are X or XView-
specific. The argc variable is also modified to reflect the number of parameters that remain
after processing. If the user specified no other parameters, then argc should be 1 and argv
should contain one element in its array of strings: the name of the program (since that is
what argv[0] is). If there are any more parameters, then the application has the opportu-
nity to look for application-specific parameters or to report unknown parameters as errors.

When the attribute XV_INIT_ARGS is used, the value of argc (not the address of argc) is
passed, and neither variable is modified.

4.2.2 Headers and Footers

The OPEN LOOK window manager provides frames with headers that display text. The
header typically displays information such as the application name. The text is centered and
its font is not alterable by the application. The header also has a Close button at the upper-
left corner; selecting the button causes the frame to iconify—that is, the frame turns into a
graphical image, or icon, and is displayed (probably) elsewhere on the screen. The applica-
tion’s state is now closed. This usually indicates that the program is idle.

Fram
es

Frames 63

The footer of a base frame shows text such as error messages, a page number, the date or
other miscellaneous information. The footer is split into two parts: the left footer where text
is left justified, and the right footer where the text is right justified.

Unless otherwise specified by giving the appropriate attribute-value pairs, the header of a
base frame is displayed, but the footer is not. The header does contain the abbreviated menu
button, but there is no default header label. Thus, to create a header with a label, the attribute
FRAME_LABEL must have a string value.* This may be a constant string or a variable pointing
to a string. When the frame is displayed, the string will be centered in the header. The
header label can be turned off by setting the FRAME_SHOW_HEADER attribute to FALSE. In this
case, even if the header label is set, the header (including the Close button) will not be
displayed at all. If FRAME_SHOW_HEADER is later set to TRUE, then the label will be displayed
again (see Figure 4-4). Note, some window managers, (including olwm) will only honor
requests to change certain aspects of the decor window when the window is coming out of
withdrawn state (unmapped). Any requests made to a mapped window to change information
about the decor will be held off until the window is withdrawn and mapped again. Thus the
result of setting the header to FALSE will not be seen until the frame is unmapped and then
mapped again.

Figure 4-4. A sample header label display in a frame

The code segment in Example 4-3 sets FRAME_SHOW_HEADER to FALSE at creation but sets it
to TRUE in a separate call. The header displays the name of the program.

*FRAME_LABEL is defined to be XV_LABEL in <xview/frame.h>.

64 XView Programming Manual

Example 4-3. Setting separate values for a frame header

...
Frame frame;
frame = (Frame)xv_create(NULL, FRAME,

FRAME_LABEL, argv[0],
FRAME_SHOW_HEADER, FALSE, NULL);

...
xv_set(frame, FRAME_SHOW_HEADER, TRUE, NULL);
...

Footers in base frames are not displayed by default, so setting either the left or right footer
messages also requires the boolean FRAME_SHOW_FOOTER to be set to TRUE. Note that setting
the footer on and off resizes the total size of the base frame, and while it does not cause any
subwindows to be resized, it is rather distracting to change the frame frequently (or at all).
Therefore, you should decide ahead of time whether you are going to use footers and set
them to be on or off at the time the frame is created. If the footer is no longer needed, set the
left or the right footer string to the null string—not the constant NULL. That is, use "". Fig-
ure 4-5 shows what is displayed when the code in Example 4-4 is run.

Example 4-4. Creating a footer

...
Frame frame;
frame = (Frame)xv_create(NULL, FRAME,

FRAME_LABEL, "hdrs_n_footers",
FRAME_SHOW_FOOTER, TRUE,
FRAME_LEFT_FOOTER, "left side",
FRAME_RIGHT_FOOTER, "right side",
NULL);

...

Figure 4-5. Headers and footers on base frame Fram
es

Frames 65

4.2.3 Closed Base Frames

Base frames are distinct from other types of frames because they can be closed, or iconified.
When the frame is closed, an icon replaces the entire base frame, including all subwindows
and control areas.* If any subframes are associated with the base frame, then they are taken
down for as long as the application is closed. Using the appropriate attribute-value pairs, it is
possible to set the image and size of the icon. By default, no icon is associated with a base
frame and the size of the area occupied by an icon is 64x64. See Chapter 14, Icons, for more
information on creating icons used by frames. The bounding box (or Rect) of the icon is
independent of the size of the icon, so the bounding box should be set explicitly if its value is
anything other than the default.

The frame’s dimensions when closed and the icon it uses may be set using xv_create() or
by using xv_set() after the frame has been created. Figure 4-6 shows what any applica-
tion or base frame looks like when it is closed, providing that the application uses the base
frame with default values. The figure also shows a graphical icon used by an application.

Figure 4-6. Default icon and application icon

To set the icon for the base frame, the icon must already have been created. However, assum-
ing one is available, the icon can be set in the base frame using the FRAME_ICON attribute-
value pair. FRAME_ICON will not have an immediate effect on mapped icon’s. One must first
unmap the icon, change the icon, and then remap. Because the icon might not be the default
size (64x64), it is usually a good idea to set the size of the frame when it is in the closed state.
To do this, set the attribute FRAME_CLOSED_RECT to be a pointer to a variable of type Rect *
(pointer to a Rect). (Rect is an XView data type defined in <xview/rect.h>.)

The best way to handle it is to use xv_set() after the call to xv_create():

...
extern Icon icon;
Frame frame;
Rect rect;
...
rect.r_width = (int)xv_get(icon, XV_WIDTH);
rect.r_height = (int)xv_get(icon, XV_HEIGHT);
frame = (Frame)xv_create(NULL, FRAME, NULL);
xv_set(frame,

FRAME_ICON, icon,
FRAME_CLOSED_RECT, &rect,
NULL);

*Only base frames have icons associated with them.

66 XView Programming Manual

This code segment sets the size of the icon area to be whatever size the icon is. Since
FRAME_CLOSED_RECT takes a pointer to a variable of type Rect, the address of the variable
is given as the value parameter to the call to xv_set(). Also note that the other fields of
the rect variable, (r_top, r_left) are not used because FRAME_CLOSED_RECT only uses
the width and height dimensions from the variable.

The following call can be made to determine whether the frame is currently closed from
within the application:

is_closed = (Boolean) xv_get(frame, FRAME_CLOSED);

This call is useful for applications that are graphics-intensive. If a complex piece of code is
about to be executed, the application could check to see if the frame is open to display the
graphics.

Another way to change the icon, without worrying about whether the frame is mapped, is to
change the server_image associated with the icon.

extern Icon icon;
Frame frame;

icon = xv_get(frame, FRAME_ICON);
xv_set(icon, ICON_IMAGE, new_image, ICON_MASK_IMAGE, new_mask, NULL);

This method of changing the icon works regardless of whether the frame is in its iconic state,
assuming the Server_image new_image is defined.

4.2.4 Quit Confirmation

OPEN LOOK specifies that a notice is generally not needed to confirm a “quit” action unless
data will be lost. The base frame, which usually handles this type of action through the win-
dow manager, can be set to ask for confirmation. The attribute FRAME_NO_CONFIRM, which
defaults to TRUE, can be set to FALSE to force confirmation:

frame = (Frame)xv_create(NULL, FRAME,
FRAME_NO_CONFIRM, FALSE,
NULL);

When the attribute FRAME_NO_CONFIRM is set to FALSE and the user initiates a “quit” action,
a notice dialog box will appear to request confirmation.

Fram
es

Frames 67

4.3 Command Frames

Command frames are normally subframes in that they are most often created as children of
base frames. Most of the time, they are pop-up frames that serve one function and then go
away. Instead of having a Close button in the frame’s header, the command frame has a
pushpin. The pushpin governs whether the frame remains up after the user performs the
functions that the pop-up frame provides. When a command frame is created, a default panel
is also created automatically. The panel on a command frame can be used to hold the panel
items, such as buttons or sliders, that the user interacts with. xv_get() can be used on
command frames to get the default panel and to avoid creating a new one. A pop-up frame
can have its own child pop-up frame, but this is not a good programming practice.

Example 4-5 shows a simple program that creates a pop-up frame as a child of the base
frame. Figure 4-7 displays the output of this program.

Example 4-5. Creating a subframe

/*
* subframe.c -- display a subframe from a base frame.
*/
#include <xview/xview.h>

main(argc, argv)
int argc;
char *argv[];
{

Frame frame, subframe;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME,
XV_WIDTH, 100,
XV_HEIGHT, 100,
FRAME_LABEL, "Base Frame",
NULL);

subframe = (Frame)xv_create(frame, FRAME_CMD,
XV_WIDTH, 100,
XV_HEIGHT, 100,
FRAME_LABEL, "Popup",
NULL);

xv_set(subframe, XV_SHOW, TRUE, NULL);

xv_main_loop(frame);
}

68 XView Programming Manual

Figure 4-7. Base frame with a command frame

4.3.1 Manually Displaying Frames

The attribute XV_SHOW sets whether a window (or frame, in this case) will be displayed. If it
is set to FALSE, the frame will not be seen. Base frames are always displayed because
xv_main_loop sets the XV_SHOW attribute to TRUE. Pop-up frames are not displayed
unless the XV_SHOW attribute is set by the application. An application might create many
pop-up dialog boxes initially and then determine the appropriate time to actually display
them. A callback routine invoked by some action (e.g., panel button selection) from the base
frame might be used to display the pop-up frame. When a command frame is displayed, the
new cursor is moved to the default panel item within the command frame.

When a frame is displayed, the server allocates space for it. If you create an application that
uses many objects and requires a large amount of server memory to display those objects,
then, on servers with limited memory, you may need to specially manage or limit the number
of frames that are displayed.

4.3.2 The Pushpin

On a command frame, the pushpin at the upper-left corner is unpinned by default. The push-
pin is controlled by using both the FRAME_CMD_DEFAULT_PIN_STATE and the FRAME_

CMD_PIN_STATE attributes. FRAME_CMD_DEFAULT_PIN_STATE controls the initial state of
the command frame’s pin when the frame goes from unmapped (withdrawn) to mapped state.
It is valid for both mapped and unmapped frames. However, if the frame is currently mapped,
the change will be visible only on the next transition from unmapped to mapped state. Valid
values for the state are defined in <xview/frame.h> and include: FRAME_CMD_PIN_IN and
FRAME_CMD_PIN_OUT.

FRAME_CMD_PIN_STATE returns the current state of the pin. It is valid for both mapped and
unmapped frames. For unmapped frames this always returns FRAME_CMD_PIN_OUT.

Fram
es

Frames 69

A simple example can demonstrate how some of the frame attributes interact. The program
in Example 4-6 builds a base frame with a panel button that says, “Hello.” If selected, a com-
mand frame pops up. The new frame has a panel button that says, “Push Me,” and if pushed,
“Hello World” is printed to stdout. If the command frame’s pushpin is out, once the Push Me
button is selected, the frame is taken down. To get the frame up again, the user must select
Hello again. However, if the pin is in, then the frame remains up for repeated use. Selecting
Hello while the frame is already up causes the command frame to be raised to the top of the
window tree. This is useful in case the command frame gets obscured by other windows.

Example 4-6. Using several frame attributes

/*
* popup.c -- popup a frame and allow the user to interact with
* the new popup frame.
*/
#include <xview/xview.h>
#include <xview/panel.h>

Frame frame; /* top level application base-frame */
Frame subframe; /* subframe (FRAME_CMD) is a child of frame */

main(argc, argv)
int argc;
char *argv[];
{

Panel panel;
int show_cmd_frame(), pushed();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

/* Create base frame */
frame = (Frame)xv_create(NULL, FRAME,

FRAME_LABEL, argv[0],
NULL);

/* Install a panel and a panel button */
panel = (Panel)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Hello",
PANEL_NOTIFY_PROC, show_cmd_frame,
NULL);

/* Create the command frame -- not displayed until XV_SHOW is set */
subframe = (Frame)xv_create(frame, FRAME_CMD,

FRAME_LABEL, "Popup",
NULL);

/* Command frames have panels already created by default -- get it */
panel = (Panel)xv_get(subframe, FRAME_CMD_PANEL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Push Me",
PANEL_NOTIFY_PROC, pushed,
NULL);

xv_main_loop(frame);
}

70 XView Programming Manual

Example 4-6. Using several frame attributes (continued)

/* Called when base frame’s button is pushed -- show/raise subframe */
show_cmd_frame(item, event)
Frame item;
Event *event;
{

xv_set(subframe, XV_SHOW, TRUE, NULL);
}

/* Called when command frame’s button is pushed */
pushed(item,event)
Panel_item item;
Event *event;
{

printf("Hello world.\n");

/* Check to see if the pushpin is in -- if not, close frame */
/* Return value of FRAME_CMD_PIN_STATE is cast to int */
if ((int)xv_get(subframe,

FRAME_CMD_PIN_STATE) == FRAME_CMD_PIN_IN)
xv_set(subframe, XV_SHOW, FALSE, NULL);

}

Several things are noteworthy in this sample program. First, there is only one Panel vari-
able (called panel). It is used to store the handle to the panel created by the base frame. It
does not matter that this variable is also used to store the return value of the call to:

xv_create(frame, PANEL, NULL)

because its use is temporary. This demonstrates that the programmer need not maintain
handles to objects that are never referenced. A common programming efficiency error is to
declare many variables that reference objects created via xv_create() and then never to
use them. The panel is needed, but only long enough to use it as the owner of the panel but-
ton that is created. Once ownership is established, the handle to that panel is no longer
needed. Therefore, the variable is reused in the call that gets the already created panel from
the subframe. This call is as follows:

panel = (Panel)xv_get(subframe, FRAME_CMD_PANEL)

The handles to the buttons are never needed, so the return values of those creation calls are
ignored. On the other hand, it is always prudent to check for return values in case of error—
had the panel creation returned a NULL handle, then the buttons should not be created. The
sample programs do not demonstrate this type of error checking in order to keep the
examples simple and readable.

4.3.3 The FRAME_DONE_PROC Procedure

If the pushpin is pushed in by the user, the application has no knowledge of this action. How-
ever, if the user pulls the pin out, then the toolkit calls the command frame’s
FRAME_DONE_PROC routine. By default, if the parent of command frame is NULL, then the
frame is unmapped. The programmer can override this behavior by installing another
FRAME_DONE_PROC routine. This is only needed if you want to check that the frame can be

Fram
es

Frames 71

dismissed. Suppose that the purpose of the subframe is to query for a filename. If the
filename was not given, you might want to display a notice indicating that and allow the user
to type in a filename. In this case, the FRAME_DONE_PROC is responsible for doing the neces-
sary checking and deciding whether to display a notice or to take the frame down.

When you install your own FRAME_DONE_PROC routine, XView will not take down the frame
regardless of what your code does. If you want the frame to be unmapped, by set XV_SHOW to
FALSE.

The parameter passed to your routine is a handle to the subframe itself, as shown in
Example 4-7.

Example 4-7. The subframe.c program

#include <xview/xview.h>
#include <xview/frame.h>

/*
* subframe.c -- create a base frame that has an associated subframe.
* Pull the pin out of the subframe and its FRAME_DONE_PROC procedure
* gets called.
*/
main(argc, argv)
int argc;
char *argv[];
{

Frame frame, subframe;
int done_proc();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);

subframe = (Frame)xv_create(frame, FRAME_CMD,
FRAME_DONE_PROC, done_proc,
XV_SHOW, TRUE,
NULL);

xv_main_loop(frame);
}

/*
* when the pushpin is pulled out, this routine is called
*/
done_proc(subframe)
Frame subframe;
{

/* we have the choice of vetoing or granting the user’s
* request to dismiss the frame -- if we choose to dismiss
* the frame, we must do it manually. Like so:
*/
xv_set(subframe, XV_SHOW, FALSE, NULL);
/* otherwise, we should push the pin back in */

}

The call to xv_set(XV_SHOW, FALSE) is safe because no action is taken at all if this was
not the result of the pin being pulled out. The frame will not go down (i.e., the xv_set() is
a no-op) if the pin is in or is already out. This gives the programmer the flexibility of using

72 XView Programming Manual

the same function (something like done_proc()) in other places throughout the applica-
tion. For example, it could be used in a callback routine for a panel button.

If the subframe must be taken down regardless of whether the pin is in or out, the application
should forcefully remove the pin using:

xv_set(subframe, FRAME_CMD_DEFAULT_PIN_STATE, FALSE, NULL);

Forcefully removing the pin in this fashion does not result in the frame’s done procedure
getting called. This routine is only called when the pin has been removed as a result of an
action that the user has taken and when the application has no knowledge of this action.

4.3.4 Showing Resize Corners

It should also be noted that the command frame has no resize corners as the base frame does.
This is the default behavior for command frames, but the attribute FRAME_

SHOW_RESIZE_CORNER can be set to TRUE to force the resize corners to be shown. This
allows the user to resize command frames the same as base frames. Base frames have resize
corners by default, but they can be turned off at creation time or at any time before the frame
is mapped to the screen. After the frame has been displayed, the resize corners may not be
turned off.

4.3.5 Minimum and Maximum Frame Sizes

The attribute FRAME_MIN_SIZE allows you to specify a minimum a frame can be resized. It
takes two integer parameters, specifying the minimum width and height of the frame.
This information is passed onto the window manager as part of the WM_
NORMAL_HINTS property. Note that the minimum size is only a hint to the window man-
ager. Some window managers may choose to ignore certain application specified hints. Set-
ting both the minimum width and height to 0 effectively removes any application controlled
minimum restriction on size. Similarly, FRAME_MAX_SIZE allows you to specify a maximum
size that a frame can be resized.

4.4 Miscellaneous Attributes

Some frame attributes discussed in the following sections only work with OPEN LOOK win-
dow managers. Attributes such as FRAME_BUSY, FRAME_SHOW_RESIZE_CORNERS,
FRAME_CMD_PINSTATE communicate with the window manager. You will get unpredictable
results if you are not running an OPEN LOOK window manager or if there is no window man-
ager running at all. Fram

es

Frames 73

4.5 Busy Frames

When running the Push Me application, you might notice a delay between the time that the
Hello button is pressed and the time that the subframe is displayed. If a delay might confuse
the user about what might be happening, you can provide visual feedback that the application
is at work. You can set the FRAME_BUSY attribute for the frame that issues the request that
might cause the delay. In Example 4-6 we set the XV_SHOW attribute in the base frame. Thus,
show_cmd_frame() might have looked like the following code fragment:

show_cmd_frame(subframe,event)

Frame subframe;
Event *event;
{

xv_set(baseframe, FRAME_BUSY, TRUE, NULL);
xv_set(subframe, XV_SHOW, TRUE, NULL);
xv_set(baseframe, FRAME_BUSY, FALSE, NULL);

}

The effect of this action is that the base frame’s header will be grayed out and the cursor will
change to a timeout cursor. When the subframe has been displayed, the base frame’s appear-
ance is resumed and the cursor restored. If excessively long delays are expected, then this
method might not be adequate —all other buttons and events are suspended until the callback
routine has returned control to the Notifier.

Note that FRAME_BUSY only grays the title bar and sets the busy cursor for the frame passed
to xv_set(). If your application has many subframes and you wish each of them to
become busy, you need to set this attribute for each frame.

4.6 Frame Sizes

The size of any type of frame can be set or queried using either of two convenience functions
available from the FRAME package. They are frame_get_rect() and frame_set_
rect(). Both use a Rect data type. The origin of the frame as well as its width and height
can be set using frame_set_rect(). Of course, the frame must already be created in
order to use this function. In the following code, the frame is set at 10,10 on the screen and
the dimensions are set to 200 by 300:

Frame frame;
Rect rect;

rect.r_top = rect.r_left = 10;
rect.r_width = 200;
rect.r_height = 300;
...
frame = (Frame)xv_create(NULL, FRAME, NULL);

frame_set_rect(frame, &rect);

74 XView Programming Manual

Conversely, the dimensions as well as the position of the frame can be gotten:

extern Frame frame;
extern Rect rect;
...
frame_get_rect(frame, &rect);
printf("frame is at %d, %d and is %d by %d\n",

rect.r_left, rect.r_top, rect.r_width, rect.r_height);

If the position of a subframe is queried with:

xv_get(subframe, XV_X)

or

xv_get(subframe, XV_Y)

the values returned will be relative to the parent frame. Note: a subframe here is any frame
that is created with another frame as its owner, for example:

subframe = xv_create(frame, FRAME, ..., NULL);

4.7 Frame Colors

In general the frame’s color is determined from the value associated with the OpenWin-
dows.WindowColor resource. This color will be inherited by the frame and its subwin-
dows. In order to maintain a consistent look across tools, applications should not override
the colors chosen by the frame.

However, some applications may need to override the default color for the frame. This can
be done by creating a CMS and setting it on the frame (see Chapter 21, Color, for informa-
tion on CMS). Doing so will cause the frame to inherit the color at index 0 as the back-
ground color and the color at index n-1 as the foreground color. If the application wants the
frame to inherit colors different than those at indices 0 and n-1, it must explicitly set those
colors with WIN_FOREGROUND_COLOR and WIN_BACKGROUND_COLOR. Note that this must
happen in an xv_set() after the frame is created as the frame will override these values
during create and use the X resource values.

This is shown in Example 4-8.

Example 4-8. Changing a frame’s color

/*
* frame_color.c
* This program demonstrates how to set the frame’s foreground and
* background color and make it propagate to the children of the frame.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/cms.h>

#define RED 0
#define BLUE 1

Fram
es

Frames 75

Example 4-8. Changing a frame’s color (continued)

main(argc, argv)
int argc;
char **argv;

{
Frame frame;
Panel panel;
Cms cms;

(void)xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, 0);

cms = xv_create(NULL, CMS,
CMS_SIZE, CMS_CONTROL_COLORS + 2,
CMS_CONTROL_CMS, True,
CMS_NAMED_COLORS, "red", "blue" , NULL,
NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);

xv_set(frame,
WIN_CMS, cms,
WIN_FOREGROUND_COLOR, CMS_CONTROL_COLORS + RED,
WIN_BACKGROUND_COLOR, CMS_CONTROL_COLORS + BLUE,
NULL);

panel = (Panel)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Push Me",
NULL);

xv_main_loop(frame);
}

4.8 Child Windows

The very purpose of frames is to manage subwindows such as panels and canvases. Basi-
cally, parenting responsibilities are handled transparently by XView and do not require inter-
vention by the programmer. When creating a new object (such as a panel), you simply spec-
ify the frame as the panel’s parent or owner.

There are several attributes that can obtain subwindows and subframes from the frame.
FRAME_NTH_SUBWINDOW and FRAME_NTH_SUBFRAME are attributes that can be used with
xv_get(). Assuming the application has created a subframe, the following code fragment
will return the first subframe created:

Frame subframe;

subframe = (Frame)xv_get(frame, FRAME_NTH_SUBFRAME, 1);

76 XView Programming Manual

Similarly, if a frame creates a panel and then a canvas, you can get the canvas (because it was
the second one created) by using the call:

Canvas canvas;

canvas = (Canvas)xv_get(frame, FRAME_NTH_SUBWINDOW, 2);

If you attempt to get a subwindow or subframe index but it does not exist, xv_get() will
return NULL.

Laying out subwindows in frames is somewhat automatic, but more explicit layouts can be
accomplished by using the macro defined in <xview/frame.h> called frame_fit_all().
This macro loops on xv_get() to get each FRAME_NTH_SUBWINDOW and call win-
dow_fit() to make sure that all the subwindows fit in the frame (if possible). win-
dow_fit() also serves as a hint for the frame to give it permission to resize any of its
subwindows whenever a resize event occurs. For example, say a frame contains a canvas
subwindow, but that subwindow’s dimensions are set via XV_WIDTH and XV_HEIGHT. If the
user uses the window manager to resize the frame, the frame may or may not resize the can-
vas depending on whether or not it was given permission to do so via either of the calls to
window_fit(), window_fit_height(), or window_fit_width(). See Chapter
5, Canvases and Openwin, for more information on window_fit().

4.9 Window Loop

The procedure xv_window_loop() maps the frame passed and makes all of the applica-
tion’s other frames and windows “busy” in a way similar to using the attribute FRAME_BUSY.
However, this procedure does not cause the cursor to change to a stopwatch and the frame
header does not show the gray pattern. xv_window_loop() does not lock the screen.
The form of this procedure is:

Xv_opaque
xv_window_loop(frame)

Frame frame;

xv_window_loop() does not return until a call to xv_window_return() is made.
The form for xv_window_return() is:

void
xv_window_return(return_val)

Xv_opaque return_val;

The frame passed in to xv_window_loop() can have more than one subwindow of any
type.

Making a frame busy in this way should normally be done in a callback associated with the
frame. For example, a callback originating from a button on the frame. The return value pas-
sed in to xv_window_return() is the value returned by xv_window_loop(). Since
the screen is not locked using xv_window_loop() the user might be able to dismiss the
frame using the window manager. Doing this will cause the application to hang since
xv_window_return() was not called. You can avoid this by attaching a destroy proce-
dure to the frame; in the destroy procedure, issue a call to xv_window_return().

Fram
es

Frames 77

4.10 Removing Decorations

If a frame does not wish to be controlled by the window manager, and thus have no window
manager decorations such as resize corners or pins, the frame should set
WIN_TOP_LEVEL_NO_DECOR to TRUE. This attribute is only valid when the frame is created.
For more information, see the discussion of override_redirect in Volume One, Xlib
Programming Manual.

4.11 Setting Properties and Saving Command-line Options

Several frame attributes support setting window properties according to the specifications of
the ICCCM (see Volume Zero, X Protocol Reference Manual, for more information on
ICCCM). These attributes support the WM_SAVE_YOURSELF and WM_COMMAND protocols that
set an application’s startup options. Also refer to Section 20.9.5, “Modifying A Frame’s
Destruction,” for more information on saving command-line options.

FRAME_WM_COMMAND_ARGC_ARGV lets an application set the command-line options that can
be used to (re)start it. The options passed, in addition to XView options, are stored on a
property called WM_COMMAND on the frame window. The options passed are stored by XView
and will be added to the XView options on the WM_COMMAND property on the frame window,
upon receiving a WM_SAVE_YOURSELF request from the session/window manager. The pro-
gram xprop can be used to display a window’s properties. Only one base frame window of
the application needs to have this property set. This property is read possibly by a session
manager to restart clients. The first argument is the number of strings passed in the second
argument. The second argument is a pointer to an array containing the command-line option
strings. The strings passed are copied and cached on the frame. The following code shows
an example using FRAME_WM_COMMAND_ARGC_ARGV.

Framebase_frame, second_frame;
char *argv[10];
int argc = 0;

argv[argc++] = "-I"
argv[argc++] = "ls"
argv[argc++] = "-bold_font"
argv[argc++] = "courier-bold-14"

/*
* This ensures that the above options are stored
* on the base frame
*/
xv_set(base_frame, FRAME_WM_COMMAND_ARGC_ARGV,

argc, argv, NULL);

Setting this attribute’s arguments to NULL and -1 prevents any command-line option informa-
tion from being saved on the frame. If there are two or more base frames in the application,
the second and subsequent base frames should set their FRAME_WM_COMMAND_ARGC_ARGV

attributes’ arguments to NULL and -1 if they want to avoid multiple invocations of the same
application by the session manager.

78 XView Programming Manual

/*
* This ensures that no command-line information will
* be stored on this frame.
*/
xv_set(second_frame,

FRAME_WM_COMMAND_ARGC_ARGV, NULL, -1, NULL);

FRAME_WM_COMMAND_ARGC returns the number of command-line option strings stored on the
frame. FRAME_WM_COMMAND_ARGV returns the array containing the command-line option
strings stored on the frame. The strings in the array must not be modified by client programs.
If the value returned is -1, this means that no command-line information is stored on the
frame.

FRAME_WM_COMMAND_STRINGS works in a similar fashion to FRAME_WM_COM-

MAND_ARGC_ARGV, but it uses strings. It lets an application set the command-line options that
can be used to (re)start it. The options passed, in addition to XView options are stored on a
property called WM_COMMAND on the frame window. The following example uses
FRAME_WM_COMMAND_STRINGS.

Framebase_frame, second_frame;

/* Ensure that the given options are stored on
* on the base frame
*/
xv_set(base_frame, FRAME_WM_COMMAND_STRINGS,

"-I",
"ls",
"-bold_font",
"courier-bold-14",
NULL,

NULL);

Setting this attribute to -1 prevents any command-line option information from being saved
on the frame. For example:

xv_set(second_frame, FRAME_WM_COMMAND_STRINGS,
-1, NULL, NULL);

4.12 Destroying Frames

When the application wants to exit, the user typically initiates the action via the frame menu.
A call to xv_destroy() destroys the object as well as all objects descended from it.
Therefore, all the objects created by an application can be destroyed simply by destroying the
base frame, assuming that the base frame is the owner of all those objects. Subframes of the
base frame are included, as are icons and panels and so forth. There are exceptions to this
(such as server images or fonts), but those exceptions are covered later in chapters specific to
those objects.

Fram
es

Frames 79

The following code segment demonstrates how to destroy a base frame. When the routine
quit() is called, which calls xv_destroy_safe() on the base frame, it destroys all the
objects in the frame’s tree, including panels and panel items.

{
...
xv_main_loop(frame);
puts("The program is now done.");
exit(0);

}

quit()
{

xv_destroy_safe(frame);
}

What is significant about this segment is that there is code following the call to
xv_main_loop() so that the routine will return when no more frames are left to display.
The FRAME package keeps track of all the frames in the application. Each time a frame is
created or destroyed, the FRAME package updates its internal count of the number of existing
frames. This includes frames that are not displayed or frames that are iconified. When the
last frame is destroyed, the Notifier stops and xv_main_loop() returns. (Note that the
FRAME package has its own destruction procedures.) Most applications simply exit as shown
in the code fragment above. However, if desired, more frames can be created and the Notifier
can be restarted. For example, the following code shows how the same base frame may be
created five times, assuming that the program does not exit in some manner:

Frame frame;
int i;

for (i = 0; i < 5; i++) {
frame = (Frame)xv_create(NULL, FRAME, NULL);
...
xv_main_loop(frame);

}

For this to work, there must be a call to xv_destroy() for each frame in the application.
Granted, this example is rather silly, but consider an application driven by timer interrupts or
by network traffic listening for a particular request. Here, there may be no frames displayed
until the timer goes off or until the network protocol is initiated. Once this happens, the
application that requires user input will create the base frames and enter
xv_main_loop(). When the user is done and has destroyed all the frames,
xv_main_loop() returns and the application can continue waiting for alarm timeouts or
listening for network traffic.

80 XView Programming Manual

4.13 Frame Resize and Repaint Events

This section contains some information on resize events for frames. For a detailed discussion
of events, refer to Chapter 6, Handling Input.

When the size of a window is changed or the window is moved (either by the user or pro-
grammatically), a WIN_RESIZE event is generated to give the client a chance to adjust any
relevant internal state to the new window size. You should not repaint the window when
receiving a resize event. You will receive a separate WIN_REPAINT event when a portion of
the window needs to be repainted.

Top level frames and any other top level windows, when moved, may get multiple resize
events, from the server and from the window manager. ICCCM mandates that the window
manager send these events when the top level window is moved or resized. You can detect
this with the test:

event_xevent(event)->xconfigure.send_event

which returns TRUE on events generated by the window manager. Note that all synthetic
events delivered will follow real events. For more information on the event actions man-
dated by ICCCM and of the coordinate space mapping, refer to Section L.4.1.15 of Inter-Cli-
ent Communications Manual in Volume Zero, X Protocol Reference Manual.

4.14 Frame Package Summary

Table 4-1 lists the attributes in the FRAME package; the procedures are listed below. This
information is described fully in the XView Reference Manual.

frame_get_rect()
frame_set_rect()
xv_window_loop()

Table 4-1. Frame Attributes

FRAME_ACCELERATOR FRAME_NEXT_PANE

FRAME_BUSY FRAME_NO_CONFIRM

FRAME_CLOSED FRAME_NTH_SUBFRAME

FRAME_CLOSED_RECT FRAME_NTH_SUBWINDOW

FRAME_CMD_DEFAULT_PIN_STATE FRAME_PREVIOUS_ELEMENT

FRAME_CMD_PANEL FRAME_WM_COMMAND_ARGC

FRAME_CMD_PIN_STATE FRAME_WM_COMMAND_ARGC_ARGV

FRAME_DEFAULT_DONE_PROC FRAME_WM_COMMAND_ARGV

FRAME_DONE_PROC FRAME_WM_COMMAND_STRINGS

FRAME_FOCUS_DIRECTION FRAME_X_ACCELERATOR

FRAME_FOCUS_WIN FRAME_PREVIOUS_PANE

FRAME_ICON FRAME_RIGHT_FOOTER

FRAME_INHERIT_COLORS FRAME_SHOW_FOOTER

Fram
es

Frames 81

Table 4-1. Frame Attributes (continued)

FRAME_LABEL FRAME_SHOW_HEADER

FRAME_LEFT_FOOTER FRAME_SHOW_LABEL

FRAME_MAX_SIZE FRAME_SHOW_RESIZE_CORNER

FRAME_MIN_SIZE

82 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

5
Canvases and Openwin

Perhaps the most important object in the XView Toolkit is a canvas—the area in which an
application displays graphics and handles input. The canvas object is similar to that of a
painter’s canvas. The artist’s painting is drawn onto the canvas and the canvas is mounted in
a frame. The canvas may be larger than the frame, but the person looking at the canvas only
sees what is within the boundaries of the frame. If the canvas is larger than what is viewable,
the painting can be moved around making different portions of the canvas visible.

An XView canvas object allows the user to view a graphic image that is too large for the
window or even the display screen. The viewable portion of the graphic image is part of the
viewport or view window of the image. Many different views of the image can use the same
canvas object. While each view maintains its own idea of what it is displaying, the canvas
object manages all the view windows as well as the graphic image that all views share. The
ability for the canvas to maintain different views of the graphic image is a property that is
inherited from the canvas’s superclass, the OPENWIN package. These properties provide for
splitting and scrolling views. You cannot create a canvas object with multiple views; views
are split and joined generally by the user via the attached scrollbars. It is possible to pro-
grammatically split and scroll views, but OPEN LOOK’s interface specification indicates that
scrollbars provide the ability to split views. When a view is split, each new view may be fur-
ther split into two more views, and so on. All the views are still a part of the same canvas
object.

The OPENWIN package is an example of a hidden class. You cannot instantiate an openwin
object independently from canvas or text subwindows. Figure 5-1 shows the openwin and
canvas object hierarchy.

Generic
Object (Drawable) Window Canvas(Openwin)

Figure 5-1. Canvas class hierarchy

Canvases and
Openw

in

Canvases and Openwin 85

Chapter 8, Text Subwindows, contains information about text subwindows. The canvas
object is different from the text object in that it maintains an image that can be manipulated
by the user. The openwin object, and thus the canvas object, are broken down into three
parts: the main subwindow, the view window, and the paint window.

Each view displays a portion of a corresponding paint window. The paint window need not
be the size of the corresponding view or the canvas subwindow. Figure 5-2 shows an
example of one canvas object providing separate views into one graphic image. What each
view displays is independent of what the other views display. A view may even display a
portion of an image that is currently displayed in another view.

Figure 5-2. A canvas subwindow with multiple views

5.1 Canvas Model

The components of a canvas subwindow and their relationships can be seen in Figure 5-3. To
summarize, three types of windows are involved with the canvas object:

Canvas Subwindow Owned by a frame and manages one or more views. The canvas is
subclassed from the OPENWIN package so all Openwin attributes must
be set to the instance of the canvas object.

View Window Represents the visible portion of the paint window—whenever the
paint window associated with a view window changes, it is reflected
in the view window. If there is more than one view window, the
views are tiled. Vertical and/or horizontal scrollbars can be attached
to the view subwindow to allow the user to modify which portion of

86 XView Programming Manual

paint window
(contains graphic)

view window
(contains no
graphic, has
scrollbars)

canvas subwindow
(displays union of view
window and paint window)

frame
(contains canvas)

Figure 5-3. Canvases, views, and paint windows

the paint window is displayed for that particular view. The size of the view window can vary
among all the views. Only views can be split. No graphics or user events take place in this
window.

Canvases and
Openw

in

Canvases and Openwin 87

Paint Window Graphics and events (mouse/keyboard) take place in the paint win-
dow. There is one paint window per view window. All paint win-
dows in the canvas are the same size regardless of the size of the can-
vas or of the corresponding view windows. When a view is split, the
old view reduces in size and a new view is created. With the new
view, a new paint window is created that is identical to the paint win-
dow from the old view. This includes the same visual, width, height,
depth, and graphic image. However, callback functions and event
masks are not inherited and must be manually installed in all new
paint windows.

5.2 Creating a Canvas

The CANVAS package is defined in the header file <xview/canvas.h> so programs that use can-
vases must include this file. This header file includes the OPENWIN package automatically.
Like all objects in XView, a canvas is created with xv_create():

Canvas canvas;

canvas = (Canvas)xv_create(owner, CANVAS, attrs);

Here, xv_create() returns a handle to a new canvas subwindow. The owner of a canvas
must be a FRAME object. All three subwindows of the canvas are created at this point: the
canvas subwindow, the view window and the paint window. By using this syntax, the attri-
butes of the canvas default to those set for the CANVAS package plus any attributes that may
be inherited from the owner of the canvas.

The windows in the canvas object inherit many of their attributes from the canvas’s parent,
screen, or display (depending on the window property). However, some attributes are set or
reset explicitly. For example, the attribute CANVAS_RETAINED, which controls whether the
server should retain windows, is turned on.* Toggling this attribute causes the canvas to
cycle through all of the paint windows and change their WIN_RETAINED attribute. Also, the
window has its BitGravity set to NorthWestGravity by default. This value is set by
the attribute CANVAS_FIXED_IMAGE. If TRUE, then the BitGravity property on the paint
window is set to NorthWestGravity. If FALSE, BitGravity is set to ForgetGrav-
ity. This is discussed in more detail in Section 5.3, “The Repaint Procedure.”

The width and height of the paint window and the view window default to the size of the can-
vas when it is realized. Unless otherwise specified, those sizes are governed by the object
that is the owner of the canvas.

*CANVAS_RETAINED does not affect the view windows, which are not retained.

88 XView Programming Manual

5.2.1 Drawing in a Canvas

The use of canvases implies that your application wants to display a graphic image that the
user can either manipulate or generate. In conventional (not server-client based) windowing
systems, when you request to create a window, you usually get a window back that you can
draw into. This is not exactly true for X. Although you get a window back from the request,
you are not guaranteed to be able to draw into it until it has been successfully mapped
(displayed) on the screen. In the general case for XView, this does not happen until
xv_main_loop() is called. Therefore, you should not do the following:

canvas = (Canvas)xv_create(frame, CANVAS, NULL);
win = (Window)xv_get(canvas_paint_window(canvas), XV_XID);

XDrawString(dpy, win, gc, x, y, "Hello World.", 11);

Instead, you should design your program such that your repaint routine knows exactly what
the contents of the canvas should be so that it can reproduce the image. Here are two helpful
hints for typical applications:

• Use your repaint proc. Never call any graphics routines before xv_main_loop() is
called. Routines that draw anything into windows should be called directly or indirectly
from your canvas repaint procedure or event handler.

• Use internal data. The repaint routine should be able to repaint a canvas window based
on some sort of internal data. To maintain system performance, the data should be in
core; it should not be on disk (in a file), from a network connection or from interaction
with the user. If the data is received from those media, the data should already have been
updated by the time the repaint routine is called.

To give you an idea of the issues involved here, we’ll look at several common applications
that typically use canvases.

5.2.1.1 Draw programs

Draw programs are usually applications that maintain a display list of geometric shapes such
as lines, circles, rectangles and so on. The user generates these shapes using the mouse or
keyboard. The canvas’s WIN_EVENT_PROC procedure handles mouse and keyboard input
from the user, and the user interface generally describes the shape that is currently being
drawn.

When the user initiates mouse clicks, drags or keyboard actions, the event handler picks up
these events and is fully expected to modify the canvas window accordingly (e.g., by “rubber
banding” the object). Upon receipt of the appropriate event (button release, perhaps), the
event handler adds the new geometric item to the display list.

In order to reconstruct what the canvas should be displaying, the repaint routine references
the updated display list. Obviously, the display list should contain enough information in it
to be able to tell the repaint routine what colors to use, line thickness, and so on.

Canvases and
Openw

in

Canvases and Openwin 89

5.2.1.2 Paint programs

Paint programs are pixel based, meaning that the image that the user manipulates is typically
a bitmap (monochrome) or a color pixmap. In this case, the pixmap is used as the internal
data. If the user uses a brush to modify the image, the modification to the canvas window is
handled in the event procedure as above, but the image that the user is editing is also updated
so that when the repaint routine is called, it can use a function such as XCopyArea() to
copy the portion of the image onto the canvas window. This is also a case where the event
handler may draw directly onto the window.

If the program starts up and already has an image to work with (e.g., the user requests to load
a previously saved image that was stored into the file), do not render the image onto the paint
window before xv_main_loop() is called. Eventually, the repaint procedure will be
called and the image should be rendered at that time.

5.2.1.3 Text-based programs

If you want to display text, as in desktop publishing packages, or if you just want a simple
program that displays a window with text, then the same thing applies as with the previous
examples: render the text in the repaint routine based on internal data (e.g., a text string or
set of strings). Again, the data must contain enough information to allow your repaint routine
to repaint the text as it was intended (e.g., font type, style, size, color).

Event-handling routines that accept keyboard input may render the new text directly to the
canvas window, but the text entered should also be saved internally for the benefit of the
repaint routine.

5.2.1.4 Visualization programs

It is common to have an application that displays the time, network traffic, CPU usage, file
system integrity, or the current Dow Jones Industrial Averages. Such applications get their
data from a variety of sources such as the system clock, UNIX sockets, the file system or the
output of another application that has been forked. In the past, such applications might have
been written where the repaint routine accesses the information. This model does not apply
in a networked windowing system because of its asynchronous nature; the window system
and the application may not be in sync. A program should have a separate method for
retrieving data apart from the repaint procedure. See the program animate.c in Chapter 20,
The Notifier, for an example.

In many of these cases (with the possible exception of the meters), if the application is well
designed, the repaint routines and the event handlers may be calling the same internal rou-
tines which render graphics. Therefore, when writing functions that draw into a canvas, you
should consider the generic case where the function could be called from a repaint routine,
event handler or anywhere else. The canvas_event.c shown in Example 5-3 calls the repaint
routine directly from the event handler.

90 XView Programming Manual

5.2.1.5 Rendering graphics

The preferred form of rendering graphics from an XView application is to use Xlib graphics
calls. Volume One, Xlib Programming Manual, has a complete discussion of Xlib graphics
programming. Throughout this book, you will find examples of drawing into canvases using
Xlib graphics routines. Appendix F, Example Programs, has several longer programs that
demonstrate Xlib graphics. The XView graphics model, which is available, is almost identi-
cal to the SunView model for graphics and is provided for backwards compatibility with
SunView. Because XView graphics calls are wrappers to the underlying Xlib calls, these
functions are not recommended for graphics-intensive applications or for use by program-
mers who are not already familiar with SunView.

5.3 The Repaint Procedure

It is always the responsibility of the application to repaint its canvas at any time. Even
though there may be a retained canvas that the X server maintains, there is no guarantee that
there will be enough memory for the server to maintain it. For this reason, all canvases
should install a routine to handle repainting.

To install a repaint procedure, use the attribute CANVAS_REPAINT_PROC and specify a call-
back function as its value:

extern void my_repaint_proc();
...
canvas = (Canvas)xv_create(frame, CANVAS,

...
CANVAS_REPAINT_PROC, my_repaint_proc,
...
NULL);

The repaint routine installed is called any time all or a portion of the canvas needs to be
re-displayed. This always happens when the canvas is mapped on the screen for the first time
(causing an Expose event). If the canvas is not retained, the repaint procedure is called
when:

• The canvas is resized.

• The canvas has been moved in front of obscuring windows.

• The user uses the scrollbar to render a different part of the paint window visible.

If the canvas is retained and has not changed size, the server refreshes the window without
calling the repaint routine. This includes all exposures except for those that are the result of
a resize of the window or the initial mapping of the canvas onto the screen. However, if the
canvas is not retained, the repaint routine is called in all of these cases.

The repaint callback routine will be called once for each view the canvas is maintaining. If
the canvas has been split several times, then the repaint routine will get called for each view
that needs repainting. One of the parameters to the callback routine is a variable that
describes the region that has been exposed or needs repainting. When a window is initially

Canvases and
Openw

in

Canvases and Openwin 91

displayed on the screen, the exposed region is the entire canvas. However, this area may not
be a contiguous area of the window. For example, as shown in Figure 5-4, if a window that is
partially obscured by two windows is brought forward, two separate areas are exposed.

total 49
 1 sbin/ 3 etc/ 1 preserve/
 1 5include 1 hosts/ 1 pub/
 1 5lib/ 2 include/ 1 sccs
 1 Xlir3@ 1 kvm 1 share/
 1 adm@ 4 lib/ 1 spool@
 6 bin/ 1 local/ 1 sqps
 1 boot/ 8 lost+found/ 1 stand/
 1 demo/ 1 man@ 1 sys@
 1 diag/ 1 mdc/ 1 tmp@
 1 dict 1 old/ 2 ucb/
colorful-96%

Before
Window partially obscured

After
Exposed in one view

XView Programming Manual

Volume Seven, XView Programming Manual, is a
complete programmer’s guide to XView Version
2. XView stands for X Window System-based
Visual/Integrated Environment for Workstations.
XView was developed by Sun Microsystems and
is derived from Sun’s proprietary programming
toolkit, Sun View. Its foremost design goal is to
provide the OPEN LOOK user interface for the X
applications. Existing Sun View applications can
be easily ported to XView and run under the X
Window

XView Programming Manual

Volume Seven, XView Programming Manual, is a
complete programmer’s guide to XView Version
2. XView stands for X Window System-based
Visual/Integrated Environment for Workstations.
XView was developed by Sun Microsystems and
is derived from Sun’s proprietary programming
toolkit, Sun View. Its foremost design goal is to
provide the OPEN LOOK user interface for the X
applications. Existing Sun View applications can
be easily ported to XView and run under the X
Window

total 49
 1 sbin/ 3 etc/ 1 preserve/
 1 5include 1 hosts/ 1 pub/
 1 5lib/ 2 include/ 1 sccs
 1 Xlir3@ 1 kvm 1 share/
 1 adm@ 4 lib/ 1 spool@
 6 bin/ 1 local/ 1 sqps
 1 boot/ 8 lost+found/ 1 stand/
 1 demo/ 1 man@ 1 sys@
 1 diag/ 1 mdc/ 1 tmp@
 1 dict 1 old/ 2 ucb/
colorful-96%

Figure 5-4. Window before and after an Expose event

The attribute WIN_COLLAPSE_EXPOSURES governs how many times the repaint routine is
called. By default, XView collapses Expose (and GraphicsExpose) X events destined
for the same window; that is, XView waits for the exposure count member to reach zero.
After all exposure X events have arrived (when count == 0), XView generates a
WIN_REPAINT event and calls the repaint procedure. This WIN_REPAINT represents all the
areas in the window that have been damaged (it can be a disjoint set of rectangles). The X
event associated with the WIN_REPAINT event (accessed through the event_xevent()
macro) represents a bounding rectangle of all the damaged areas in the window (basically the
union of all the damaged areas in the window).

However, sometimes the application wants to monitor the incoming Expose (and Gra-
phicsExpose) X events, monitoring piece by piece the count member in the Expose X
event itself. This can be done by setting WIN_COLLAPSE_EXPOSURES to FALSE on the can-
vas’s paint window. As exposures come into a window with this attribute set to FALSE, they
will be immediately sent to the client’s repaint procedure. The client will thus receive sev-
eral WIN_REPAINT events, all for the same window. The area of exposure is set to each
region as it is exposed.

By default, the repaint routine is called once per window exposed. However, there may be
situations where there are more windows exposed in the same canvas object. For example, in
Figure 5-5, two view windows have been exposed as a result of bringing the window to the
top of the window stack. In this case, the repaint routine will be called twice—once for the

92 XView Programming Manual

paint window of each view exposed. Only one area of each view window is exposed, so the
value of the WIN_COLLAPSE_EXPOSURES attribute does not apply.

XView Programming Manual

Volume Seven, XView Programming Manual, is a
complete programmer’s guide to XView Version
2. XView stands for X Window System-based
Visual/Integrated Environment for Workstations.
XView was developed by Sun Microsystems and
is derived from Sun’s proprietary programming
toolkit, Sun View. Its foremost design goal is to
provide the OPEN LOOK user interface for the X
applications. Existing Sun View applications can
be easily ported to XView and run under the X
Window

Before
Window partially obscured

After
Exposed in two views

XView Programming Manual

Volume Seven, XView Programming Manual, is a
complete programmer’s guide to XView Version
2. XView stands for X Window System-based
Visual/Integrated Environment for Workstations.
XView was developed by Sun Microsystems and
is derived from Sun’s proprietary programming
toolkit, Sun View. Its foremost design goal is to
provide the OPEN LOOK user interface for the X
applications. Existing Sun View applications can
be easily ported to XView and run under the X
Window

Figure 5-5. Window with two views before and after an Expose event

If at any time you need to get the entire viewable area of the canvas, or more specifically, of
an arbitrary paint window within the canvas, you can use the attribute CANVAS_VIEW-

ABLE_RECT:

Rect *rect;
Xv_Window pw = canvas_paint_window(canvas);

rect = (Rect *)xv_get(canvas, CANVAS_VIEWABLE_RECT, pw);

The rect pointer returned points to an internal data structure that describes the viewable
area of the paint window specified. This structure changes for each call, so if the value is to
be retained, it should be copied.

Before the repaint routine is called, the window can be cleared in one of two ways. If
CANVAS_AUTO_CLEAR is set to TRUE, then the paint window being repainted is automatically
cleared. CANVAS_AUTO_CLEAR is really defined as OPENWIN_AUTO_CLEAR since this is a
property of the OPENWIN package. Automatically clearing the window happens any time the
window needs repainting. This means that the exposed area represents the entire window. If
this attribute is set to FALSE (the default), the repaint routine should prepare to clear all, or
portions of, the window that needs to be repainted. The contents of the window in the
exposed areas is undefined. If you are going to repaint those areas opaquely (that is, leave no
transparent portions), then you do not need to clear the area. However, if any transparent
portion of the area will be repainted (e.g., if your gc.function is set to GXxor), you
should clear the window first by using XClearArea() or XClearWindow().

Canvases and
Openw

in

Canvases and Openwin 93

Alternatively, the window may be cleared automatically by the Xlib internals if the window
has actually changed size. The BitGravity attribute for the window controls whether the
data in the window is cleared or just moved around to different locations of the window
according to its new size. If BitGravity is set to ForgetGravity, then the data in the
window is discarded, resulting in the window getting cleared and the canvas’s repaint proce-
dure getting called. As mentioned before, this value can be set by setting the attribute
CANVAS_FIXED_IMAGE to FALSE. But to have more direct control over the BitGravity of
the window, the window attribute WIN_BIT_GRAVITY may be set to any of the legal values
provided by Xlib (ForgetGravity, NorthGravity, NorthWestGravity and so on).
Section 4.3.3, “Bit Gravity,” in Volume One, Xlib Programming Manual, discusses this in
full detail. Note: this should not be confused with WIN_WINDOW_GRAVITY which controls the
reposition of subwindows when a parent window is resized. This task is left to the FRAME

package, since it controls subwindow layout.

If the attribute CANVAS_CMS_REPAINT is set to TRUE, the repaint procedure is called automat-
ically whenever a new colormap segment is set on the canvas or the foreground and back-
ground colors of the canvas are changed using WIN_FOREGROUND_COLOR and WIN_BACK-

GROUND_COLOR.

The parameters to the repaint routine provide information about which window and which
areas within the window need to be repainted.

The repaint procedure takes one of two different forms:

void
repaint_proc(canvas, paint_window, repaint_area)

Canvas canvas;
Xv_Window paint_window
Rectlist *repaint_area;

or:

void
repaint_proc(canvas, paint_window, dpy, xwin, area)

Canvas canvas;
Xv_Window paint_window
Display *dpy;
Window xwin;
Xv_xrectlist *area;

The routine takes the first or second form depending on the value of the attribute
CANVAS_X_PAINT_WINDOW. If FALSE, the first, simpler form of the repaint procedure is
called. If TRUE, the repaint routine gets passed the parameters shown in the second form.
The second method is more useful since it saves you from writing code for extracting the
Display and the XID of the paint window.

In both forms, the first two parameters are rather obvious—the paint_window is the paint
window associated with the canvas that needs repainting (not the view window). The
paint_window contains an X window whose XID can be gotten by using xv_get():

Window xwin = (Window)xv_get(paint_window, XV_XID);

xwin is set to the actual X window referenced by the paint window. This is the way to obtain
the XID from the paint window because the first form of the repaint procedure (when
CANVAS_X_PAINT_WINDOW is FALSE) does not provide a handle for you.

94 XView Programming Manual

In the first form of the repaint procedure, the only other parameter is the repaint_area.
This is a linked list of rectangular areas in the paint window that have been exposed and need
to be repainted. The Rectlist type is a linked list of Rect’s as shown in <xview/rect.h>.
The declaration for the Rect type is:

typedef struct rect {
coord r_left, r_top;
short r_width, r_height;

} Rect;

The type coord is #define’d as type short. The Rectlist is declared in
<xview/rectlist.h> as:

typedef struct rectnode {
struct rectnode *rn_next; /* Pointer to next rectnode */
struct rect rn_rect;

} Rectnode;

typedef struct rectlist {
coord rl_x, rl_y; /* Offset to apply to each rect

* in list including bound */
struct rectnode *rl_head; /* Pointer to first rectnode */
struct rectnode *rl_tail; /* Pointer to last rectnode */
struct rect rl_bound; /* Describes bounding rect of

* all rects in list */
} Rectlist;

The repaint_area parameter is of type Rectlist, so the application has several ways it
can approach repainting the window. It could just ignore the parameter and repaint the entire
window, or it could repaint the entire area described by the rl_bound field of the
rectlist structure or it could loop through all the Rectnode’s and repaint those areas
individually. Deciding which method to choose should be based on how complicated the
redrawing is.

When CANVAS_X_PAINT_WINDOW is set to FALSE, the internal clipping for the paint window
is set to be the same region or regions described by the repaint parameter of the repaint rou-
tine. In most cases, this means that OPENWIN_AUTO_CLEAR will only clear those areas—not
the entire window.* The default behavior may be overridden by setting WIN_NO_
CLIPPING to TRUE for the canvas. Setting this attribute cycles through all the paint win-
dows in the canvas and sets the window property WIN_NO_CLIPPING. Having the clipping
on the window turned off means that OPENWIN_AUTO_CLEAR will cause the entire window to
be cleared.†

By setting the attribute CANVAS_X_PAINT_WINDOW to TRUE, the repaint routine gets passed
the extra X-specific parameters as shown in the second form of the repaint procedure. These
extra parameters include handles to the Display and the X window of the paint_
window.

*For those using the SunView-compatible drawing routines such as pw_vector(), rendering is clipped to the area
or areas described by repaint_area.
†This also affects the SunView-compatible routines—pw_vector() will not be clipped.

Canvases and
Openw

in

Canvases and Openwin 95

Example 5-1 shows how a repaint procedure might be used.

Example 5-1. The line.c program

/*
* line.c -- demonstrates installing a repaint routine in a canvas.
* The routine is called whenever the canvas needs to be repainted.
* This usually occurs when the canvas is exposed or resized.
*/
#include <X11/Xlib.h>
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/xv_xrect.h>

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
void canvas_repaint_proc();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);

(void) xv_create(frame, CANVAS,
CANVAS_REPAINT_PROC, canvas_repaint_proc,
CANVAS_X_PAINT_WINDOW, TRUE,
NULL);

xv_main_loop(frame);
}

/*
* repaint routine draws a line from the top left to the bottom right
* corners of the window
*/
void
canvas_repaint_proc(canvas, paint_window, dpy, xwin, xrects)
Canvas canvas; /* unused */
Xv_Window paint_window; /* unused */
Display *dpy;
Window xwin;
Xv_xrectlist *xrects; /* unused */
{

GC gc;
int width, height;

gc = DefaultGC(dpy, DefaultScreen(dpy));
width = (int)xv_get(paint_window, XV_WIDTH);
height = (int)xv_get(paint_window, XV_HEIGHT);

XDrawLine(dpy, xwin, gc, 0, 0, width, height);
}

96 XView Programming Manual

Because the program uses Xlib calls (and thus, the repaint routine is being passed different
parameters), the header files <X11/Xlib.h> and <xview/xv_xrect.h> must be added at the top
of the program. The parameters dpy and xwin are handles to the X Display and the X
Window, respectively. The GC (graphics context) is taken from the default GC of the screen.

The xrects parameter represents the exposed, or “damaged,” region of the paint window.
The Xv_xrectlist is declared in <xview/xv_xrect.h> as:

#define XV_MAX_XRECTS 32
typedef struct {

XRectangle rect_array[MAX_XRECTS];
int count;

} Xv_xrectlist;

When the canvas is first displayed, this region will be the entire paint window (or the portion
that is viewable by the view window). But in cases where another window that has partially
obscured it moves away, perhaps only a portion of the paint window will need repainting.
Therefore, the xrects variable can aid in setting the clip rectangles in the GC, as shown in
Example 5-2.

Example 5-2. Repainting objects within a damaged region

/* canvas_repaint_proc()
*
* Draws onto the canvas using Xlib drawing functions.
*
* Uses the current clipping rectangle to:
* 1. Restrict graphics output by setting the
* clip_mask in the graphics context.
* 2. Do "smart repainting" by only painting the objects
* that lie within the damaged region (not being done
* in this example).
*/
void
repaint_proc(canvas, paint_window, display, xid, xrects)

Canvas canvas;
Xv_Window paint_window;
Display *display;
Window xwin;
Xv_xrectlist *xrects;

{
extern GC gc;
int width, height;

width = (int)xv_get(paint_window, XV_WIDTH);
height = (int)xv_get(paint_window, XV_HEIGHT);

/*
* Set clip rects, if any
*/
if (xrects)

XSetClipRectangles(display, gc, 0, 0, xrects->rect_array,
xrects->count, Unsorted);

else {
XGCValues gc_val;

gc_val.clip_mask = None;

Canvases and
Openw

in

Canvases and Openwin 97

Example 5-2. Repainting objects within a damaged region (continued)

XChangeGC(display, gc, GCClipMask, &gc_val);
}

XDrawLine(display, xwin, gc, 0, 0, width, height);
}

Because this routine sets the clip mask of the GC, we want to be sure that we do not use the
default GC of the screen as we did in Example 5-2 or it will interfere with other programs
(such as the window manager). The GC shown here is declared as extern, assuming that
the application has created it somewhere else using XCreateGC().

5.4 Controlling Canvas Sizes

The size of the canvas subwindow is usually determined by the frame window. Thus, the
canvas changes as the user resizes the frame. Applications largely concern themselves with
the size of the paint window.* The paint window does not affect the size of the viewable
canvas, but the viewable portion of the paint window is important.

Although the width and height of the canvas subwindow can be set explicitly, unless done so,
the default size of the subwindow and the paint window is determined by the parent frame. If
the frame resizes, the canvas object resizes proportionally according to how the frame
chooses to resize the canvas. If several other windows (canvases, panels, whatever) are in
the frame, the frame might choose to lay out and size those subwindows differently (accord-
ing to available and required space from other windows). The canvas window itself, as well
as all window objects, can be sized using XV_WIDTH and XV_HEIGHT.

5.4.1 Automatic Canvas Sizing

The paint window’s size may fluctuate with that of the canvas subwindow’s size. The attri-
butes CANVAS_AUTO_EXPAND and CANVAS_AUTO_SHRINK maintain the relation of the canvas
subwindow and paint window in the event of any kind of window resizing. Both of these
attributes default to TRUE, allowing the paint window to always correspond to the size of the
canvas subwindow. If the canvas subwindow becomes larger, the paint window size changes
to that size. If the frame changes size, the canvas subwindow changes size and so does the
paint window. This happens regardless of how many view windows there are. The size of
view windows does not affect the size of the paint window.

Specifically, if CANVAS_AUTO_EXPAND is TRUE, then the width and height of the paint win-
dow cannot be less than that of the canvas subwindow. Setting the attribute
CANVAS_AUTO_EXPAND allows the paint window to grow bigger as the user stretches the win-
dow. If a resize of the subwindow occurs such that the size of the paint window is less than
the size of the canvas subwindow, the paint window is expanded to be at least that size.

*There may be more than one paint window to a canvas; but all paint windows in a canvas are the same size, so it’s a
moot point.

98 XView Programming Manual

Conversely, if the canvas subwindow’s size shrinks, then the paint canvas size does not
change because its size is already greater than or equal to the size of the canvas subwin-
dow—no expansion is necessary.

If CANVAS_AUTO_SHRINK is TRUE, the canvas object checks that width and height of the paint
window are not greater than that of the canvas subwindow. Setting CANVAS_AUTO_SHRINK

forces the paint window to grow smaller as the size of the canvas subwindow gets smaller. If
the user resizes the frame such that the canvas subwindow is smaller than the size of the paint
window, then the paint window is reduced to the size of the new subwindow.

You can also set a minimum width and height for the canvas using the attributes
CANVAS_MIN_PAINT_WIDTH and CANVAS_MIN_PAINT_HEIGHT. Regardless of whether or
not CANVAS_AUTO_SHRINK is set to TRUE or FALSE, the attributes CANVAS_MIN_

PAINT_WIDTH and CANVAS_MIN_PAINT_HEIGHT impose the minimum CANVAS_

WIDTH and CANVAS_HEIGHT respectively.

5.4.2 Explicit Canvas Sizing

The attributes CANVAS_WIDTH and CANVAS_HEIGHT can be set to establish the size of the
paint window. Automatic sizing should be turned off. Otherwise, as soon as the canvas win-
dow is realized, the paint window may be automatically resized to the new dimensions. This
all depends on whether either or both of the auto-expand or auto-shrink attributes are set.
The following code fragment shows that one can be set and the other unset for specific needs:

Canvas canvas;

canvas = (Canvas)xv_create(frame, CANVAS,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS_AUTO_EXPAND, TRUE,
CANVAS_WIDTH, 100,
CANVAS_HEIGHT, 200,
NULL);

With these settings, the paint window will initially be set to 100 by 200. If the subwindow is
realized at a larger size, the canvas will be expanded to the new dimensions. That is, if the
frame in which the canvas resides is larger, it may affect the initial size of the paint window.
However, if the canvas is realized or resized at smaller dimensions, the canvas will retain its
original size. In short, these settings will force the paint window to grow to the maximum
size that the window will ever be—it will never shrink. In typical usage, you would set the
auto-expand and auto-shrink attributes to FALSE and explicitly set CANVAS_WIDTH and
CANVAS_HEIGHT. Alternatively, you would not initialize the width and height and set both
CANVAS_AUTO_EXPAND and CANVAS_AUTO_SHRINK to TRUE. A draw program might allow
the paint window to be sized automatically, since the display list of geometric objects is the
underlying feature of the program. However, a paint program would set explicit width and
height attributes of the graphic, disallowing any resizing of that graphic.

Canvases and
Openw

in

Canvases and Openwin 99

The following code fragment creates a canvas with a fixed-size paint window that is not
affected by resizing:

Canvas canvas;

canvas = (Canvas)xv_create(frame, CANVAS,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS_AUTO_EXPAND, FALSE,
CANVAS_WIDTH, 1000,
CANVAS_HEIGHT, 1000,
NULL);

This call sets the initial size of the paint window to 1000 by 1000 pixels. The origin of the
paint window’s coordinate system is the upper-left corner (0,0) and the lower-right corner
(CANVAS_WIDTH-1, CANVAS_HEIGHT-1). Note that we did not set the size of the
canvas subwindow. Instead, we allowed it to be determined by the frame size. The size of
the paint window remains constant regardless of how the frame and canvas subwindow is
resized. If the frame or the canvas subwindow resizes, the subwindow merely changes its
view of the underlying paint window, which remains constant.

In the following code fragment, we set the size of the canvas subwindow, using generic attri-
butes:

Canvas canvas;

canvas = (Canvas)xv_create(frame, CANVAS,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS_AUTO_EXPAND, FALSE,
CANVAS_WIDTH, 1000,
CANVAS_HEIGHT, 1000,
XV_WIDTH, 200,
XV_HEIGHT, 100,
NULL);

Here, a canvas subwindow is created that is 200 pixels wide and 100 pixels high. All other
attributes about this canvas object are the same as the previous example: the paint window is
going to be 1000x1000 in width and height. The problem with this canvas is that the user has
no way to view different parts of the paint window. To handle that, scrollbars should be atta-
ched to the canvas to provide scrolling. See Section 5.5, “Scrolling Canvases.”

5.4.3 Tracking Changes in the Canvas Size

In the event that the canvas paint window has been resized, the program has the opportunity
to track this event by installing a callback routine. This routine is installed using CANVAS_

RESIZE_PROC. The client’s resize procedure is called only when the width or height of the
canvas’s paint window changes. Its form is:

void
sample_resize_proc(canvas, width, height)

Canvas canvas;
int width;
int height;

100 XView Programming Manual

The parameters to the resize procedure are the canvas, and the width and height of the
canvas.

If you need to handle resize events for the canvas or the view windows, provide an event
handler for those windows, using the attributes WIN_EVENT_PROC and WIN_CON-

SUME_EVENTS (see Section 5.7, “Handling Input in the Canvas Package,” for more informa-
tion).

5.5 Scrolling Canvases

Many applications need to view and manipulate a large object through a smaller viewing
window. To facilitate this, packages that are subclassed from the openwin class may have
scrollbars attached to their subwindows.

The following code fragment creates a canvas that can be scrolled in both directions:

Canvas canvas;
Scrollbar h_scrollbar, v_scrollbar;

canvas = (Canvas)xv_create(frame, CANVAS,
CANVAS_AUTO_EXPAND, FALSE,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS_WIDTH, 1000,
CANVAS_HEIGHT, 1000,
NULL);

h_scrollbar = (Scrollbar)xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_HORIZONTAL,
NULL);

v_scrollbar = (Scrollbar)xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL,
NULL);

Because the SCROLLBAR package is being used here, the header file <xview/scrollbar.h> must
be included. Chapter 10, Scrollbars, discusses scrollbars more completely and also gives fur-
ther examples of how to scroll canvases.

The owner of the scrollbars is the canvas so that the scrollbars are automatically attached to
the canvas’s view. If the user scrolls the canvas, your canvas’s repaint procedure will be
called provided that the canvas’s WIN_RETAINED attribute is set to FALSE. This is important
because setting WIN_RETAINED to TRUE assumes that you are not interested in handling
repainting for scrolling. In other words, as long as the user does not do anything that changes
the contents of the image, you do not need to be informed when the user scrolls the image. If
you want to be informed of scrolling, set WIN_RETAINED to FALSE and your repaint routine
will be called with the exposed area parameter describing the new area that just scrolled into
view.* If there are many views in the canvas, the paint window associated with the view that
scrolled is in the second parameter to the repaint function: the paint_window.

*The exposed area passed to the repaint procedure is of type Xv_xrectlist if CANVAS_X_PAINT_WINDOW is
set to TRUE or Rectlist if CANVAS_X_PAINT_WINDOW is set to FALSE.

Canvases and
Openw

in

Canvases and Openwin 101

5.6 Splitting Canvas Views

There are two methods by which the application may split the views of a canvas (or any
openwin-classed object). The first method is for the user to use the scrollbars to split views.
This method is more common and complies with the OPEN LOOK specification. The alternate
method is for the application to make calls to xv_set() with attribute-value pairs that tell
where and how a view should be split.

Whenever views are split, the following attributes are propagated from the split paint win-
dow to the new paint window:

• WIN_BACKGROUND_COLOR

• WIN_FOREGROUND_COLOR

• WIN_CMS

• WIN_COLUMN_GAP

• WIN_COLUMN_WIDTH

• WIN_CURSOR

• WIN_EVENT_PROC

• WIN_ROW_GAP

• WIN_ROW_HEIGHT

• WIN_X_EVENT_MASK

5.6.1 Splitting Views Using Scrollbars

To set up the canvas so that the user can split it using scrollbars, the canvas should have
scrollbars attached as shown in the previous example with the additional attribute
SCROLLBAR_SPLITTABLE set to TRUE:

h_scrollbar = (Scrollbar)xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_HORIZONTAL,
SCROLLBAR_SPLITTABLE, TRUE,
NULL);

v_scrollbar = (Scrollbar)xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL,
SCROLLBAR_SPLITTABLE, TRUE,
NULL);

With this attribute set, the scrollbars have the ability to split view windows in two. The user
splits the view by selecting the cable anchors at the endpoints of the scrollbars and dragging
them towards the center of the scrollbar. A pop-up menu provided with the scrollbars also
provides this functionality. The entire view will be split at the point the mouse button is
released, provided there is enough room for a new view at that point. Each view can scroll its
own underlying paint window independently of other views.

102 XView Programming Manual

5.6.2 Splitting Views Using xv_set()

Splitting a view by setting attribute-value pairs in the view is a less common method since
the scrollbar already provides this functionality. However, there is a programmatic interface
for splitting views whether or not those views have scrollbars attached to them.

The attribute OPENWIN_SPLIT is followed by a list of attribute-value pairs that indicate
specifically how a view is to be split. Only attributes that are prefixed with OPENWIN_SPLIT

may be used in this NULL-terminated list. Other attributes are ignored. The following dem-
onstrates how an arbitrary view window can be split into two parts:

Xv_Window view;
view = (Xv_Window)xv_get(canvas, OPENWIN_NTH_VIEW, 0);

xv_set(canvas,
OPENWIN_SPLIT,

OPENWIN_SPLIT_VIEW, view,
OPENWIN_SPLIT_DIRECTION, OPENWIN_SPLIT_HORIZONTAL,
NULL,

NULL);

This very simple example shows that the first view window in the canvas will be split hori-
zontally. The place in which the split takes place is, by default, the position of the scrollbar
in the view. Assuming the code fragment above, the window is split so that the new view is
the same width as the original view but the height is split at the position of the scrollbar. The
original view is the remaining height and is on top of the new view.

5.6.3 Getting View Windows

If a canvas has been split several times, resulting in multiple view and paint windows, it is
possible to get a handle to a particular view or paint window. This can be done either at the
time the view was split or by using xv_get().

5.6.3.1 Getting the newest view

If you want to be notified when the user splits or joins views, you can specify the attribute
OPENWIN_SPLIT_INIT_PROC for when the user splits a view, and OPENWIN_SPLIT_

DESTROY_PROC when the user joins a view. These attributes are set in the canvas (or any
openwin object). Set these functions by using xv_create() or xv_set() in the follow-
ing manner:

extern void init_split(), join_view();

xv_create(frame, CANVAS,
...
OPENWIN_SPLIT,

OPENWIN_SPLIT_INIT_PROC, init_split,
OPENWIN_SPLIT_DESTROY_PROC, join_view,

NULL,
...

NULL);

Canvases and
Openw

in

Canvases and Openwin 103

Write the split and join functions, which take the following parameters:

void
init_split(origview, newview, pos)

Xv_Window origview, newview;
int pos;

void
join_view(view)

Xv_Window view;

The pos parameter above represents the split position, in pixels, of the view. The
origview and the newview parameters represent the view that was originally split and the
new resulting view, respectively. These are not the paint windows; they are the views them-
selves. To get a handle to the associated paint window from these views, you can use:

Xv_Window paint_window;

paint_window = (Xv_Window)xv_get(view, CANVAS_VIEW_PAINT_WINDOW);

Example 6-1 in Chapter 6, Handling Input, shows how to handle input in different views.

5.6.3.2 Getting arbitrary views

For each view in an OPENWIN object, you can get either the view window or the paint win-
dow by choosing either the CANVAS_NTH_PAINT_WINDOW or the OPENWIN_NTH_VIEW attri-
bute and an integer value for the view window. The first window is 0 and the last window is
n-1, where n is the number of view windows. For instance, to get the second paint window in
the canvas, you can use:

xv_get(canvas, CANVAS_NTH_PAINT_WINDOW, 1, NULL);

You can get the number of available views by calling:

int nviews = (int)xv_get(canvas, OPENWIN_NVIEWS);

Remember that the number of views corresponds directly to the number of paint windows.
Each paint window can be accessed in order, using a simple loop like the following:

Xv_Window window;
Canvas canvas;
int i = 0;

while (window = (Xv_Window)xv_get(canvas, CANVAS_NTH_PAINT_WINDOW, i)) {
draw_into_window(window);
i++;

}

The call to xv_get() returns NULL if you try to get a window number that does not exist
(XView does the error checking). Thus, the loop terminates when xv_get() returns NULL.
The value of i represents the number of views in the canvas subwindow.

XView provides a pair of macros that facilitate looping through a set of views in a canvas:
CANVAS_EACH_PAINT_WINDOW and CANVAS_END_EACH. The previous loop could be written
as:

104 XView Programming Manual

Xv_Window window;
Canvas canvas;

CANVAS_EACH_PAINT_WINDOW(canvas, window)
draw_into_window(window);

CANVAS_END_EACH

Because the paint windows are different from the view windows, a slightly different method
is used for getting view windows:

Xv_Window view;
Canvas canvas;
int i = 0;

while (window = (Xv_Window)xv_get(canvas, OPENWIN_NTH_VIEW, i)) {
/* process window */
i++;

}

There is also a macro that loops through all the views in the canvas:

Xv_Window view;
Canvas canvas;

OPENWIN_EACH_VIEW(canvas, view)
...

OPENWIN_END_EACH

You can get the paint window associated with a view by using the attribute CANVAS_

VIEW_PAINT_WINDOW:

Xv_Window view;
Xv_Window paint_window;

paint_window = (Xv_Window)xv_get(view, CANVAS_VIEW_PAINT_WINDOW);

This is useful in situations where you are given the view window and need to get the paint
window associated with it. For example, the routines called when views are split or joined
are passed handles to view windows. When a view is split, you will need to get the paint
window associated with the new view to install event or repaint callbacks.

5.7 Handling Input in the Canvas Package

This section discusses, to a limited degree, the method for handling and specifying events in
a canvas. For a detailed discussion of the types of events used and the proper method for
handling them, see Chapter 6, Handling Input.

Canvases and
Openw

in

Canvases and Openwin 105

5.7.1 Default Events

The default canvas_paint_window event mask is composed of: KBD_USE, KBD_DONE,
WIN_MOUSE_BUTTONS, ACTION_HELP, and WIN_ASCII_EVENTS. Other events may be added
to the window event mask by using xv_set() and passing the appropriate parameters. The
following shows how to enable notification once the Meta key has gone down by enabling
META events:

xv_set(canvas_paint_window(canvas),
WIN_CONSUME_EVENT, WIN_META_EVENTS,
NULL);

An application that does not need to know about release events can ignore all release events
from mouse buttons and keyboard keys, by enabling WIN_UP_EVENTS by calling:

xv_set(canvas_paint_window(canvas),
WIN_CONSUME_EVENT, WIN_UP_EVENTS,
NULL);

5.7.2 Notification of Events

In addition to specifying which events the application needs to know about, the program
should also install an event callback routine that is called when one of the specified events
takes place. The callback routine for event handling is installed using WIN_EVENT_PROC.
Included are samples that demonstrate how to handle events appropriately using a combina-
tion of repaint and event callback routines. However, for a complete discussion of events,
you should consult Chapter 6, Handling Input, and Chapter 20, The Notifier.

The sample program, canvas_event.c , in Example 5-3 first creates a base frame. Then it cre-
ates a canvas with the attribute CANVAS_X_PAINT_WINDOW set to TRUE because its repaint
procedure (repaint_proc) uses Xlib routines to clear the window and draw text strings in
the canvas.

Next we specify the events that the application should handle when they occur on the
paint_window. We are going to listen for keyboard events, pointer motion events and
pointer button events. We have not assigned any responses to these events yet; we have just
registered them for this window with XView so that the application will be called back if
they occur.

We then set the paint window’s event handling procedure to be event_proc. This is the
routine that will decide what to do when the events occur. XView is then started up by
calling xv_main_loop(), in which event processing starts.

The event_proc is called by the Notifier whenever a registered event takes place in any
view that has an event handling procedure set. The event_proc looks at the type of event
it has received and determines the appropriate message to display in the paint window. There
is a different message for each type of event that we have registered. There are three mes-
sage buffers, one each for keyboard events, pointer motion events and pointer button events.
After the message buffers are updated, the repaint procedure is called to display them. Note

106 XView Programming Manual

that we are reusing the repaint_proc, instead of writing more code just to display the
messages. See Section 5.2.1, “Drawing in a Canvas.”

If the event we have received is of no interest to us, then we return. It is important to do this
because the events WIN_REPAINT and WIN_RESIZE are delivered regardless of the events we
have registered with the Notifier. These two events will eventually result in the Notifier
calling the repaint procedure anyway, so it is not necessary to call it redundantly from here.
See Chapter 6, Handling Input, for details about this.

In canvas_event.c , the repaint_proc simply clears the paint window and then displays
the three messages in it, at a fixed position and using the default font. In the case of a pure
repaint callback (from the Notifier, not the event_proc), the messages will just repeat the
last event’s messages.

Example 5-3. The canvas_event.c program

/*
* canvas_event.c
* Demonstrates how to get keyboard and mouse events in an canvas
* window. Looks for keyboards, pointer movement and button
* events and displays the info in the canvas.
*/
#include <X11/Xlib.h>
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/xv_xrect.h>

void event_proc(), repaint_proc();
char kbd_msg[128], ptr_msg[128], but_msg[128];

/*
* main()
* Create a canvas specifying a repaint procedure.
* Get the paint window for the canvas and set the input
* mask and the event procedure.
*/
main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Canvas canvas;

/* Initialize XView */
xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

/* Create windows -- base frame and canvas. */
frame = (Frame)xv_create(NULL, FRAME, NULL);

canvas = (Canvas)xv_create(frame, CANVAS,
XV_WIDTH, 300,
XV_HEIGHT, 110,
CANVAS_X_PAINT_WINDOW, TRUE,
CANVAS_REPAINT_PROC, repaint_proc,
NULL);

window_fit(frame);

/* Set input mask */
xv_set(canvas_paint_window(canvas),

Canvases and
Openw

in

Canvases and Openwin 107

Example 5-3. The canvas_event.c program (continued)

WIN_EVENT_PROC, event_proc,
WIN_CONSUME_EVENTS,

KBD_DONE, KBD_USE, LOC_DRAG, LOC_MOVE, LOC_WINENTER,
LOC_WINEXIT, WIN_ASCII_EVENTS, WIN_MOUSE_BUTTONS,
NULL,

NULL);

/* Initial messages */
strcpy(kbd_msg, "Keyboard: key press events");
strcpy(ptr_msg, "Pointer: pointer movement events");
strcpy(but_msg, "Button: button press events");

/* Start event loop */
xv_main_loop(frame);

}

/*
* event_proc()
* Called when an event is received in the canvas window.
* Updates the keyboard, pointer and button message strings
* and then calls repaint_proc() to paint them to the window.
*/
void
event_proc(window, event)
Xv_Window window;
Event *event;
{

if (event_is_ascii(event))
sprintf(kbd_msg, "Keyboard: key ’%c’ %d pressed at %d,%d",

event_action(event), event_action(event),
event_x(event), event_y(event));

else
switch (event_action(event)) {

case KBD_USE:
sprintf(kbd_msg, "Keyboard: got keyboard focus");
break;

case KBD_DONE:
sprintf(kbd_msg, "Keyboard: lost keyboard focus");
break;

case LOC_MOVE:
sprintf(ptr_msg, "Pointer: moved to %d,%d",

event_x(event), event_y(event));
break;

case LOC_DRAG:
sprintf(ptr_msg, "Pointer: dragged to %d,%d",

event_x(event), event_y(event));
break;

case LOC_WINENTER:
sprintf(ptr_msg, "Pointer: entered window at %d,%d",

event_x(event), event_y(event));
break;

case LOC_WINEXIT:
sprintf(ptr_msg, "Pointer: exited window at %d,%d",

event_x(event), event_y(event));
break;

case ACTION_SELECT:
case MS_LEFT:

108 XView Programming Manual

Example 5-3. The canvas_event.c program (continued)

sprintf(but_msg, "Button: Select (Left) at %d,%d",
event_x(event), event_y(event));

break;
case ACTION_ADJUST:
case MS_MIDDLE:

sprintf(but_msg, "Button: Adjust (Middle) at %d,%d",
event_x(event), event_y(event));

break;
case ACTION_MENU:
case MS_RIGHT:

sprintf(but_msg, "Button: Menu (Right) at %d,%d",
event_x(event), event_y(event));

break;
default:

return;
}

/* call repaint proc directly to update messages */
repaint_proc((Canvas)NULL, window,

(Display *)xv_get(window, XV_DISPLAY),
xv_get(window, XV_XID), (Xv_xrectlist *) NULL);

}

/*
* repaint_proc()
* Called to repaint the canvas in response to damage events
* and the initial painting of the canvas window.
* Displays the keyboard, pointer and button message strings
* after erasing the previous messages.
*/
void
repaint_proc(canvas, paint_window, dpy, xwin, xrects)
Canvas canvas; /* Ignored */
Xv_Window paint_window; /* Ignored */
Display *dpy;
Window xwin;
Xv_xrectlist *xrects; /* Ignored */
{

GC gc = DefaultGC(dpy, DefaultScreen(dpy));

XClearWindow(dpy, xwin);
XDrawString(dpy, xwin, gc, 25, 25, kbd_msg, strlen(kbd_msg));
XDrawString(dpy, xwin, gc, 25, 50, ptr_msg, strlen(ptr_msg));
XDrawString(dpy, xwin, gc, 25, 75, but_msg, strlen(but_msg));

}

The result produced by Example 5-3 is shown in Figure 5-6.

Canvases and
Openw

in

Canvases and Openwin 109

Figure 5-6. A window created with canvas_event.c

5.8 Canvas and Openwin Package Summaries

Table 5-1 shows the attributes for the CANVAS package and Table 5-2 shows the OPENWIN

attributes. The macros for these packages are shown below. This information is described
fully in the XView Reference Manual.

CANVAS_EACH_PAINT_WINDOW()
CANVAS_END_EACH
OPENWIN_EACH_VIEW()
OPENWIN_END_EACH()

Table 5-1. Canvas Attributes

CANVAS_AUTO_EXPAND CANVAS_PAINTWINDOW_ATTRS

CANVAS_AUTO_SHRINK CANVAS_REPAINT_PROC

CANVAS_FIXED_IMAGE CANVAS_RESIZE_PROC

CANVAS_HEIGHT CANVAS_RETAINED

CANVAS_MIN_PAINT_HEIGHT CANVAS_VIEW_CANVAS_WINDOW

CANVAS_MIN_PAINT_WIDTH CANVAS_VIEW_PAINT_WINDOW

CANVAS_NO_CLIPPING CANVAS_VIEWABLE_RECT

CANVAS_NTH_PAINT_WINDOW CANVAS_WIDTH

CANVAS_PAINT_CANVAS_WINDOW CANVAS_X_PAINT_WINDOW

OPENWIN_VIEWCLASS

110 XView Programming Manual

Table 5-2. Openwin Attributes

OPENWIN_ADJUST_FOR_HORIZONTAL_SCROLLBAR OPENWIN_SPLIT_DESTROY_PROC

OPENWIN_ADJUST_FOR_VERTICAL_SCROLLBAR OPENWIN_SPLIT_DIRECTION

OPENWIN_AUTO_CLEAR OPENWIN_SPLIT_INIT_PROC

OPENWIN_HORIZONTAL_SCROLLBAR OPENWIN_SPLIT_POSITION

OPENWIN_NO_MARGIN OPENWIN_SPLIT_VIEW

OPENWIN_NTH_VIEW OPENWIN_SPLIT_VIEW_START

OPENWIN_NVIEWS OPENWIN_VERTICAL_SCROLLBAR

OPENWIN_SHOW_BORDERS OPENWIN_VIEW_ATTRS

OPENWIN_SPLIT

WIN_COLUMNS WIN_ROWS

Canvases and
Openw

in

Canvases and Openwin 111

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

6
Handling Input

In discussing canvases in the previous chapter, we showed how to do some basic event hand-
ling in the canvas’s paint window. This chapter goes into detail about the content of such
events, the breakdown of the Event data structure that describes the event, the different
types of input events that can be handled, and the specifics about what gets passed to the pro-
gram’s event handling callback routine. Chapter 20, The Notifier, should be reviewed for an
in-depth discussion of how to handle events on a somewhat more advanced level. It
addresses the event types themselves, how to register which events you want to be notified
of, and how to interpret the events you receive.

This chapter also describes the interface to the special keyboard and mouse features includ-
ing soft function keys, virtual keyboards, mouseless model keyboard mappings, and accelera-
tor keys. These features support OPEN LOOK Level 2 functions that permit you to use multi-
ple “virtual keyboards,” and software-supported function keys. You also have the option of
using the keyboard as a locator device along with or in place of a mouse.

This chapter discusses the following:

• The design of event handling.

• The breakdown of the Event data structure.

• Registering an event handler and the events you are interested in.

• Interpreting the events your event handler received.

• Sending messages to other windows or clients.

• Explicit reading of events from the server.

• Using the soft function keys.

• Virtual keyboards.

• The mouseless model.

• Using accelerators.

Handling Input

Handling Input 115

6.1 Introduction to Events in XView

Events are generated from several sources, including standard devices such as the keyboard
and mouse, special input devices such as graphics tablets, and the window system itself.
XView does not directly receive events from the hardware devices; the X server is responsi-
ble for managing these events and communicating them to the XView application. The
Notifier receives all X events on behalf of the client application and dispatches them to the
appropriate callback procedures registered by XView objects.

Because the Notifier multiplexes the input stream between windows, each individual window
operates under the illusion that it has the user’s full attention. That is, it sees precisely those
input events that the user has directed to it. Each window indicates which events it is pre-
pared to handle using input masks. An event callback procedure processes the events when
they occur. Many windows have default event handlers that are installed internally by cer-
tain XView packages. Panels, for example, have a default event notification procedure that is
used to identify which panel item received the input. Text subwindows capture events to
allow typing and monitor text selection generated by using the mouse. However, some
events may result in separate callback procedures being notified as well—repaint and resize
events, for example, may have separate callback routines installed.

Applications can send messages to separate windows within the same application or to other
applications running under separate processes. The X function XSendEvent() sends cli-
ent-specified X events to other windows. XClientMessageEvent is one such event that
can be sent. XView provides the function xv_send_message() as an interface for send-
ing client messages in this manner.

The X Window System has a full set of events that can be sent to client applications by the
server. It is highly recommended that you review Chapter 8, Events, in Volume One, Xlib
Programming Manual, for specifics on the nature of these events.

6.2 Classes of Events

Events are grouped into the following classes:

• Semantic Events

• ASCII Events

• Locator Button Events

• Locator Motion Events

• Function Key Events

• Repaint and Resize Events

• Client Messages

• Selection Events

116 XView Programming Manual

Each of these event types are discussed in Section 6.3, “Registering Events,” and Section 6.7,
“Interpreting Client Messages.” There are separate issues to consider in both cases. How-
ever, semantic event codes are common to both. We will first address event IDs and semantic
events and then move directly on to event registration. After we discuss how to register the
events you are interested in, we will discuss how your event handling routine can interpret
the events it receives.

6.2.0.1 Event IDs

Event IDs are integer values that have been assigned somewhat, but not completely, arbitrar-
ily to events that may be generated in X.* Some event IDs represent keyboard events, func-
tion key events, window resize and repaint events, and so on. Although both X and XView
understand the same events, there is no correlation between the event ID and Xlib’s event
codes. Thus, keyboard event IDs are not key symbols as defined by X’s KeySym or
XKeyEvent.keycode fields.

Event IDs are helpful when debugging applications; you can stop in event-handling routines
and print the value of a particular event ID to identify the specific event type. One helpful
hint is that the ASCII event IDs correspond to the ASCII codes generated. That is, if the user
presses the x key, then the event ID is x.

6.2.0.2 Semantic events

Also called action events, semantic events are used to describe the meaning of an event using
semantic phrases, so to speak, rather than using the literal event code represented by an event
ID. That is, the definition of the macro describes the value of the event as well as its mean-
ing. When someone presses a key marked HELP on the keyboard, the event ID may represent
a large, cryptic numeral such as 65034. However, the semantic code associated with the key
event would be ACTION_HELP.

There are also cases where the keyboard has been remapped by some applications for other
purposes. For example, in OPEN LOOK, the SELECT button defaults to the leftmost physical
mouse button, also known as button one. Normally this button is activated using the index
finger for a right-handed person. A left-handed person who places the mouse on the left may
remap the semantics of the leftmost and rightmost buttons (assuming a multibutton mouse).
This allows the left-handed user to also use his index finger to activate the SELECT button.

We recommend that you use semantic actions when referring to events for consistency with
other applications as well as consistency with different computers. Section 5, in the XView
Reference Manual, provides a list of the semantic events. These events are defined in
<xview/win_input.h> .

*This concept is carried over from SunView and is foreign to X.

Handling Input

Handling Input 117

6.3 Registering Events

Typically, when you specify which events a particular window is interested in, you also spec-
ify an event handler for that window. You register an event handler with an XView window,
not the object with which the window is associated. Sometimes the object and the window
are one and the same (i.e., panels), but in other cases, they are not. Specifically, to register an
event handler for canvases you use the paint window as in:

Xv_Window window;
Canvas canvas;
int win;

window = (Xv_Window)xv_get(canvas, CANVAS_NTH_PAINT_WINDOW, win);

For text subwindows, you use the view window:

Xv_Window window;
Textsw textsw;
int win_no;

window = (Xv_Window)xv_get(textsw, OPENWIN_NTH_VIEW, win_no);

Once you have obtained the window, you can install the event handler using the
WIN_EVENT_PROC attribute:

xv_set(window,
WIN_EVENT_PROC, sample_event_proc,
WIN_CONSUME_EVENTS, WIN_ASCII_EVENTS, WIN_MOUSE_BUTTONS, NULL,
NULL);

The window is of type Xv_Window. The event handler is a function that is called whenever
any of the registered events occur in the specified windows. Details about this routine and
how to interpret the events delivered to it are discussed later in this chapter, starting with
Section 6.4, “The Event Handler.”

This section discusses specifically how to register and unregister the events in which you are
interested for a particular window. There are several ways to describe events you wish to
register. You can specify action (semantic) events, literal events or event classes defined by
XView (as shown in the example), or you can use X event masks (familiar to Xlib program-
mers). Which method you choose for registering events does not affect the function of the
event handler; it maintains its function of receiving and understanding events.

6.3.1 Specifying X Event Masks

The simplest and most direct method for people familiar with Xlib programming is to use X
event masks.* To register or unregister events using X masks, you can use:

WIN_CONSUME_X_EVENT_MASK
WIN_IGNORE_X_EVENT_MASK

*See Volume One, Xlib Programming Manual, for a complete discussion of event masks and their implications.

118 XView Programming Manual

The value for these attributes is a mask made up of any of the event masks defined in
<X11/X.h>. Do not confuse event masks with actual event types.

WIN_CONSUME_X_EVENT_MASK appends the specified event mask to the existing event mask
for the object. However, to set the event mask explicitly to the specified mask, use
WIN_EVENT_MASK. To clear the event mask completely, use:

xv_set(window, WIN_X_EVENT_MASK, NoEventMask, NULL);

The following code segment demonstrates how a canvas would register interest in the key-
board and mouse buttons:

xv_set(window,
WIN_CONSUME_X_EVENT_MASK, ButtonPressMask | KeyPressMask,
NULL);

Notice that we did not specify ButtonReleaseMask or KeyReleaseMask. Thus, the
event handler is going to receive the down-events only.

When you specify event masks with the attribute WIN_IGNORE_X_EVENT_MASK, then those
events are not delivered to your event handler. You cannot use this attribute to unregister all
events and expect that to unregister your event handler. You must set the WIN_EVENT_PROC
to NULL to do that. It is perfectly legal to have no events registered with a window.

6.3.2 Specifying XView Events

XView events (or event types) are simply alternate ways to specify events when you register
them or interpret them. When using these event types to register events, you are not adding
any more functionality than using the Xlib event registration scheme in the previous section.
However, XView event types may make it easier to identify more precisely which events you
are interested in being notified of.

The header files <xview/win_input.h> and <xview/win_event.h> have several data types, and
most XView event definitions allow you to register events with windows or the Notifier.
There are two methods available to do this: using the Inputmask data structure or specify-
ing XView event codes directly.

Although the Inputmask method tends to be less elegant than using XView event types, it
is necessary in order to use xv_input_readevent() and other advanced-usage func-
tions. See Section 6.8, “Reading Input Directly,” for details about how the Inputmask
structure is used.

The attribute WIN_CONSUME_EVENTS is used to register events via XView event types. The
value for this attribute is a NULL-terminated list of the XView events defined in the header
files mentioned above. Let’s re-examine the example used in the previous section:

xv_set(window,
WIN_EVENT_PROC, sample_event_proc,
WIN_CONSUME_EVENTS, WIN_ASCII_EVENTS, WIN_MOUSE_BUTTONS, NULL,
NULL);

The values WIN_ASCII_EVENTS and WIN_MOUSE_BUTTONS encompass all the ASCII codes
from 0 to 127, inclusive, and the mouse button events. The events specified are added to the

Handling Input

Handling Input 119

existing input mask for the window. This does not override what the window had previously;
the event mask specified is appended to the input mask for that window. To set an explicit
event mask, the value WIN_NO_EVENTS should be specified first in the list.

xv_set(window,
WIN_EVENT_PROC, sample_event_proc,
WIN_CONSUME_EVENTS,

WIN_NO_EVENTS, WIN_ASCII_EVENTS, WIN_MOUSE_BUTTONS, NULL,
NULL);

All events are cleared at the point in which WIN_NO_EVENTS is given in the list. If it is given
in the middle of the list, then the events specified previous to that point are forgotten. If it is
the only attribute in the list, then the event mask for the window is cleared. Note that this
does not mean that your event handler will receive no events. There are certain events that
are sent to your window, and thus to your event handler, whether you want them or not. This
is addressed later in this chapter.

You can specify which events to ignore in the same way:

xv_set(window,
WIN_IGNORE_EVENTS,

WIN_UP_ASCII_EVENTS, LOC_WINENTER, LOC_WINEXIT,
NULL,

NULL);

Here we are telling the window to ignore the events caused by releasing the ASCII keys on
the keyboard as well as window-enter and window-exit events. As with WIN_X_

EVENT_MASK, you cannot use WIN_IGNORE_EVENTS to unregister all the events and expect
the event handler to be unregistered. It is perfectly legal to have a window that has no events
registered with it.

While these attributes take a NULL-terminated list, you can use WIN_CONSUME_EVENT or
WIN_IGNORE_EVENT to consume or ignore one event. Using these attributes, it is not neces-
sary to specify a list of events.

6.3.2.1 Mouse events

The mouse (or locator) resides at an x,y coordinate position in pixels; this position is
transformed by XView to the coordinate space of the window receiving an event. You can
request mouse motion events by specifying LOC_MOVE or LOC_DRAG. A LOC_MOVE event is
reported when the mouse moves, regardless of the state of the locator buttons. If you only
want to know about locator motion when a button is down, then enable LOC_DRAG instead of
LOC_MOVE. This will greatly reduce the number of motion events that your application has to
process. If you have both specified, you will only receive one event or the other; you will
never receive one followed by the other.

Even if you do not request move or drag events, you may still monitor when the mouse
moves in and out of windows by specifying LOC_WINENTER and LOC_WINEXIT. In the case
of LOC_WINENTER, the window installs its colormap into the server, and, for LOC_WINEXIT,
the window’s colormap is uninstalled. If you have registered the colormap notify event
(WIN_COLORMAP_NOTIFY), then you will receive the appropriate events when you enter and
leave a window.

120 XView Programming Manual

Each button that is associated with the mouse is assigned an event code; the i-th button is
assigned the code BUT(i). Thus, the event codes MS_LEFT, MS_MIDDLE, and MS_RIGHT cor-
respond to BUT(1), BUT(2) and BUT(3). These are actual key codes, not semantic codes.
You can specify setting the buttons explicitly (as shown here) or as a group
(WIN_MOUSE_BUTTONS) or as semantic events using ACTION_SELECT, ACTION_ADJUST, and
ACTION_MENU.*

If you want your applications to work seamlessly with the mouseless model, you should spec-
ify semantic events. Refer to Section 6.13, The Mouseless Model, for details on using the
keyboard as a locator device.

6.3.2.2 Keyboard events

In order to be notified of keyboard events, you must specify any one of several XView event
types depending on which event you want. Unlike the X event mask KeyPressMask,
which generates events for all keys on the keyboard, including function keys, XView allows
you to be more specific about which keyboard events you are interested in while not having
to specify explicit keys.

The following list contains input event descriptors that may be used:

WIN_ASCII_EVENTS

Enable ASCII keycodes—these are events that fall between 0 and 127 in the ASCII
character set. Using this attribute specifies up-events as well as down-events.

WIN_UP_ASCII_EVENTS

This is used mostly by WIN_IGNORE_EVENTS to turn off receiving the release event
that usually follows a key press.

WIN_UP_EVENTS

This is a general facility for ignoring all release events from mouse buttons and key-
board keys.

The XView event types KBD_USE and KBD_DONE can be specified to notify you when your
window obtains the keyboard focus. OPEN LOOK specifies the click-to-type method for key-
board focus, so you may not get keyboard focus just because the mouse entered a window.
The user can specify how keyboard focus should work without letting the application know
about it. When a window gets keyboard focus and the window’s event mask has KBD_USE
set, then the window’s event procedure is called.

*If you are writing applications and you use ACTION_SELECT, ACTION_ADJUST, and ACTION_MENU, users can
easily adjust for a left handed mouse with the command xmodmap.

Handling Input

Handling Input 121

6.3.2.3 Resize and repaint events

When the size of a window is changed or the window is moved, (either by the user or pro-
grammatically), a WIN_RESIZE event is generated to give the client a chance to adjust any
relevant internal state to the new window size. You should not repaint the window when
receiving a resize event. You will receive a separate WIN_REPAINT event when a portion of
the window needs to be repainted.

Top level frames and any other top level windows, when moved, may get multiple resize
events, from the server and from the window manager. ICCCM mandates that the window
manager send these events when the top level window is moved or resized. You can detect
this with the test:

event_xevent(event)->xconfigure.send_event

which returns TRUE on events generated by the window manager. Note that all synthetic
events delivered will follow real events. For more information on the event actions man-
dated by ICCCM and of the coordinate space mapping, refer to Section L.4.1.5 of Inter-Client
Communications Manual in Volume 0, X Protocol Reference Manual.

If you are using a canvas subwindow, you will not need to track resize and repaint events
directly. The CANVAS package receives these events, computes the new window dimensions
or the precise area requiring repainting, and calls your resize or repaint procedures directly.
See Chapter 5, Canvases and Openwin, for more details.

NOTE

You will always get WIN_RESIZE events sent to your event handler routine.
Currently, you cannot prevent these events from being delivered to your event
handler.

As pointed out in Chapter 5, Canvases and Openwin, there may be a WIN_REPAINT event
generated for each region of a window that gets exposed. However, you can set whether or
not all those exposure events are collapsed into one expose event specifying a region that
covers the entire exposed area. The attribute WIN_COLLAPSE_EXPOSURES can be set to TRUE
(the default) or FALSE on the paint window to prevent multiple expose events.

You get graphics exposure events (WIN_GRAPHICS_EXPOSE) whenever you draw into a win-
dow using a GC whose graphics_exposures field is set to True. The same is true for
WIN_NO_EVENTS. These events are not selected via WIN_CONSUME_EVENTS and cannot be
ignored using this method. The only way to avoid receiving these events is by setting the
graphics_exposures field in the GC to False. Choose the best way to deal with it for
your application.

122 XView Programming Manual

6.3.2.4 Client messages

Client messages are events that cannot be ignored by your event handler. Typically, these are
messages that are used to implement a predefined protocol between your application and
other applications that are familiar with the protocol. Because client messages cannot be
ignored, we do not address the issue of client messages in this section. Read Section 6.7,
“Interpreting Client Messages,” for more information on how to interpret these events.

6.3.2.5 Miscellaneous events

Consuming any one of the following events causes all of them to be consumed, as specified
by the X Protocol:

• WIN_CIRCULATE_NOTIFY

• WIN_DESTROY_NOTIFY

• WIN_GRAVITY_NOTIFY

• WIN_MAP_NOTIFY

• WIN_REPARENT_NOTIFY

• WIN_RESIZE

• WIN_UNMAP_NOTIFY

Alternatively, you could just select WIN_STRUCTURE_NOTIFY, which selects all of the above
events.

If you select WIN_CREATE_NOTIFY on a parent object, you will receive this event whenever a
child window of the parent object is created. You will also receive any of the above listed
events on the subwindows whenever WIN_CREATE_NOTIFY, or, alternatively, WIN_SUB-

STRUCTURE_NOTIFY, is consumed on the parent.

Consuming any one of the following events causes all of them to be consumed, as specified
in the X Protocol:

• WIN_CIRCULATE_REQUEST

• WIN_CONFIGURE_REQUEST

• WIN_MAP_REQUEST

Alternatively, you could just select WIN_SUBSTRUCTURE_REDIRECT, which selects all of the
above events. A window manager is really the only client that should ever be interested in
any of these.

Handling Input

Handling Input 123

6.4 The Event Handler

When one of the events in which you have expressed interest occurs, your event handler is
called. The form of this routine is:

void
sample_event_proc(window, event, arg)

Xv_Window window;
Event *event;
Notify_arg arg;

The arguments to the routine are the window the event occurred in, a pointer to a data struc-
ture describing information about the event itself, and an optional argument supplied by the
XView package responsible for the function being called.*

The attribute WIN_EVENT_PROC allows you to specify an event procedure for an application’s
window. Events are dispatched so event procedures that you register are the last in line to
receive events. First, events are sent to the base event handler for the package, and then to
the event handler you specify by setting WIN_EVENT_PROC or other callbacks for the individ-
ual packages. XView has a two-tiered scheme in which the packages —panels, canvases,
scrollbars, etc.—interact with the Notifier directly, registering their own callbacks. Your
application, in turn, registers its own callback procedures with the package. You can also
interpose an event handling routine so that your application can intercept events before they
reach the base event handler. See Chapter 20, The Notifier, for a description of interposition.

6.5 The Event Structure

Events that are generated are passed to event handling procedures by the Notifier as Event
pointers (type Event *). This structure is declared in <xview/win_input.h>:

typedef struct inputevent {
short ie_code; /* input code */
short ie_flags;
short ie_shiftmask; /* input code shift state */
short ie_locx, ie_locy; /* mouse position */
struct timeval ie_time; /* time of event */
short action; /* keymapped ie_code */
Xv_object ie_win; /* window receiving event */
char *ie_string; /* keycode binding string */
XEvent *ie_xevent; /* actual XEvent struct */

} Event;

The Event data structure contains all the information about the event. The fields are broken
down as shown in Table 6-1.

*This parameter is currently unused. It is available for new XView packages, extensions to them or for advanced No-
tifier usage. See Section 20.6.2, “Posting with an Argument,” in Chapter 20, The Notifier.

124 XView Programming Manual

Table 6-1. Event Structure Fields

Field Contents

ie_code Actual XView event ID, as defined in <xview/win_event.h > and
<xview/win_input.h>.* Event codes can take on any value in the
range 0 through 65535. The values are useful when debugging.

ie_flags Indicates whether the event was an up- or down-event, if appli-
cable. A down-event occurs when a mouse button or keyboard
key goes down. There must be a corresponding up-event,
although the client may choose to ignore up-events.

ie_shiftmask If a Shift key, Control key and/or mouse button was down when
the event occurred, this mask will have the appropriate bits set.

ie_locx, ie_locy x,y coordinates of the position of the locator (mouse) relative to
the window in which the event occurred.

ie_time The time of the event.
action Semantic code representing predefined actions specific to the win-

dow manager or OPEN LOOK.
ie_win Window in which the event took place.
ie_string String in which a keycode (found in ie_code) is bound using

XRebindKeysym().
ie_xevent The actual event structure generated by X. This event structure

arrives untouched by XView for events generated by the server.

6.6 Determining the Event

In the Event structure, there is a pointer to the XEvent structure that was delivered by the
X server as a direct result of the event that it describes. This section discusses how to inter-
pret the event based on information in the Event structure only; it does not address the
XEvent structure.

The header files <xview/win_input.h> and <xview/win_event.h> contain many macros that
should be used rather than referencing fields in the Event data structure. If the structure is
modified in the future, then the macros will be modified to support the changes and your code
will not have to change. For example, to get the window in which the event took place, you
should not use the following (assume event is of type Event *):

window = event->ie_win;

Instead you should use:

window = event_window(event);

*<xview/panel.h> also has a few event definitions, but they are not widely used. See Chapter 7, Panels, for details.

Handling Input

Handling Input 125

To determine the actual event ID, you could use:

event_id(event)

This macro returns the actual event ID that took place, such as MS_LEFT to indicate the left
mouse button. However, as discussed earlier, we recommend that you use the semantic
action events provided by the macro:

event_action(event)

In the case where the user selected the left mouse button, event_action() would return
ACTION_SELECT. The two values do not map to the same thing; consider the case where left-
handed users have re-mapped the mouse settings. On the other hand, if there is no action
associated with an event, event_action() is set to event_id(). For example, con-
sider what happens when the letter a is pressed or when the Expose event is generated.

6.6.0.1 Event states

When a mouse button or keyboard event occurs, the event may be the result of a button or
key being released or pressed. The way to determine this state from a particular event is to
use one of these two macros:

event_is_up(event)
event_is_down(event)

6.6.0.2 Modifier keys

Modifier keys include the left and right Shift keys, the Control key, and the Meta key. The
locations of these keys on the user’s keyboard are dependent on the make and model of your
keyboard. The functions of modifier keys are to modify particular keyboard or mouse states.
For example, the Shift key, when modifying the a key, results in the A key.

Unless you have explicitly requested to be notified of modifier key events, you will not be
informed when their state changes (e.g., when a user presses or releases one of the keys).
You probably do not need to know this anyway. Instead, you only need to know the state of
the key at the time you are evaluating another event. In this case, you can use any of the fol-
lowing macros:

event_shift_is_down(event)
event_ctrl_is_down(event)
event_meta_is_down(event)

6.6.1 Keyboard Events

When XView translates keyboard events into Event codes, it does translation of the key
depending on the state of the modifier keys. For example, when the user types Shift-A,
intending to type an uppercase A, then the event ID (that is, event->ie_code) is A. You
do not need to use event_shift_is_down to translate the key to the uppercase.*

*This is in contrast to the value of XKeyEvent.keycode used by Xlib.

126 XView Programming Manual

The following macro is used to determine if a key event is within the ISO character set:

event_is_iso(event)
Event *event;

You can use the following macro to determine if an event is an ASCII key:*

event_is_ascii(event)
Event *event;

This result does not tell you if you have a printable character. Depending on the font you are
using, you may not be able to print anything with this event code. However, you can use any
of the macros in <ctype.h> to determine whether the character is printable, a control charac-
ter, a digit, a punctuation mark, and so on. Remember, this works because you are using the
already-translated version of the event code.

The macro event_string() can be used to determine the string value associated with the
event ID. This value is the result of a call to XLookupString(). The macro
event_string() only returns a value if the string returned from XLookupString() is
greater than one character long. Thus, for normal ASCII events, event_string() will be
NULL. Only if the application programmer has rebound the key (using XRe-
bindKeysym()) to a string greater than one character will event_string() report that
string:

Display *dpy = (Display *)xv_get(frame, XV_DISPLAY);
char *newstring = "Nine";

XRebindKeysym(dpy, XK_9, 0, 0, newstring, strlen(newstring));

Here, the 9 key is rebound to generate the string “Nine” whenever it is pressed. The follow-
ing macro determines whether or not a string is associated with the event:

event_is_string(event)

In the event callback, the following code could be used:

...
if (event_is_string(event))

printf("string = %s\n", event_string(event));
...

Function keys differ from keyboard to keyboard, and the default key mappings for your
server are configurable (at the time you build your server). However, XView has provisions
for keyboards that are sectioned off into four sets of fifteen function keys: left, top, right, and

*In Version 3, event_is_ascii(event), event_is_iso(event) and event_is_meta(event) use
the XView semantic action to determine whether the event is ASCII, ISO or META, respectively. If the event is a
modified ASCII or ISO key that maps to a semantic action (e.g., Meta-c mapping to ACTION_COPY), then the Ver-
sion 3 macros will return FALSE. In Version 2, the event code was used, which would result in Meta-c returning
TRUE regardless of the semantic action. Applications that want modified ASCII or ISO events (e.g., a terminal emu-
lator) should examine the event code directly by using event_id(event).

Handling Input

Handling Input 127

bottom keys. To determine which set of keys a particular event is associated with, you can
use the following macros:

event_is_key_left(event)
event_is_key_right(event)
event_is_key_top(event)
event_is_key_bottom(event)

To determine which function set a particular function key belongs to, use:

KEY_TOP(key)
KEY_LEFT(key)
KEY_RIGHT(key)
KEY_BOTTOM(key)

Here, you do not pass the event, you pass the event ID. Thus, to test to see if a particular
event were the fifth function key in the top row of keys, you would use:

if (event_is_key_top(event) && event_id(event) == KEY_TOP(5))
/* process the fifth top-function key. */

Notice that we are using event_id() rather than event_action(). The reason for this
is that some function keys are mapped to particular semantic actions, and we want to be sure
the user hits the fifth function key on the top row. Had we used event_action() instead,
the equality test may have failed.

Individual XView applications can define labels for the function keys. Refer to Section 6.12,
“Soft Function Keys and Virtual Keyboards,” for more information on labeling the function
keys.

6.6.1.1 Mouse events

XView supports a locator device (typically a mouse) with up to ten buttons on it. XView
also supports a mouseless locator, which operates through the keyboard and is described in
Section 6.13, “The Mouseless Model.” A mouse locator device may generate various types
of events, such as:

Motion events These events are generated whenever the mouse moves.

Drag events These events are generated when any of the mouse buttons are down and
the mouse moves.

Button events These events are generated whenever the state of a mouse button changes
(e.g., when a button goes up or down).

The following macros determine the state of particular buttons for a three-button mouse (the
most common type).

event_is_button(event)
event_left_is_down(event)
event_middle_is_down(event)
event_right_is_down(event)
event_button_is_down(event)

128 XView Programming Manual

Notice that none of these macros indicates an exclusive button state; that is, if
event_right_is_down returns TRUE, that does not exclude the left button from being
down, too.

You can determine which mouse button is changing state in the same way you determine a
function key position, by passing the ID of the event to:

BUT(i)

To determine whether the second mouse button was down, you could use:

if (event_is_down(event) && event_id(event) == BUT(2))
/* process button-2 event handling */

Again, we recommend that rather than determining the state of a particular mouse button,
you use the semantic codes:

if (event_is_down(event) && event_action(event) == ACTION_ADJUST)
/* process "adjust" event handling */

6.6.1.2 Keyboard focus

One way for the application to explicitly set keyboard focus to a particular window is to use
win_set_kbd_focus(). The calling parameters are the window and the XID of the win-
dow that is supposed to get the focus. For example, if a window gets a LOC_WINENTER event,
the keyboard focus can be obtained:

my_event_proc(window, event)
Xv_Window window;
Event *event;
{

switch (event_id(event)) {
...
case LOC_WINENTER:

win_set_kbd_focus(window, xv_get(window, XV_XID));
break;

...
}

}

The function win_set_kbd_focus() generates a KBD_USE event for the window that is
getting the focus and a KBD_DONE event for the window that lost focus. Windows that need
to detect KBD_DONE and KBD_USE events must specify KBD_DONE/KBD_USE in their event
masks.

The attribute WIN_SET_FOCUS behaves in the same way as win_set_kbd_focus()
except that it checks to see if the window in question has KBD_USE/KBD_DONE selected. If it
does not, the focus is not set on the window. Example usage of WIN_SET_FOCUS (it does not
take any argument):

xv_set(window, WIN_SET_FOCUS, NULL);

Handling Input

Handling Input 129

NOTE

The X protocol restricts an unmapped window from holding the input focus.

Another way to grab keyboard focus for a window is to grab all the input for that window.
This can be accomplished in various ways, including the use of the FULLSCREEN package
described in Chapter 15, Nonvisual Objects. However, a much more convenient method is to
use the WIN_GRAB_ALL_INPUT attribute. Setting this attribute to TRUE causes a grab that
forces all input to be directed to that window. Setting it to FALSE releases the grab.

This is useful when you want to display a dialog box having panel items and confirmation or
cancel buttons that the user must respond to before interacting with any other portion of the
application. In this case, you should set the grab on the panel. Be sure to reset this attribute
once it is no longer needed. Also, be careful when you code the segment of the program that
uses the grab, or you might generate a grab you cannot get out of.

6.6.1.3 Selection events

Selection events may be delivered to a window’s event procedure if the window owns a
selection or is making selection requests. Generally, these events should be ignored if the
application is using XView’s SELECTION package. If the application is doing its own selec-
tions by calling Xlib functions directly, then these events will be of interest.

6.7 Interpreting Client Messages

Client messages may be delivered to your event handler for a variety of reasons. For
instance, the event may have been sent by another source using XSendEvent() or
xv_send_message(), which would imply that the sender of the message had loaded
some arbitrary information into client-message format and sent it to you directly. In this
case, the sender assumes you know how to interpret the information in the message.

6.7.1 Sending and Reading Client Messages

xv_send_message() is used to send client messages to other windows. The form for this
function is:

Xv_private int
xv_send_message(window, addressee, msg_type, format, data, len)

Xv_object window;
Xv_opaque addressee;
char *msg_type;
int format;
Xv_opaque *data;
int len;

130 XView Programming Manual

This function sends the message encoded in data to the addressee window. If the
addressee parameter is an X window, then the message is sent to that window. Otherwise,
the addressee may be either PointerWindow or InputFocus to correspond to the
window under which the pointer happens to be lying or the window which happens to have
the current focus. This depends on whether the user has click-to-type or focus-follows-
mouse mode in the window manager.

The window parameter is an XView window/object from which the event is being sent.
This is only used to extract the Display *. The format may be 8, 16, or 32. The value 8
is typically used to represent string values. len is the number of elements in the data. The
size of one element is defined by the value of format.

The actual XEvent that is generated is XClientMessageEvent. When the Notifier
detects the event, before passing it on to your event handler, it checks to see if the message
content represents a drag and drop operation. If so, then the event action is set to the appro-
priate action. The XEvent structure’s ie_xevent field remains unchanged.

If the client message is not a drag and drop operation, then you are responsible for decipher-
ing the message. Clearly, this is something you have to be expecting, or there is no way to
tell what to do with the information. Thus, you can create your own protocol between cli-
ents. You can determine the content of the message using xv_get() and the attributes:

WIN_MESSAGE_DATA
WIN_MESSAGE_TYPE
WIN_MESSAGE_FORMAT

Alternatively, you can obtain this information by accessing the data directly from the
XEvent portion of the Event. These attributes map directly to the XClientMes-
sageEvent data structure in <X11/Xlib.h>. Therefore, you could reference the appropriate
fields in the ie_xevent pointer from the Event structure passed to the callback function.
Using the type, format and data of the client message, you can read the message content. See
Volume One, Xlib Programming Manual, for more information about unwrapping a client
message.

6.8 Reading Input Directly

You can read input immediately using xv_input_readevent(). This function, which
returns the window associated with the event read, takes the form:

Xv_object
xv_input_readevent(window, event, block, type, im)

Xv_object window;
Event *event;
int block, type;
Inputmask *im;

The window parameter identifies the window you want to read the events from. If NULL,
XNextEvent() returns the window that received the next event. In this case, you should
probably have a server grab for the window from which you are reading the event. Other-
wise, you will have to propagate the received event to the appropriate window later.

Handling Input

Handling Input 131

The event parameter is a pointer to an Event type that is filled in when the function
returns. The block parameter indicates whether or not the function should wait if there are
no events pending to be read. If block is FALSE and there are no events, the function
returns immediately without having read an event.

The type parameter tells whether to use the input mask already set in the window or
whether to use the input mask specified by the im parameter. The Inputmask is declared
in <xview/win_input.h> :

typedef struct inputmask {
short im_flags;
char im_keycode[IM_MASKSIZE];

} Inputmask;

The structure consists of an input code array and flags that indicate which user actions belong
in the input queue. To initialize the input mask im call the function bzero():

bzero((char *)&im, sizeof(im));

The following macros are used to manipulate XView event codes in an Inputmask:

win_setinputcodebit(im, code)
win_unsetinputcodebit(im, code)

Here, code is an XView code as described earlier. The flags field may be set to any of the
following bits:

IM_NEGEVENT Send input negative events (release or “up” events), too. This includes all
keyboard keys and mouse buttons.

IM_ASCII Enable ASCII codes 0 through 127—equivalent to WIN_ASCII_EVENTS.

IM_META Enable the META codes 128-255—equivalent to WIN_META_EVENTS.

IM_NEGASCII Enable release or “up” ASCII codes 0 through 127—this is more specific
than IM_NEGEVENT above. It is primarily used to unset the code bits once
ASCII bits have been set.

IM_NEGMETA Enable release, or “up” META codes 128 through 255—used to unset these
code bits.

IM_TOP Enable TOP function keys.

IM_NEGTOP Enable release events for TOP function keys.

With these macros, we set the Inputmask that is passed to xv_read_inputevent().
As it turns out, this method can also be used to set the input mask for regular windows. This
is not the recommended method for providing the input mask, but it can be done by specify-
ing the attribute WIN_INPUT_MASK:

Inputmask im;

win_setinputcodebit(im, WIN_MOUSE_BUTTONS);
win_setinputcodebit(im, WIN_ASCII_EVENTS);
im.im_flags &˜ IN_NEGEVENTS;

xv_set(window, WIN_INPUT_MASK, &im, NULL);

132 XView Programming Manual

Similarly, you can get the input mask in the same way:

Inputmask *im;

im = (Inputmask *)xv_get(window, WIN_INPUT_MASK);

6.9 Sample Program

This section provides a sample program that demonstrates most of what has been discussed in
this chapter. In Example 6-1, the canvas window where the events occur may be split into
several views. Each new view handles its own events and therefore handles its own graphic
rendering into its paint window.

The intent is for the user to split the views several times and move the mouse between the
views. Each view prints the events it receives in its own window at the upper-right corner.
New views created from a split view may not be positioned correctly to see the text describ-
ing the events. It is not possible to scroll individual views programmatically to arbitrary
locations, so the user must do so manually.

Pay careful attention to which window receives events so as to get a feeling for how the key-
board focus is handled. In some cases, the keyboard focus does not follow the mouse—a par-
ticular view may continue to receive keyboard focus even though the mouse is no longer in
that subwindow. Usually, selecting the SELECT mouse button forces the focus to be directed
to that view window.

Example 6-1. The canvas_input.c program

/*
* canvas_input.c --
* Display a canvas whose views may be split repeatedly. The event
* handler is installed for each view, so events are displayed in
* each paint window.
*/
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/scrollbar.h>
#include <xview/xv_xrect.h>

Canvas canvas;
Frame frame;
char msg[128];
void init_split(), my_event_proc(), my_repaint_proc();

main(argc,argv)
int argc;
char *argv[];
{

/*
* Initialize, create base frame (with footers) and create canvas.
*/

Handling Input

Handling Input 133

Example 6-1. The canvas_input.c program (continued)

xv_init(XV_INIT_ARGS, argc, argv, NULL);
frame = (Frame)xv_create(NULL,FRAME,

FRAME_LABEL, "Split View Windows.",
FRAME_SHOW_FOOTER, TRUE,
NULL);

canvas = (Canvas)xv_create(frame,CANVAS,
CANVAS_X_PAINT_WINDOW, TRUE,
OPENWIN_SPLIT,

OPENWIN_SPLIT_INIT_PROC, init_split,
NULL,

CANVAS_REPAINT_PROC, my_repaint_proc,
NULL);

(void) xv_create(canvas, SCROLLBAR,
SCROLLBAR_SPLITTABLE, TRUE,
SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL,
NULL);

(void) xv_create(canvas, SCROLLBAR,
SCROLLBAR_SPLITTABLE, TRUE,
SCROLLBAR_DIRECTION, SCROLLBAR_HORIZONTAL,
NULL);

/*
* Set input mask
*/
xv_set(canvas_paint_window(canvas),

WIN_CONSUME_EVENTS,
WIN_NO_EVENTS,
WIN_ASCII_EVENTS, KBD_USE, KBD_DONE,
LOC_DRAG, LOC_WINENTER, LOC_WINEXIT, WIN_MOUSE_BUTTONS,
NULL,

WIN_EVENT_PROC, my_event_proc,
NULL);

xv_main_loop(frame);
}

/*
* when a viewport is split, this routine is called.
*/
void
init_split(splitview, newview, pos)
Xv_Window splitview, newview;
int pos;
{

Xv_Window view;
int i = 0;

/*
* Determine view # from the new view and set its scrollbar to 0,0
*/
OPENWIN_EACH_VIEW(canvas, view)

if (view == splitview) {
/* identify the view # of the view the user just split. */
sprintf(msg, "Split view #%d", i+1);
xv_set(frame, FRAME_LEFT_FOOTER, msg, NULL);

134 XView Programming Manual

Example 6-1. The canvas_input.c program (continued)

} else if (view == newview) {
xv_set(xv_get(canvas, OPENWIN_VERTICAL_SCROLLBAR, view),

SCROLLBAR_VIEW_START, 0,
NULL);

xv_set(xv_get(canvas, OPENWIN_HORIZONTAL_SCROLLBAR, view),
SCROLLBAR_VIEW_START, 0,
NULL);

}
i++;

OPENWIN_END_EACH
sprintf(msg, "Total views: %d", i);
xv_set(frame, FRAME_RIGHT_FOOTER, msg, NULL);

}

/*
* Called when an event is received in an arbitrary paint window.
*/
void
my_event_proc(window, event, arg)
Xv_Window window;
Event *event;
Notify_arg arg;
{

register char *p = msg;

*p = 0;

/* test to see if a function key has been hit */
if (event_is_key_left(event))

sprintf(p, "(L%d) ", event_id(event) – KEY_LEFTFIRST + 1);
else if (event_is_key_top(event))

sprintf(p, "(T%d) ", event_id(event) – KEY_TOPFIRST + 1);
else if (event_is_key_right(event))

sprintf(p, "(R%d) ", event_id(event) – KEY_RIGHTFIRST + 1);
else if (event_id(event) == KEY_BOTTOMLEFT)

strcpy(p, "bottom left ");
else if (event_id(event) == KEY_BOTTOMRIGHT)

strcpy(p, "bottom right ");
p += strlen(p);

if (event_is_ascii(event)) {
/*
* note that shift modifier is reflected in the event code by
* virtue of the char printed is upper/lower case.
*/
sprintf(p, "Keyboard: key ’%c’ (%d) %s at %d,%d",

event_action(event), event_action(event),
event_is_down(event)? "pressed" : "released",
event_x(event), event_y(event));

} else switch (event_action(event)) {
case ACTION_CLOSE :

xv_set(frame, FRAME_CLOSED, TRUE, NULL);
break;

case ACTION_OPEN :
strcpy(p, "frame opened up");

Handling Input

Handling Input 135

Example 6-1. The canvas_input.c program (continued)

break;
case ACTION_HELP :

strcpy(p, "Help (action ignored)");
break;

case ACTION_SELECT :
sprintf(p, "Button: Select (Left) %s at %d,%d",

event_is_down(event)? "pressed" : "released",
event_x(event), event_y(event));

break;
case ACTION_ADJUST :

sprintf(p, "Button: Adjust (Middle) %s at %d,%d",
event_is_down(event)? "pressed" : "released",
event_x(event), event_y(event));

break;
case ACTION_MENU :

sprintf(p, "Button: Menu (Right) %s at %d,%d",
event_is_down(event)? "pressed" : "released",
event_x(event), event_y(event));

break;
case SHIFT_RIGHT :

sprintf(p, "Keyboard: right shift %s",
event_is_down(event)? "pressed" : "released");

break;
case SHIFT_LEFT :

sprintf(p, "Keyboard: left shift %s",
event_is_down(event)? "pressed" : "released");

break;
case SHIFT_LEFTCTRL : case SHIFT_RIGHTCTRL :

sprintf(p, "Keyboard: control key %s",
event_is_down(event)? "pressed" : "released");

break;
case SHIFT_META :

sprintf(p, "Keyboard: meta key %s",
event_is_down(event)? "pressed" : "released");

break;
case SHIFT_ALT :

sprintf(p, "Keyboard: alt key %s",
event_is_down(event)? "pressed" : "released");

break;
case KBD_USE:

sprintf(p, "Keyboard: got keyboard focus");
break;

case KBD_DONE:
sprintf(p, "Keyboard: lost keyboard focus");
break;

case LOC_MOVE:
sprintf(p, "Pointer: moved to %d,%d",

event_x(event),event_y(event));
break;

case LOC_DRAG:
sprintf(p, "Pointer: dragged to %d,%d",

event_x(event), event_y(event));
break;

case LOC_WINENTER:
win_set_kbd_focus(window, xv_get(window, XV_XID));
sprintf(p, "Pointer: entered window at %d,%d",

136 XView Programming Manual

Example 6-1. The canvas_input.c program (continued)

event_x(event), event_y(event));
break;

case LOC_WINEXIT:
sprintf(p, "Pointer: exited window at %d,%d",

event_x(event), event_y(event));
break;

case WIN_RESIZE :
case WIN_REPAINT :

return;
default :

/* There are too many ACTION events to trap -- ignore the
* ones we’re not interested in.
*/
return;

}

my_repaint_proc(canvas, window,
xv_get(canvas, XV_DISPLAY), xv_get(window, XV_XID), NULL);

}

/*
* my_repaint_proc()
* Called to repaint the canvas in response to damage events
* and the initial painting of the canvas window.
* Displays the keyboard, pointer and button message strings
* after erasing the previous messages.
*/
void
my_repaint_proc(canvas, pw, dpy, xwin, xrects)
Canvas canvas;
Xv_Window pw;
Display *dpy;
Window xwin;
Xv_xrectlist *xrects;
{

char win_num[16];
Xv_Window w;
int i = 0;
GC gc = DefaultGC(dpy, DefaultScreen(dpy));

/*
* Determine which paint window we’re writing in.
*/
CANVAS_EACH_PAINT_WINDOW(canvas, w)

if (w == pw)
break;

i++;
CANVAS_END_EACH
sprintf(win_num, "(Window #%d) ", i+1);

XClearWindow(dpy, xwin);
XDrawString(dpy, xwin, gc, 25, 25, win_num, strlen(win_num));
XDrawString(dpy, xwin, gc, 25, 45, msg, strlen(msg));

}

Handling Input

Handling Input 137

This sample program initializes XView and creates a frame. It then creates a canvas with
two scrollbars attached to it. Chapter 5, Canvases and Openwin, addresses how to attach
scrollbars to a canvas. The canvas installs a callback routine that will be called when its
views are split. This routine installs the existing event masks and callback routine in the new
view’s paint window. Remember, that is necessary because new windows need to be initial-
ized by the application.

The callback routine my_event_proc() handles all events for all the windows in the pro-
gram. It determines which event has taken place and constructs a descriptive message identi-
fying the event. It then calls the repaint routine to display the message in the window in
which the event occurred. Note that the repaint callback routine may be called by the appli-
cation—it is not a function reserved for the window system to call exclusively. In this case,
the graphics is limited to calling XDrawString() to display text.

6.10 Extensions for Events

In X11, it is possible to create extensions to the server that may generate their own set of
events, depending on the way your X11 server has been configured.* For example, in X11
Release 4, the Shape extension was added, allowing you to display windows of arbitrary
shape in addition to the usual rectangular windows. Not all X11 servers support all known
extensions, and there is a further limitation: all window managers may not be able to handle a
given extension like the Shape extension. Therefore, this chapter is only intended for those
who are well aware of how server extensions work and are using them in their applications.

The only thing that XView cares about with respect to extensions is the delivery of events
that have an event type outside of the normal range defined by the X Protocol. In other
words, events that are defined by the server extension. Thus, the attribute SERVER_EXTEN-

SION_PROC is used to specify a function to be called when such an extension event occurs.
Unlike other event handlers, you do not register an extension procedure with a window, you
register it with the server object itself:

extern void proc();
xv_set(XV_SERVER_FROM_WINDOW(frame),

SERVER_EXTENSION_PROC, proc,
NULL);

Note the use of XV_SERVER_FROM_WINDOW. This macro returns the Xv_Server object
associated with an XView object. The object can be any one that contains a window (so most
panel items are excluded). In this case, it happens to be a frame. Be aware that if your appli-
cation is using multiple servers, you should use an object associated with the server that con-
tains the extension.

*Server extensions should not be confused with XView extensions discussed in Chapter 25, XView Internals.

138 XView Programming Manual

The proc function is called whenever there is an event associated with the server extension.
The form of the procedure is:

void
ext_event_proc(dpy, event, object)

Display *dpy;
XEvent *event;
Xv_object object;

The display and event types are strictly X11 types defined in <X11/Xlib.h>. The ob-
ject is an XView object that is associated with the event, if available. If it is impossible to
determine the object, the value is NULL.

6.11 Selecting Events on Other Clients

To select for and receive X events destined for windows that are not owned by the applica-
tion, use the attributes SERVER_EXTERNAL_XEVENT_MASK and SERVER_EXTER-

NAL_XEVENT_PROC. The most common use for these attributes is for an application to select
for PropertyNotify events on the root window in order to receive notification when a
new RESOURCE_MANAGER property has been written by the user.

For each window, the client can specify an X mask representing the events it wants to
receive. Additionally, an XView object handle can be provided as an argument which is later
returned as a parameter in the event callback. The following example code demonstrates
how to select for PropertyNotify and ButtonPress events on the root window:

xv_set (server,
SERVER_EXTERNAL_XEVENT_MASK, RootWindow(dpy, 0),

ButtonPressMask | PropertyChangeMask,
frame,

SERVER_EXTERNAL_XEVENT_PROC, root_event_proc, frame,
NULL);

The callback is defined as follows:

void
root_event_proc(server, display, xevent, xv_object)

Xv_server server;
Display *display;
XEvent *xevent;
Xv_opaque xv_object;

On xv_create() and xv_set(), SERVER_EXTERNAL_XEVENT_MASK takes three argu-
ments: an XID of the window the client wants to select for events on, an X event mask, and
an XView object handle. For xv_get(), SERVER_EXTERNAL_XEVENT_MASK should be pas-
sed two arguments: an XID of a window and an XView object handle. It will return the X
event mask set on that XID.

On xv_create() and xv_set(), two arguements should be passed to SERVER_EXTER-

NAL_XEVENT_PROC: a ptr to a function to be used as the callback, and an XView object
handle to associate the callback to. A client can register a separate callback for different

Handling Input

Handling Input 139

XView object handles. For xv_get(), only the XView object handle should be passed as
an argument. It will return a ptr to the callback function.

SERVER_EXTERNAL_XEVENT_PROC and SERVER_EXTERNAL_XEVENT_MASK can be set in any
order. Each attribute can be temporarily disabled then re-enabled later without having to set
the other attribute. Setting the first argument of SERVER_EXTERNAL_XEVENT_PROC to NULL

will disable the callback for the object specified as the second argument.

The callback set using SERVER_EXTERNAL_XEVENT_PROC may be called back for an X event
that was not specified using SERVER_EXTERNAL_XEVENT_MASK. The reason being is that
other objects within the toolkit or application may select for X events on the same window.
When these events are delivered, it is difficult to map the X event back to X masks, in turn
making it difficult to determine who selected them. Thus the toolkit lets the application
determine if it wants to use the event or not.

6.12 Soft Function Keys and Virtual Keyboards

This section describes the soft function keys and virtual keyboards. OPEN LOOK encourages
applications to use the function keys for tasks specific to the individual application. The soft
function key labels are configurable for each application and provide application-specific
labels for the function keys. Soft function keys allow “function keys” to be selected from an
on-screen panel using the mouse. Thus, the number of function keys an application uses is
not tied to a particular keyboard, since the on-screen window can display all the function
keys. A pop-up window shows the function keys with labels configured specifically for the
window that has the keyboard focus.

Virtual keyboards allow users to configure the keyboard to match any of the supported inter-
national keyboards. For detailed descriptions of the soft function keys and Virtual keyboards
features, refer to Chapter 14 in the OPEN LOOK GUI Functional Specification .

6.12.1 Soft Function Keys

Provided an application does not use hard-wired function key bindings, the soft function keys
feature provides a portable method for labeling, displaying and selecting an application’s
function keys. To display the function keys, a user selects “Function Keys” from the
Workspace menu under Utilities. The function keys window appears at the bottom of the
screen as shown in Figure 6-1.

Figure 6-1. A sample function keys window

140 XView Programming Manual

When the input focus changes to a window that uses the function keys, the function keys
window is updated to reflect the new set of functions (only if the application is using the soft
function keys). If an application uses more functions than a particular keyboard provides, it
is the application’s responsibility to provide a “More” label on one of the function keys.
When the “More” key is selected, the application should show the additional labels for the
remaining functions keys, as is shown in Figure 6-2.

Figure 6-2. Sample function keys window with a MORE key

Labels for the soft function keys are specified using the WIN_SOFT_FNKEY_LABELS attribute.
The following example shows how to set soft function keys for a canvas application:

canvas = (Canvas) xv_create (frame,CANVAS,
CANVAS_X_PAINT_WINDOW,TRUE,
NULL);

xv_set(canvas_paint_window(canvas),
WIN_FNSOFT_KEY_LABELS,"Red\nGreen\nBlue\nMaroon\nOrchid\n

Violet\nMagenta\nCoral\nTurquoise\n
Yellow\nBrick\nBlack\n",

WIN_EVENT_PROC, my_Event_proc,
NULL);

The value for the WIN_SOFT_FNKEY_LABELS is a string of 12 labels, with each label
separated by “\n.” In this example, whenever the canvas gets the input focus, the soft func-
tion key labels are updated to “Red, Green, Blue”

Individual applications maintain the banks of labels for their soft function keys. The “More”
key indicates to the application that it is necessary to update the WIN_SOFT_FNKEY_LABELS
value. XView provides the method for labeling the soft function keys on the screen. The
application needs to provide the functionality for each of the function keys whose labels it
defines.

An application that uses more than 12 function keys should label the 12th function key
“More.” When the application receives notification that the 12th function key or the 12th
function key button on the screen has been selected, then WIN_SOFT_FNKEY_LABELS should
be reset to change the labels for the additional function keys. The new bank should also have
a “More” key to toggle back to the first bank, or to the next bank of function keys if one is
available. The application also needs to adjust its response to reflect the “new” function
keys, corresponding to the new labels.

Handling Input

Handling Input 141

6.12.2 Virtual Keyboards

Virtual keyboards are an XView feature that allows users to reconfigure their keyboards.
Keyboards can be logically configured to any of the international keyboards supported by
OpenWindows.

6.12.2.1 Multiple language support

Pressing the Language key, R2 by default, presents the user with a choice of all the supported
international keyboards (the key binding for the language key is defined by the OpenWin-
dows.KeyboardCommands.Translate resource.) A set of soft function keys allows a
user to select a Virtual keyboard. When a keyboard is selected from the function keys, the
keybindings are displayed on-screen as is shown in Figure 6-3.

Figure 6-3. Sample virtual keyboard binding

Selecting a character set and the Set key from the soft function keys binds a character set to
the physical keyboard. Holding down the Language key and typing temporarily binds the
currently selected character set to the physical keyboard. When the Language key is released,
the currently set character set is restored.

6.13 The Mouseless Model

The mouseless input model allows users to run applications on an OPEN LOOK desktop with-
out using a mouse. Thus, XView gives two options for the locator device: first, the standard
mouse or other locator device, and alternatively, the mouseless model, which lets the user
navigate between and select objects on the desktop using keyboard commands.

This section covers the mouseless model implementation, including:

• Mouseless model semantic actions.

• Keyboard command resource binding.

142 XView Programming Manual

The resource OpenWindows.KeyboardCommands controls the level of mouseless opera-
tion. This resource may have one of three values:

SunView1 Defines only those keyboard commands that were present using SunView1.
This is the default setting and defines actions for basic operations such as
CUT, COPY, and PASTE.

Basic Enables the SunView1 commands, plus the mouseless model Local Naviga-
tion and Text Editing commands. Using this setting, only objects that nor-
mally take the input focus will accept input focus.

Full Enables all mouseless model keyboard commands and depending on the
application or window manager enables display of the special mouseless
model Location Cursor which indicates the current pointer position. Using
this setting, all objects that can normally be manipulated with the mouse
can accept input focus. Thus, actions that are normally performed with the
mouse and its buttons may be performed using the keyboard instead.

When the mouseless model is in use (OpenWindows.KeyboardCommands set to Full),
applications are responsible for displaying the Location Cursor. The Location Cursor is
described in detail in Section 6.13.4.

6.13.1 Keyboard Command Mapping

Each mouseless keyboard command is assigned an XView semantic action, each of which
has an ACTION_ prefix. Appendix C, Mouseless Model Keyboard Mappings, lists all of the
mouseless semantic actions and the corresponding event ID for each semantic action.
Depending on the value of the resource OpenWindows.KeyboardCommands, which
determines the level of mouseless operation, some or all of these mouseless semantic events
are handled internally by XView packages, by the window manager, or by individual applica-
tion programs.

Most of the mouseless keyboard commands are mapped to a combination of a modifier key
and a standard key. As described earlier in this chapter, the modifier keys include the left and
right Shift keys, the Control key, and the Meta key. The Alt key is also a modifier key for the
mouseless model (on some X servers, Alt is mapped to Meta). Sun Type-4 keyboard map-
ping, several mouseless keyboard commands map directly to unmodified ASCII characters.
These unmodified commands are defined with the semantic action ACTION_NULL_EVENT.
Table 6-2 shows the mouseless keyboard commands that are mapped to
ACTION_NULL_EVENT. The contents of the specified XView variable contain the value of the
specified resource. To process one of these commands, check to see if the event_id of the
Event equals the value of one of the XView variables. If so, then the event will be
translated to the corresponding ACTION_ command.

Handling Input

Handling Input 143

Table 6-2. Mouseless Keyboard Commands with Action ACTION_NULL_EVENT

Default
Command Resource Value XView Variable

CANCEL keyboard.cancel Escape xv_iso_cancel

DEFAULT_ACTION keyboard.defaultAction Return xv_iso_default

_action

INPUT_FOCUS_HELP keyboard.inputFocusHelp ? xv_iso_input

_focus_help

NEXT_ELEMENT keyboard.nextElement Tab xv_iso_next

_element

SELECT keyboard.select Space xv_iso_select

XView mouseless semantic action names are also mapped to provide SunView1 keyboard
functions under XView. Most of the SunView1 navigation and editing commands do not
conflict with the mouseless model. However, there are a few commands that do conflict.
Table 6-3 shows the SunView1 commands that conflict with the mouseless model.

Table 6-3. SunView1 Commands That Conflict with the Mouseless Model

Key Combination SunView1 Command Mouseless Command Resolution

Ctrl-Tab SELECT_FIELD_FORWARD NEXT_ELEMENT Moved

Shift-Ctrl-Tab SELECT_FIELD_BACKWARD PREVIOUS_ELEMENT Moved

Shift-Ctrl-/ GO_WORD_BACKWARD INPUT_FOCUS_HELP Moved

Home GO_DOCUMENT_START LINE_START Moved

End GO_DOCUMENT_END LINE_END Moved

PgUp (R9) GO_PAGE_BACKWARD PANE_START Dropped

PgDn (R15) GO_PAGE_FORWARD PANE_END Dropped

Shift-Up UP SELECT_UP Moved

Shift-Down DOWN SELECT_DOWN Moved

Shift-Left LEFT SELECT_LEFT Moved

Shift-Right RIGHT SELECT_RIGHT Moved

The values in the “Resolution” field have the following meaning:

Dropped means that the specified SunView1 functionality is not available in XView.

Moved means that the SunView1 functionality is available in XView, but a different key
combination is used than in SunView1.

144 XView Programming Manual

6.13.2 Mouseless Model Resources

Each Mouseless semantic action mapping and its corresponding key binding is determined by
the value of a resource. The default key bindings are based on the Sun Type-4 keyboard. The
bindings occur when applications are initialized and xv_init() reads the resource names.
Appendix C, Mouseless Model Keyboard Mappings, lists all of the Mouseless resources,
grouped according to the values loaded for the three different mouseless model modes: Sun-
View1, Basic, and Full. Section 6, Command-line Arguments and XView Resources, in the
XView Reference Manual, lists all XView resources alphabetically (all the mouseless
resources begin with OpenWindows.KeyboardCommand.) Mouseless model resources
use the following naming conventions:

OpenWindows.KeyboardCommand. XViewSemanticAction

XViewSemanticAction is the name of the XView semantic action without its ACTION_ prefix
(note that the capitalization for the action is also changed and the underscore characters “_”
are deleted). For example:

OpenWindows.KeyboardCommand.JumpRight: period+Ctrl

corresponds to binding the semantic action ACTION_JUMP_RIGHT to period modified by the
Control character.

Each resource may define several mappings for an individual action. Multiple mappings are
separated by “,” and have the following general format:

mapping[,mapping...]

The following resource definition is an example:

OpenWindows.KeyboardCommand.FindBackward: F+Meta,L9+Shift

Each Mouseless mapping is of the form:

KeysymName[+Modifier . . .]

In other words, each mapping is separated by a comma, and if the keysym is modified, then
each modifier is separated by a plus sign. A modifier is either “Shift,” “Ctrl,” “Alt,” or
“Meta.”

When an alphabetic character is the keysym, the case of the KeysymName is important. For
uppercase characters, use the uppercase alphabetic keysyms, for example L, instead of the
lowercase with a “Shift” modifier. When an alphabetic character is not modified by shift, then
use the lowercase alphabetic keysym (for example, l+Meta). Do not list unmodified ASCII
keyboard commands should not be listed.

6.13.3 Using the Mouseless Model

If the keyboard is used to control the locator, then the window manager, XView packages,
and your XView applications handle the keyboard’s mouseless semantic events. This section
describes the roles of the window manager and the individual XView applications.

Handling Input

Handling Input 145

6.13.3.1 The role of the window manager

Using the mouseless model, the window manager intercepts the following actions:

• Actions that change the input focus between windows or to the workspace.

• Actions that accelerate window menu operations.

• Actions that toggle the pushpin.

These three categories include the actions shown in Table 6-4.

Table 6-4. Mouseless Actions Handled by the Window Manager

Back Front
Open Close
Dismiss Window Properties
Toggle Pushpin Go To Workspace
Refresh Quit
Move Resize
Full Size Restore size
Next Window Previous Window
Last Window Next Application
Previous Application Bring Up Window Menu
Jump Input Focus To Mouse Jump To Workspace Background
Bring Up Workspace Menu?

6.13.3.2 Application responsibilities

Applications are responsible for displaying the location cursor and for handling navigation in
canvases (for example, non-text data panes). Interaction with the location cursor is described
in the following section. The semantic action, ACTION_PANE_BACKGROUND (JumpToPane-
Background), also needs to be handled by XView applications.

Applications can use the unmodified ASCII keyboard commands that are intercepted by the
mouseless model by accessing the appropriate XView variables as shown in Table 6-2.

6.13.4 The Location Cursor

The Location Cursor is a borderless frame subwindow that indicates the locator position
when the mouseless model is set to Basic or Full. When the location cursor is moved to a
new pane and it is assigned the same colormap segment and background color as that pane.
The location cursor is created when the frame is created.

146 XView Programming Manual

Frame subwindows access the handle of the Location Cursor window with the following call:

xv_get(frame, FRAME_FOCUS_WIN)

Initially, the Location Cursor is created unmapped (XV_SHOW is FALSE). When a frame
subwindow receives a KBD_USE, it calls the function frame_kbd_use().
frame_kbd_use() sets the FRAME_FOCUS_WIN’s colormap segment (WIN_CMS) and back-
ground color (WIN_BACKGROUND_COLOR) to be the same as the subwindow. If the subwin-
dow then needs to display the Location Cursor, it sets the WIN_PARENT for the
FRAME_FOCUS_WIN to its paint window. It also needs to position the XV_X and XV_Y to the
appropriate position and then set XV_SHOW to TRUE.

Note that text fields and panes have a caret to indicate input focus and position, so they
would not display the Location Cursor window. The XV_X and XV_Y coordinates are relative
to the subwindow’s paint window. When a subwindow receives KBD_DONE, it sets the
XV_SHOW to FALSE for the FRAME_FOCUS_WIN.

The Location Cursor either points up or to the right. This is controlled by setting
FRAME_FOCUS_DIRECTION on the frame to either of the values FRAME_FOCUS_UP or
FRAME_FOCUS_RIGHT.

On pop-up menus, it is the application’s responsibility to pass a valid x,y coordinate in the
event structure when the event is the keyboard MENU command, as in the following:

(event_action(event) == ACTION_MENU && !event_is_button(event))

This action is necessary because the ACTION_MENU could be the result of a key press, in
which case the cursor could be anywhere on the screen.

6.13.5 Events

Since keyboard events have a dual role when using the mouseless model, applications must
use semantic actions instead of event ID’s to control their application. This is required since
an ASCII event ID could also be a mouseless semantic action.

6.14 Using Accelerators

Accelerators permit applications to define notify procedures that are called for specific
events. For example, a particular key combination might be used to quit the application. For
Version 3.2, XView supports Menu accelerators. Refer to Appendix D of Version 3.2 and the
File Chooser for details on using menu accelerators.

To implement window-level accelerators, use the attributes FRAME_ACCELERATOR and
FRAME_X_ACCELERATOR. These attributes are set on the frame containing the window where
the accelerator is defined. FRAME_ACCELERATOR associates an accelerator with an event
code. FRAME_X_ACCELERATOR associates an accelerator with an X keysym.

Handling Input

Handling Input 147

The first value for the attribute FRAME_ACCELERATOR is the event code for an unmodified key
(not shifted) that when combined with the Meta modifier, forms the key sequence for the
accelerator. Similarly, the first value for the attribute FRAME_X_ACCELERATOR is an X
keysym instead of an event code.

The second value for both FRAME_ACCELERATOR and FRAME_X_ACCELERATOR is the acceler-
ator notify routine to call when the accelerator is used. This routine is a user-defined call-
back with the following form:

void
accelerator_notify_proc(value, event)

Xv_opaque value;
Event *event;

The parameter value is the value passed as the third argument to FRAME_ACCELERATOR or
FRAME_X_ACCELERATOR. In this example, the value is an Xv_opaque that passed to the
accelerator notify procedure. Usually this is an XView object handle. For example, if you
want to accelerate a PANEL_BUTTON, if you set value to the button item handle, then you
could set the accelerator notify procedure to be the same as the button’s notify procedure as
in the following example:

xv_set(frame,
FRAME_ACCELERATOR, ’b’, file_btn_notify_proc, file_button,
NULL);

For accelerators to work, you need to set OpenWindows.KeyboardCommands to Full.
For more details on setting this resource, refer to Section 6.13, “The Mouseless Model.”

NOTE

Certain key combinations are reserved for semantic actions within XView and
should not be used for accelerators. These key combinations are listed in
Appendix C, Mouseless Model Keyboard Mappings.

148 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

7
Panels

The XView PANEL package implements the OPEN LOOK control area. Panels are used in
many different contexts—property sheets, notices, and menus all use panels in their imple-
mentation. The main function of a panel is to manage a variety of panel items. Figure 7-3
shows examples of panel items from the OPEN LOOK GUI. Because some panel items may
not contain windows that handle their own events, the PANEL package is responsible for pro-
pagating events to the appropriate panel item. This chapter addresses issues specific to pan-
els, the management of panel items and the distribution of events to those items. We look at
basic issues common to all panel items before introducing each of the eight different panel
item packages. Finally, we look at several advanced topics regarding panel usage.

The PANEL package is subclassed from the WINDOW package. In typical usage, you create a
panel and set certain panel-specific attributes. Figure 7-1 shows the class hierarchy for pan-
els and Figure 7-2 shows the class hierarchy for a panel item.

Generic
Object (Drawable) Window Panel

Figure 7-1. Panel package class hierarchy

Generic
Object

Generic
Panel Item

Your
Panel Item

Figure 7-2. Panel item class hierarchy

Panels

Panels 153

Panels set up and manage event-handling masks and routines for themselves and their panel
items. The application does not set event masks or install an event callback routine unless it
needs to track events above and beyond what the PANEL package does by default (typical
applications will not need to do this). Even so, this is probably better accomplished via inter-
posing functions as discussed in Chapter 20, The Notifier.

Figure 7-3. Controls in an OPEN LOOK GUI implementation*

* XView supports the scrolling list item but it is not shown here.

154 XView Programming Manual

The PANEL package handles all the repainting and resizing events automatically. Panels are
not used to display graphics, so there is no need to capture repaint events. Rather than deal
with other events specifically callback routines are not installed on panels, but set for each
panel item. Because of the varying types of panel items, each item’s callback function may
be invoked by a different action from the user. While clicking on a panel button is all that is
necessary to activate the button’s callback routine, a text panel item might be configured to
call its notification callback routine when the user presses the RETURN key.

Since panel items express interest in different events, it is the responsibility of the PANEL

package to track all events within the panel’s window and dispatch events to the proper panel
item depending on its type. In some cases, if an event happens over a certain panel item and
that item is not interested in that event, the event may be sent to another panel item. For
example, what happens if a key is pressed over a panel button? Because the panel button has
no interest in the event, the panel will send the event to a text panel item, if one exists else-
where in the panel.

Section 7.19, “Advanced Panel Usage,” describes panel event handling and repainting.

7.1 Creating a Panel

You create a panel by calling xv_create() and specifying the PANEL package and a NULL-
terminated list of attribute-value pairs. A panel must be created as a child of the frame. All
programs that use panels or panel items must include <xview/panel.h>. Because panels are
uninteresting without panel items, Example 7-1 shows how to create a simple frame, a panel
and a panel button. Selecting the panel button causes the program to exit. This is the same
quit.c program as shown in Chapter 3, Creating XView Applications.

Example 7-1. The quit.c program

/*
* quit.c -- simple program to display a panel button that says "Quit".
* Selecting the panel button exits the program.
*/
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>

Frame frame;

main (argc, argv)
int argc;
char *argv[];
{

Panel panel;
void quit();

xv_init (XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create (NULL, FRAME,
FRAME_LABEL, argv[0],
XV_WIDTH, 200,

Panels

Panels 155

Example 7-1. The quit.c program (continued)

XV_HEIGHT, 100,
NULL);

panel = (Panel)xv_create (frame, PANEL, NULL);

(void) xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, quit,
NULL);

xv_main_loop (frame);
exit(0);

}

void
quit()
{

xv_destroy_safe(frame);
}

7.1.0.1 Fonts and panels

OPEN LOOK is somewhat restrictive about the use of fonts within panels. Many panel items
cannot have their fonts changed at all. Of those that can, none can have their fonts set indi-
vidually.* However, if a font is set in the panel itself, it is then inherited by the panel items
whose fonts can be changed. This guarantees the consistency of fonts in panels. In addition,
a panel’s font may only be specified when the panel is created.

7.1.1 Scrollable Panels

Scrollable panels are not OPEN LOOK-compliant, but are provided for historical reasons.
They are basically just like panels, except that typically not all panel items are in view. A
vertical scrollbar attached to the panel allows the user to navigate to the panel items desired.
Again, because this type of interface is not OPEN LOOK-compliant, you are discouraged from
using this package.

In order to deal with the complications involved with attaching a scrollbar to a panel, the
scrollable panel package is subclassed from the CANVAS package and thus, the OPENWIN

package. Scrollable panels are created the same way panels are, but the package name to use
is SCROLLABLE_PANEL. The scrollable panel package does not create the scrollbars, how-
ever. You must create them separately:

*The exact list of panel items varies and may change. Currently, it includes the text used in the value of panel text
items.

156 XView Programming Manual

Scrollable_panel sp;
Scrollbar sb;

sp = xv_create(frame, SCROLLABLE_PANEL, NULL);
sb = xv_create(sp, SCROLLBAR, NULL);

The principle difference between canvases and scrollable panels is the management of events
and the existence of panel items. In canvases, the programmer installs callback routines for
events and for repaint and resize routines, and an input mask is set for notification of certain
events that the application is interested in. However, like normal panels, the scrollable panel
does this automatically. Other than this, scrollable panels may take the same attributes as
normal panels.

7.2 Creating Panel Items

Like other XView object, panel items are created using xv_create():

Panel_item
xv_create(panel, item_type, attrs)

Panel panel;
<item type> item_type;
<attribute-value list> attrs;

The value of item_type must be a panel item from one of the panel item packages:

• PANEL_ABBREV_MENU_BUTTON

• PANEL_BUTTON

• PANEL_CHECK_BOX

• PANEL_CHOICE

• PANEL_CHOICE_STACK

• PANEL_DROP_TARGET

• PANEL_GAUGE

• PANEL_LIST

• PANEL_MESSAGE

• PANEL_MULTILINE_TEXT

• PANEL_NUMERIC_TEXT

• PANEL_SLIDER

• PANEL_TEXT

• PANEL_TOGGLE

Panels

Panels 157

The items in this list represent the items found in Figure 7-4. Each item’s type can be
retrieved by calling:

Panel_item_type type;
type = (Panel_item_type)xv_get(panel_item, PANEL_ITEM_CLASS);

Panel_item_type is an enumerated type found in <xview/panel.h> and contains the fol-
lowing types:

• PANEL_ABBREV_MENU_BUTTON_ITEM

• PANEL_BUTTON_ITEM

• PANEL_CHOICE_ITEM

• PANEL_DROP_TARGET_ITEM

• PANEL_GAUGE_ITEM

• PANEL_LIST_ITEM

• PANEL_MESSAGE_ITEM

• PANEL_MULTILINE_TEXT_ITEM

• PANEL_NUMERIC_TEXT_ITEM

• PANEL_SLIDER_ITEM

• PANEL_TEXT_ITEM

• PANEL_TOGGLE_ITEM

• PANEL_EXTENSION_ITEM

Most panel items have no windows associated with them (internally, the package uses Xlib
calls to draw the items directly onto the panel window). There are no windows associated
with panel items, so panel items should be careful not to overlap one another because one
item will not clip the one under it. For event processing, when an event occurs in a panel, the
package scans through items in the panel in the order that they were created. The event is
dispatched to the first item whose item rectangle includes the x,y coordinate of the event. If
there is another item that shares the same space, then it will not see the event. For this rea-
son, it is important that panel items are tiled and do not intersect partially or completely.

There are cases where the panel item displayed in a particular location is dependent on the
state of the application. In such cases, only one panel item would be visible and the other(s)
would be hidden. If you need to use more than one panel item at the same location, make one
panel item visible by setting XV_SHOW to TRUE, and hide the other panel item by setting
XV_SHOW to FALSE. Depending on the state of the application, you can toggle the XV_SHOW
values in each of the panel items.

158 XView Programming Manual

7.3 Layout of Panels and Panel Items

This section covers the layout of panels and panel items. The layout for panels describes
their orientation and the spacing between panel items. The section describing the layout of
panel items shows the components of a panel item. Normally, applications do not need to
alter the default layout mechanism for panels or for panel items.

7.3.1 Panel Layout

A panel lays out panel items in rows and columns. The width and height of the rows and col-
umns may be set by the PANEL package automatically, or by setting window attributes, as
well as by setting the sizes of the panel items themselves. The default layout mechanism is
usually all that is necessary. You do not need to give explicit layout methods for the general
case. Using this approach, the width and height of panels may change dynamically and you
will not need to adjust the positions for panel items. Because absolute positioning methods
do not allow for dynamic scaling, they are not generally recommended.

Whenever panel items are created, they are added to the adjacent panel item in either a row-
first or a column-first order. As each new item is added, it is placed at the next position
depending on the value of the panel’s PANEL_LAYOUT attribute. The default value,
PANEL_HORIZONTAL, lays out panel items horizontally until the items have reached the edge
of the panel. A new row is then started and the next item is placed at the left edge of the pan-
el. Setting the value of PANEL_LAYOUT to PANEL_VERTICAL causes items to be laid out by
column first; when the height of the panel is reached, the next column is started.

If you plan to fit many panel items in a single row or column and want to use default posi-
tioning and window_fit() (see Section 7.5, “Sizing Panels”) it may be necessary to create
the panel with a size greater than the default width or height. Otherwise, items could be
placed in a new row or column before expected.

The gap between items as they are laid out vertically and horizontally can be set by the attri-
butes PANEL_ITEM_X_GAP and PANEL_ITEM_Y_GAP. The default gap is 10 pixels in the hor-
izontal direction and 13 pixels in the vertical direction. The panel gap can be set on an entire
panel or on individual panel items within a panel.

When you want the next item to start a new row and the panel layout is PANEL_HORIZONTAL,
use the attribute PANEL_NEXT_ROW. This specifies that the item is to start a new row and is to
be offset by the number of pixels specified. Setting PANEL_NEXT_ROW to the value –1 uses
the value of PANEL_ITEM_Y_GAP for the row gap.

Similarly, when you want the next item to start a new column, and the panel layout is PAN-
EL_VERTICAL, use the attribute PANEL_NEXT_COL. It specifies that the item is to start a new
column is to be offset by the number of pixels specified. Setting PANEL_NEXT_COL to value
–1 uses the value of PANEL_ITEM_X_GAP column gap (see Section 7.4, “Explicit Panel Item
Positioning”).

Since different panel items have different sizes, the grid is not rigidly adhered to and the po-
sition of items may fluctuate within a row. However, it is possible to force items to line up to
specific rows and columns, as will be shown later.

Panels

Panels 159

Figure 7-4 shows how panels items are laid out as they are created.

Figure 7-4. Layout of panel items

7.3.2 Panel Item Layout

A panel item is made up of two parts: a label and a value. The area for a panel item’s label is
called the label rectangle. The area for a panel item’s value is called the value rectangle.
The entire area where a panel item may be placed is the panel item’s item rectangle. The
components of a panel item are shown in Figure 7-5. Some panel items, like PANEL_MES-

SAGE and PANEL_BUTTON, only have a label. Their value rectangle has a width and height of
0. Other panel items may not have a label; in these cases, the label rectangle has a width and
height of 0 (e.g., PANEL_TEXT; however, if a PANEL_TEXT item does have a label, the label
rectangle width and height will be greater than 0).

Except where mandated by OPEN LOOK (e.g., PANEL_SLIDER), the panel item attribute PAN-

EL_LAYOUT determines the orientation between the label and value. If the layout is horizon-
tal, the value rectangle is placed to the right of the label rectangle. If the layout is vertical,
the value rectangle is placed below the label rectangle. Note that PANEL_LAYOUT is both a
panel and a panel item attribute. However, these represent two different values.

You can embed newlines into strings supplied to the PANEL_LABEL_STRING attribute. The
newlines tell XView to generate multi-line labels for panel items. Note the sub-strings are
right-justified. By default, using multi-line labels, the value rectangle is placed after the last
line of the label rectangle.

The attribute PANEL_BORDER adds a border around the panel. In a 3D implementation, this
border is two pixels wide and presents a “chiseled” appearance. In 2D, the border is one pixel
wide. Since the border is rendered directly on the Panel, it is the job of the application to
make sure that no Panel_item’s overlap the border.

160 XView Programming Manual

7.4 Explicit Panel Item Positioning

In some cases, you may need to alter the the default panel item positioning. To position pan-
el items explicitly, you can use one of two general methods: relative panel item positioning,
or absolute panel item positioning. Using relative panel item positioning, you can adjust
your panel items and still accommodate various font sizes. This section describes both of
these methods for positioning panel items.

Label rect

Name: Edward G. Robinson

Edward G. Robinson

Value rect Item rectLabel rect

Name:

Figure 7-5. Panel item value rectangle and label rectangle

7.4.1 Relative Panel Item Positioning

You can use either of two general methods to accomplish relative panel item positioning.
The first method uses the attributes PANEL_ITEM_X_GAP and PANEL_ITEM_Y_GAP to change
the size of the row and column gap between panel items. In the following example, these at-
tributes are used to change the gap between columns to 20 pixels and the gap between rows
to 10 pixels:

xv_set(panel,
PANEL_ITEM_X_GAP, 20,
PANEL_ITEM_Y_GAP, 10,
NULL);

/* Create all the panel items */
xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "First",
PANEL_NOTIFY_PROC, first_notify_proc,
NULL);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Second",
PANEL_NOTIFY_PROC, second_notify_proc,
NULL);

Panels

Panels 161

In the second method for relative item positioning, each panel item you create is laid out rel-
ative to the previously created item. After an item is created, you get its XV_RECT and add
individual gap values. You then use XV_X and XV_Y to position the next panel item. The fol-
lowing example demonstrates this method:

first = xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "First",
PANEL_NOTIFY_PROC, first_notify_proc,
NULL);

rect = (Rect *) xv_get(first, XV_RECT);
/* Position the next item 20 pixels to the right*/
/* right of the previous item */

second = xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Second",
PANEL_NOTIFY_PROC, second_notify_proc,
XV_X, rect_right(rect) + 20,
NULL);

rect = (Rect *) xv_get(second, XV_RECT);
/* Position the next item 30 pixels to the right */
/* of the previous item */

third = xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Third",
PANEL_NOTIFY_PROC, third_notify_proc,
XV_X, rect_right(rect) + 30,
NULL);

7.4.2 Absolute Panel Item Positioning

Using absolute panel item positioning, the attributes XV_X and XV_Y specify the position of
panel items explicitly. These attributes specify absolute positioning relative to the panel.
The attributes PANEL_ITEM_X and PANEL_ITEM_Y are specific to panels. These values re-
flect the coordinates of the last item created. Therefore, they are both get-only attributes.
The following code fragment shows how both are used:

panel = (Panel)xv_create(frame, PANEL, NULL);

xv_create(panel, PANEL_BUTTON,
XV_X, 50,
XV_Y, 75,
PANEL_LABEL_STRING, "Quit",
NULL);

printf("The last item in the panel was at %d %d.0,
xv_get(panel, PANEL_ITEM_X), xv_get(panel, PANEL_ITEM_Y));

This code segment would print:

The last item in the panel was at 50 75.

When positioning panel items, if the position of the new panel item extends beyond the edges
of the panel in the positive direction, the size of the panel increases to include the item. This
happens regardless of whether the panel’s size was set explicitly at the time it was created.*

*Setting an item to negative coordinates does not increase the size of the panel—only if the item is wide enough or
high enough to stretch into the panel window will any of it be visible.

162 XView Programming Manual

7.4.2.1 General positioning of items

Two functions that are available for general positioning of panel items within windows are
xv_row() and xv_col(). These functions use the values of WIN_ROW_GAP and
WIN_COLUMN_GAP of the panel. While these attributes control the spacing between panel
items, the distance between items and the edge of the panel is set to a constant 4 pixels.

Consider the following code fragment that positions items within regimented rows and
columns:

int rows, cols;
extern char *names[3][5];

frame = (Frame)xv_create(NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL,

WIN_ROW_GAP, 70,
WIN_COLUMN_GAP, 20,
NULL);

for (rows = 0; rows < 3; rows++)
for (cols = 0; cols < 5; cols++)

(void) xv_create(panel, PANEL_BUTTON,
XV_X, xv_col(panel, cols),
XV_Y, xv_row(panel, rows),
PANEL_LABEL_STRING, names[rows][cols],
PANEL_NOTIFY_PROC, (rows+cols==0)? quit : selected,
PANEL_CLIENT_DATA, frame,
NULL);

This code displays a panel with a 70-pixel distance between the upper-left corners of the pan-
el items. Thus, each panel item must be less than 70 pixels wide or they will overlap one an-
other. This contrasts with PANEL_ITEM_X_GAP and PANEL_ITEM_Y_GAP, which specify the
gap between the right and left sides of adjacent panel items. Note that this does not affect the
distance between the edge of the panel and the items along the perimeter; that distance re-
mains constant at 4 pixels.

The xv_col() and xv_row() method of explicit panel item placement does not take into
account the sizes of the panel items. If not enough space is given between the rows and
columns (WIN_COLUMN_GAP, WIN_ROW_GAP), then items will lie on top of one another. Nei-
ther does this method take into account dynamic scaling of items and fonts. As a result, this
and all absolute positioning methods are not recommended.

7.4.3 Layout of Panel Items with Values

For panel items with values, PANEL_VALUE_X and PANEL_VALUE_Y can be used instead of
the XV_X and XV_Y attributes mentioned above to align the value rectangles of panel items.
The label portion of the panel item is then positioned automatically according to the panel
layout characteristics currently in effect. This is useful, for example, when you need to align
a series of PANEL_TEXT items. It is important not to use XV_X and XV_Y when using the label
and value positioning attributes.

Panels

Panels 163

7.5 Sizing Panels

The size of a panel, by default, extends to the bottom and right edges of the frame in which it
is placed (assuming there are no other subwindows in the frame). Alternatively, the panel’s
dimensions can be set explicitly using XV_WIDTH and XV_HEIGHT. If it is important to main-
tain the layout of the panel items in a panel, then the dimensions should be set explicitly.

More often than not, you want the panel to be just the minimum height and width required to
encompass all of its items. You can set the minimum height and width using the macros
window_fit_height() or window_fit_width(), respectively. You can set both in
a single call to window_fit(). These macros are called after all the items have been
created.

The attributes PANEL_EXTRA_PAINT_WIDTH and PANEL_EXTRA_PAINT_HEIGHT specify the
increment by which a panel will grow in the x and y directions, respectively.

7.6 Panel Item Values

Many panel items are associated with a specific value. A text item has a string value, a
numeric text item has an integer value, a choice item has a current-choice value, and so on.*
To set a value, use:

xv_set(item, PANEL_VALUE, value, NULL)

Of course, the type of value is dependent on the type of panel item whose value is being
set. Consider the following examples:

/* Set the text field in the text item to print "Hello World" */
xv_set(text_item, PANEL_VALUE, "Hello world.", NULL);

/* Set the numeric value of the numeric text item to be 10 */
xv_set(text_num_item, PANEL_VALUE, 10, NULL);

/* Set the current choice in choice_item to be the fifth choice */
xv_set(choice_item, PANEL_VALUE, 4, NULL);

NOTE

The values for string-valued attributes are dynamically allocated when they are
created or set. The value you specify is copied into the newly allocated space. If
a previous value was present, the panel item frees its old data first.†

Panel item values are retrieved in a similar way:

xv_get(item, PANEL_VALUE);

*For details about the value type of a panel item, see the corresponding sections on specific panel items (Sections 7.9
through 7.18).

†This contrasts with menu items. See Chapter 11, Menus.

164 XView Programming Manual

Since the xv_get() routines are used to retrieve attributes of all types, you should cast the
value returned into the type appropriate to the attribute being retrieved:

int val;
val = (int)xv_get(num_text_item, PANEL_VALUE);
printf("The int–value in the num_text_item is: ’%d’0, val);

NOTE

xv_get() does not dynamically allocate storage for the values it returns. If the
value returned is a pointer, it points directly into the panel’s private data. It
should be considered read-only—do not change the contents of the pointer; it is
your responsibility to copy the information pointed to.

7.7 Iterating Over a Panel’s Items

You can iterate over each item in a panel with the two attributes PANEL_FIRST_ITEM and
PANEL_NEXT_ITEM. A pair of macros, PANEL_EACH_ITEM() and PANEL_END_EACH are also
provided for this purpose. For example, to destroy each item in a panel:

Panel_item item;

PANEL_EACH_ITEM(browser, item)
xv_destroy(item);

PANEL_END_EACH

Note that a semicolon is not required after PANEL_END_EACH.

7.8 Panel Item Classes

Nine types of panel items are presented here:

• Panel Buttons, Menu Buttons, and Abbreviated Menu Buttons

• Checkboxes

• Exclusive and Nonexclusive Choices

• Abbreviated Choices

• Scrolling Lists

• Message Items

• Sliders

• Text Items (including numeric and multiline text items)

• Drop Target Items

Panels

Panels 165

Items are made up of one or more displayable components. One component shared by all
item types is the label. An item label is either a string or a graphic image.

The user interacts with items through various methods ranging from mouse button selection
to keyboard input. This interaction typically results in a callback function being called for
the panel item. The callback functions also vary on a per-item basis. Each item type is de-
scribed in the following sections.

7.9 Button Items

A button item allows the user to invoke a command or bring up a menu. Examples of various
buttons are listed in Figure 7-6. The button’s label identifies the name of the command or
menu. A button label that ends in three dots (. . .) indicates that a pop-up menu will be
displayed when the button is selected.

Figure 7-6. Visual feedback for button controls

A button requires a label specified by the attribute PANEL_LABEL_STRING or PANEL_LA-
BEL_IMAGE. Buttons do not have a PANEL_VALUE associated with them.

166 XView Programming Manual

7.9.1 Button Selection

The user invokes a panel button by clicking the SELECT mouse button on it. When this hap-
pens, the button’s notify procedure is called. The notify procedure is installed by specifying
PANEL_NOTIFY_PROC, as in the following example:

xv_create(panel, PANEL_BUTTON,
PANEL_NOTIFY_PROC, quit_proc,
PANEL_LABEL_STRING, "Quit",
NULL);

When the button is selected, the notify procedure is called. The form of the notify procedure
for a button is:

void
button_notify_proc(item, event)

Panel_item item;
Event *event

The function does not return a value, but if the action that the button had intended to take
fails, then you should set the item’s PANEL_NOTIFY_STATUS to XV_ERROR (e.g., if the button
was labeled “save” but the actual save operation failed). It is set to XV_OK by default. If the
button is part of an unpinned Command Frame, setting PANEL_NOTIFY_STATUS to XV_ERROR
will prevent the Command Frame from being dismissed. Use MENU_NOTIFY_STATUS for a
menu. In a callback, setting this to XV_ERROR on the menu that was notified prevents the
frame from being dismissed.

When a button’s notify procedure is called, the button’s busy state is set. When a button’s
busy state is set to TRUE, the button does not accept further input (clicking the SELECT mouse
button will do nothing to the button item). The busy state is cleared when the notify proce-
dure exits. The busy state can be maintained after exiting the notify procedure by setting
PANEL_BUSY to TRUE from within the notify procedure.

7.9.1.1 Making a button inactive

The attributes PANEL_INACTIVE is used to make a panel button inactive. If TRUE, the button
item cannot be selected. Inactive items are displayed with gray-out pattern as shown in Fig-
ure 7-6.

7.9.2 Menu Buttons

It is often useful to attach a menu to a button. The menu may provide alternate values or
functions for the button to invoke. Since the menu is a separate entity (in other words, it is
not created when the button is created—you have to create it on your own), the menu may
have callback routines associated with it and its menu items.*

*Read Chapter 11, Menus, for details of menus and menu items.

Panels

Panels 167

When a menu button receives an ACTION_MENU down event, the button’s notify procedure is
called before the menu is displayed. This gives you the chance to modify the menu before-
hand. When the menu button is selected by clicking the SELECT button, the button’s notify
procedure is called before the menu’s notify procedure.

Menu buttons contain a triangle pointing in the direction in which the menu will be
displayed.

The btn_menu.c program in Example 7-2 demonstrates how a menu can be attached to a pan-
el button.

Example 7-2. The btn_menu.c program

/*
* btn_menu.c -- display a panel that has an OPEN LOOK menu button.
* The choices displayed are Yes, No and Quit. If Quit is selected
* in the menu, the program exits.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/openmenu.h>

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Menu menu;
int selected();
void menu_proc();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);

/* Create the menu _before_ the panel button */
menu = (Menu)xv_create(NULL, MENU,

MENU_NOTIFY_PROC, menu_proc,
MENU_STRINGS, "Yes", "No", "Quit", NULL,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Y/N/Q",
PANEL_NOTIFY_PROC, selected,
PANEL_ITEM_MENU, menu, /* attach menu to button */
NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

int
selected(item, event)
Panel_item item;
Event *event;
{

168 XView Programming Manual

Example 7-2. The btn_menu.c program (continued)

printf("%s selected...\n", xv_get(item, PANEL_LABEL_STRING));
return XV_OK;

}

void
menu_proc(menu, menu_item)
Menu menu;
Menu_item menu_item;
{

printf("Menu Item: %s\n", xv_get(menu_item, MENU_STRING));
if (!strcmp((char *)xv_get(menu_item, MENU_STRING), "Quit"))

exit(0);
}

The output produced by this program is shown in Figure 7-7.

7.9.2.1 Destroying menu buttons

XView automatically destroys the menu associated with the button unless there are other ref-
erences to the menu. For each button or any other XView object that references the menu in
question, the menu’s XV_REF_COUNT is incremented. Thus, if five buttons reference the same
menu, then destroying one button will not destroy the menu, but it will decrement the refer-
ence count by one. If the destruction of the panel item would decrement the menu’s refer-
ence count to 0, then the menu itself is destroyed. Therefore, if you wish to prevent the menu
from being destroyed, you can forcefully increment the menu’s reference count by at least
one more than what it is. That way, no matter how many times the menu is used, its reference
count will always be set to a value greater than zero, and it will never be destroyed by des-
troying panel items that use it. Of course, you can always call xv_destroy() on the menu
explicitly when you want to destroy the menu once and for all.

Figure 7-7. Sample menu button (unselected and selected)

You can use the attributes XV_INCREMENT_REF_COUNT and XV_DECREMENT_REF_COUNT on
any item.

xv_set(menu, XV_INCREMENT_REF_COUNT, NULL);

Panels

Panels 169

This is not recommended except when you need to circumvent the normal functionality of
XView.

7.9.3 Panel Button Width

The width of a panel button’s string or image is available and can be set with the attribute
PANEL_LABEL_WIDTH. This attribute does not include the width of a panel button’s end caps
or menu marks. PANEL_LABEL_WIDTH has no effect on a PANEL_BUTTON until the panel but-
ton’s PANEL_LABEL_STRING or PANEL_LABEL_IMAGE is set.

To make all the panel buttons the same width for a group of buttons that are not all menu but-
tons or all non-menu buttons, requires three steps:

1. Set the PANEL_LABEL_WIDTH for each button.

2. Find the maximum XV_WIDTH of all the buttons in the group. This value includes the
width of any end caps or menu marks.

3. Finally, add the difference between each button’s XV_WIDTH and the maximum
XV_WIDTH of all the buttons to each button’s PANEL_LABEL_WIDTH:

xv_set(item, PANEL_LABEL_WIDTH,
(int)xv_get(item, PANEL_LABEL_WIDTH) +
max_XV_WIDTH - (int)xv_get(item,XV_WIDTH),
NULL);

7.9.4 Abbreviated Menu Buttons

Abbreviated menu buttons are just like menu buttons. However, they do not display the label
inside the button, but to the left, as shown in Figure 7-8.

Figure 7-8. Sample abbreviated menu button

170 XView Programming Manual

Abbreviated menu items are created using the PANEL_ABBREV_MENU_BUTTON package.

Panel_item item;
extern Menu menu; /* created separately */

item = xv_create(panel, PANEL_ABBREV_MENU_BUTTON,
PANEL_ITEM_MENU, menu,
NULL);

Notification is the same as in full-size menu buttons.

7.10 Choice Items

Choice items provide a list of different choices to the user in which one or more choices may
be selected. There are variations of choice items which implement different OPEN LOOK ob-
jects such as:

• Exclusive and Nonexclusive Choices (or Settings)

• Abbreviated Choice Items

• Checkboxes

Behind the flexibility of presentation lies a uniform structure consisting of a label, a list of
choices and an indication of which choice or set of choices is currently selected. The choices
can be displayed as either text strings (PANEL_CHOICE_STRINGS) or server images (PAN-
EL_CHOICE_IMAGES). The number of choices in a choice list is returned by the PAN-

EL_NCHOICES attribute. This is true for toggle items as well.

7.10.1 Display and Layout of Item Choices

The attribute PANEL_DISPLAY_LEVEL determines which of an item’s choices are actually
displayed. The display level may be set to:

PANEL_ALL The default. All choices are shown.

PANEL_CURRENT Only the current choice is shown.

PANEL_NONE No choices are shown.

The choices are laid out either horizontally or vertically next to the label depending on the
value of the item’s value for PANEL_LAYOUT. By default, this value is PANEL_HORIZONTAL.

Sometimes the number of choices in a choice list can get long and the menu for the item (if
any) may look aesthetically bad or not fit on the screen. You can specify that choices appear
in row and column layout by specifying either the number of rows or the number of columns
with the attributes PANEL_CHOICE_NROWS and PANEL_CHOICE_NCOLS. If both are specified,
the last one specified takes precedence.

Panels

Panels 171

7.10.2 Exclusive and Nonexclusive Choices

When a default choice item is created, its type is an exclusive choice item allowing the user
to select only one choice from the list. The value of the panel item is the currently selected
choice. The index of the first choice is 0. In the following example, we create several choice
items as exclusive settings:

xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Choice - Exclusive",
PANEL_CHOICE_STRINGS, "One", "Two", "Three", "Four", NULL,
PANEL_NOTIFY_PROC, selected,
PANEL_VALUE, 3,
NULL);

This code fragment produces the panel item shown in Figure 7-9.

Figure 7-9. Sample panel with exclusive choices

Figure 7-9 represents a panel item that has four choices, the fourth of which is set. If the user
makes another choice, the value of the item, and therefore the value of PANEL_VALUE,
changes to the ordinal number of the choice.

The choice item can be made nonexclusive, allowing more than one of the choices to be se-
lected, when the attribute PANEL_CHOOSE_ONE is set to FALSE. The macro PANEL_TOGGLE

has been defined as:

PANEL_CHOICE, PANEL_CHOOSE_ONE, FALSE

This macro affects the panel item in two ways. More than one choice may be set in the visual
feedback, and the value of the item is set as a mask indicating the choices selected. In the
following example, the choice items in the previous example are shown as nonexclusive set-
tings:

xv_create(panel, PANEL_TOGGLE,
PANEL_LABEL_STRING, "Choice - Nonexclusive",
PANEL_CHOICE_STRINGS, "One", "Two", "Three", "Four", NULL,
PANEL_NOTIFY_PROC, selected,
PANEL_VALUE, 5,
NULL);

This code fragment would produce the panel item shown in Figure 7-10.

172 XView Programming Manual

Figure 7-10. Sample panel with nonexclusive choices

Figure 7-10 represents a panel item that has two choices set, the first and the third. The rea-
son for this is that the panel’s value is set to 5, which is a mask that represents the first and
third bits. For example, 5 in binary is . . . 00101.* In the binary representation, the first and
third bits from the right are 1’s. This means that the first and third choices are selected. This
is how the value is interpreted on calls to xv_set() or xv_create(), and how it is re-
turned for calls to xv_get().

To get the image for a choice item’s current choice (assuming the choice item is a
Server_image choice):

Server_image image;
image = (Server_image)xv_get(item, PANEL_CHOICE_IMAGE,

xv_get(item, PANEL_VALUE));

For choice items whose PANEL_CHOOSE_NONE value is TRUE, a PANEL_VALUE of -1 may be
set or returned, indicating that no choices are set for that item.

Setting PANEL_CHOOSE_NONE allows choice items to have no currently selected item. This
attribute is not applicable if PANEL_CHOOSE_ONE is FALSE.

7.10.3 Abbreviated Choices

Abbreviated choices are exclusive choices that either display no value or only the current
value. A menu is used to display all the choices. To implement abbreviated choice items, the
macro PANEL_CHOICE_STACK is used. This macro creates an abbreviated choice item that
displays only the current value. It is defined as:

PANEL_CHOICE, PANEL_DISPLAY_LEVEL, PANEL_CURRENT

To create an abbreviated choice item that does not display the current value, use the PAN-

EL_ABBREV_MENU_BUTTON package and set PANEL_DISPLAY_LEVEL to PANEL_NONE (refer
to Section 7.9.4, “Abbreviated Menu Buttons,” for details). The following example demon-
strates creating an abbreviated choice item that displays the current value:

xv_create(panel, PANEL_CHOICE_STACK,
PANEL_LAYOUT, PANEL_VERTICAL,

*The value for nonexclusive choice items is stored as an unsigned int and the maximum number of nonex-
clusive choice items is 32.

Panels

Panels 173

PANEL_LABEL_STRING, "Abbreviated Choice",
PANEL_CHOICE_STRINGS, "One", "Two", "Three", "Four", NULL,
PANEL_NOTIFY_PROC, selected,
PANEL_VALUE, 1,
NULL);

The panel item created by this code is shown in Figure 7-11.

Figure 7-11. Sample panel with abbreviated choice (unselected and selected)

Here, since only the current selection is visible, the only way to make other choices in the
item is to bring up a menu. The value of the panel item is the same as for an exclusive PAN-

EL_CHOICE item.

7.10.4 Checkbox Choices

Checkboxes are nonexclusive choices that use checkmarks to indicate the selected choices.
Unselected choices have empty checkboxes. The following example demonstrates check-
boxes:

xv_create(panel, PANEL_CHECK_BOX,
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_LABEL_STRING, "Choices",
PANEL_CHOICE_STRINGS, "One", "Two", "Three", "Four", NULL,
PANEL_NOTIFY_PROC, selected,
PANEL_VALUE, 5,
NULL);

The panel item created by this code is shown in Figure 7-12.

174 XView Programming Manual

Figure 7-12. Sample panel with checkbox

All of the choices can be selected in the same way as a PANEL_TOGGLE.

7.10.5 Choice Selection and Notification

The user can make a selection from a choice item by selecting the desired choice directly
with the SELECT mouse button.

The procedure specified via the attribute PANEL_NOTIFY_PROC will be called when any of its
choices are selected. If a choice item’s current selection or value changes as a result of a call
to xv_set() from somewhere else, then the notify procedure is not called. The choice
notify procedure is passed the item, the current value of the item, and the event that caused
notification:

void
choice_notify_proc(item, value, event)

Panel_item item;
int value;
Event *event;

Like the button’s notify procedure, the choice notify procedure is also a void function. If the
function fails to perform its task, you should set the item’s PANEL_NOTIFY_STATUS to
XV_ERROR.

For exclusive choices, the value passed to the notify procedure is the ordinal number corre-
sponding to the current choice (the choice that the user has just selected). The first choice
has ordinal number zero. For nonexclusive choices, the value is a mask of the currently se-
lected choices in the list (see Section 7.11.3, “List Selection”).

The event is the event that caused the notify procedure to be called. For these types of
choices, the event action will probably be ACTION_SELECT.

7.10.6 Foreground Color in Choice Items

Colors for panel choice items may be set with the PANEL_CHOICE_COLOR attribute. This at-
tribute sets the foreground color index for specified choices. The following example demon-
strates a choice using the foreground color attribute.

Panels

Panels 175

xv_create(panel, PANEL_TOGGLE,
PANEL_LABEL_STRING, "Choices",
PANEL_CHOICE_STRINGS, "One", "Two", "Three", "Four", NULL,
PANEL_NOTIFY_PROC, selected,
PANEL_VALUE, 5,
PANEL_CHOICE_COLOR, 0, RED, NULL,
PANEL_CHOICE_COLOR, 1, BLUE, NULL,
PANEL_CHOICE_COLOR, 2, RED, NULL,
PANEL_CHOICE_COLOR, 3, BLUE, NULL,
NULL);

7.10.7 Parallel Lists

Parallel lists are lists of values for particular attributes that correspond to each choice in the
panel item. An example of a parallel list is PANEL_CHOICE_XS and PANEL_CHOICE_YS.
These two attributes take as values a NULL-terminated list of coordinates to specify explicit
placement of the choices when they are displayed (assuming PANEL_ALL is the display for-
mat).

WARNING

The attributes PANEL_CHOICE_XS, PANEL_CHOICE_YS, PANEL_CHOICE_X and
PANEL_CHOICE_Y are provided for SunView1 Compatibility. They are men-
tioned here for explanatory purposes only. Their use allows you to create appli-
cations that may not be OPEN LOOK-compliant.

These attributes are used to display choices in adjacent rows and columns, as in the following
example:

xv_create(panel, PANEL_CHOICE,
PANEL_CHOICE_STRINGS, "One", "Two", "Three", NULL,
PANEL_CHOICE_XS, 10, 70, 130, NULL,
PANEL_CHOICE_YS, 90, NULL,
PANEL_VALUE, 2,
PANEL_NOTIFY_PROC, notify_proc,
NULL);

The choice item has three choices: the strings “One”, “Two,” and “Three.” We have speci-
fied explicit positioning of the choice items using the attributes PANEL_CHOICE_XS and
PANEL_CHOICE_YS. These attributes take precedence over PANEL_LAYOUT, so that layout is
ignored if specified. Note that the list PANEL_CHOICE_YS has only one element. When any
of the parallel lists are abbreviated in this way, the last element given will be used for the re-
mainder of the choices. So, in the example above:

90, NULL,

serves as shorthand for:

90, 90, 90, NULL,

All the choices will appear at y coordinate 90, while the x coordinates for the choices will be
10, 70, and 130, respectively.

176 XView Programming Manual

You cannot specify that a choice appear at x = 0 or y = 0 by using the attributes
PANEL_CHOICE_XS or PANEL_CHOICE_YS. Since these attributes take NULL-terminated lists
as values, the zero would be interpreted as the terminator for the list. You may achieve the
desired effect by setting the positions individually. The attributes PANEL_CHOICE_X or
PANEL_CHOICE_Y take as values the number of the choice followed by the desired position.
The following example demonstrates setting the position of choice items:

Panel_item choice;
int i;
extern char *strings[];

choice = (Panel_item)xv_create(panel, PANEL_CHOICE,
PANEL_CHOOSE_ONE, FALSE,
NULL);

for (i = 0; i < sizeof(strings) / sizeof(char *); i++)
xv_set(choice,

PANEL_CHOICE_STRING, i, strings[i],
PANEL_CHOICE_X, i, i*20,
PANEL_CHOICE_Y, i, i*20,
NULL);

After the choice item is created, the x and y positions of the choices are set individually in a
loop.

Once a set of choice items is created, the rectangle that encloses a specified choice may be
returned using the attribute PANEL_CHOICE_RECT. It takes an integer argument representing
the index of the choice whose rect pointer is returned.

7.11 Scrolling Lists

OPEN LOOK’s specification for scrolling lists is implemented by the PANEL_LIST panel item.
List items allow the user to make selections from a scrolling list of choices larger than can be
displayed on the panel at one time. The selections can be exclusive or nonexclusive, like the
choice items outlined in the previous section. The list is made up of strings or images and a
scrollbar that functions like any scrollbar in XView, except that it cannot be split.* List
items are laid out in rows only—one list entry per row. Below is a code fragment for creating
a simple list:

xv_create(panel, PANEL_LIST,
PANEL_LIST_STRINGS, "One", "Two", "Three", "Four", NULL,
NULL);

The list items produced by this code are shown in Figure 7-13.

*See Chapter 10, Scrollbars, for a further description of how scrollbars work.

Panels

Panels 177

Figure 7-13. Sample panel with scrolling list

7.11.1 Displaying List Items

You can use either text strings or server images to display the choice to the user; you can
even intermix them. You specify the choices either one at a time or in a group. To set only
one choice, use PANEL_LIST_STRING or PANEL_LIST_GLYPH. When creating a new string
or glyph entry, if the index into the list specified is larger than the total number of entries,
then the new item is added to the end of the list. Use PANEL_LIST_STRINGS or
PANEL_LIST_GLYPHS to set all the choices in a group. If no items exist in the list, the appro-
priate number of rows are created to fit all of the items. If the list already contains items,
then the first n rows of items are replaced by the newly specified strings or glyphs (where n is
the number of strings or glyphs specified).

The width of the list item can be set to explicit pixel values using PANEL_LIST_WIDTH. The
minimum value for this attribute is 25. This reserves enough space for the list’s borders and
margins. Setting PANEL_LIST_WIDTH to -1 extends the width of the scrolling list box to the
edge of the panel. Setting PANEL_LIST_WIDTH to 0 sets the width to that of the widest row
in the scrolling list. Alternatively, the number of rows that are displayed in the list item can
be controlled through the value of the PANEL_LIST_DISPLAY_ROWS attribute. This value
governs the height, in rows, of the list item.

The default panel font for a scrolling list is the default font for the panel. To specify a partic-
ular font for a scrolling list row, use PANEL_LIST_FONT, which takes two arguments, a row
number and a font. To set the fonts for multiple rows, use PANEL_LIST_FONTS. Note that
the font specification using either PANEL_LIST_FONT or PANEL_LIST_FONTS should follow
the creation of the rows (for example, by PANEL_LIST_STRINGS).

By default, a scrolling list does not have a title. To add a title to a scrolling list, use
PANEL_LIST_TITLE as in the following code segment:

xv_set(panel_list_item, PANEL_LIST_TITLE, "Patterns", NULL);

The title appears above the list items. The package makes a copy of the string passed to the
PANEL_LIST_TITLE attribute. The package also will free the string when the title string is
no longer needed.

The height of each row in the list may be set using PANEL_LIST_ROW_HEIGHT. All rows
have the same height. If the items in the list are glyphs, then the height of each row must be
specified by at least the height of the tallest glyph in the list. This should be determined be-
fore the list of glyphs is set in the list item. Entries in the list can be either glyphs or strings;

178 XView Programming Manual

an entry containing both a string and a glyph will display both. The glyph will be on the left
and the string will be on the right. Consider the program in Example 7-3.

Example 7-3. The list_glyphs.c program

/*
* list.c -- show a scrolling list with three items in it.
* Each item is an icon (a pattern) and a string.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/svrimage.h>

#define gray1_width 16
#define gray1_height 16
static char gray1_bits[] = {

0x55, 0x55, 0xaa, 0xaa, 0x55, 0x55, 0xaa, 0xaa, 0x55, 0x55,
0xaa, 0xaa, 0x55, 0x55, 0xaa, 0xaa, 0x55, 0x55, 0xaa, 0xaa,
0x55, 0x55, 0xaa, 0xaa, 0x55, 0x55, 0xaa, 0xaa, 0x55, 0x55,
0xaa, 0xaa

};

#define gray2_width 16
#define gray2_height 16
static char gray2_bits[] = {

0x11, 0x11, 0x00, 0x00, 0x44, 0x44, 0x00, 0x00, 0x11, 0x11,
0x00, 0x00, 0x44, 0x44, 0x00, 0x00, 0x11, 0x11, 0x00, 0x00,
0x44, 0x44, 0x00, 0x00, 0x11, 0x11, 0x00, 0x00, 0x44, 0x44,
0x00, 0x00

};

#define gray3_width 16
#define gray3_height 16
static char gray3_bits[] = {

0x22, 0x22, 0xee, 0xee, 0x33, 0x33, 0xee, 0xee, 0x22, 0x22,
0xee, 0xee, 0x33, 0x33, 0xee, 0xee, 0x22, 0x22, 0xee, 0xee,
0x33, 0x33, 0xee, 0xee, 0x22, 0x22, 0xee, 0xee, 0x33, 0x33,
0xee, 0xee

};

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Server_image gray1, gray2, gray3;
extern void exit(), which_glyph();

xv_init(XV_INIT_ARGS, argc, argv, NULL);

gray1 = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, gray1_width,
XV_HEIGHT, gray1_height,
SERVER_IMAGE_BITS, gray1_bits,
NULL);

gray2 = (Server_image)xv_create(NULL, SERVER_IMAGE,

Panels

Panels 179

Example 7-3. The list_glyphs.c program (continued)

XV_WIDTH, gray2_width,
XV_HEIGHT, gray2_height,
SERVER_IMAGE_BITS, gray2_bits,
NULL);

gray3 = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, gray3_width,
XV_HEIGHT, gray3_height,
SERVER_IMAGE_BITS, gray3_bits,
NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_LIST,
PANEL_LIST_ROW_HEIGHT, 16,
PANEL_LIST_GLYPHS, gray1, gray2, gray3, NULL,
PANEL_LIST_STRINGS, "Pattern1", "Pattern2", "Pattern3", NULL,
PANEL_LIST_CLIENT_DATAS, 1, 2, 3, NULL,
PANEL_NOTIFY_PROC, which_glyph,
NULL);

window_fit(panel);
window_fit(frame);

xv_main_loop(frame);
}

void
which_glyph(item, string, client_data, op, event, row)
Panel_item item; /* panel list item */
char *string;
caddr_t client_data;
Panel_list_op op;
Event *event;
int row;
{

printf("item = %s (#%d), op = %d0, string, client_data, op);
}

The output produced by list_glyphs.c is shown in Figure 7-14.

The height of each row in the list is determined by the height of the scrolling list font. If
glyphs are used, the programmer is responsible for row height. In the example, all the glyphs
are the same height (16 pixels), so the calculation is easy: PANEL_LIST_ROW_HEIGHT is set
to 16. If a glyph exceeds the row height, then a warning is printed and the glyph is ignored.

The use of the notify procedure is discussed in Section 7.11.4, “List Notification.”

180 XView Programming Manual

Figure 7-14. Output of program list_glyphs.c

7.11.2 Adding and Deleting List Entries

List entries are denoted by row number. The first entry is row 0. Entries are added and delet-
ed from the list at run time. Several attributes enable you to add and delete entries in a list
item. The attributes that let you delete list entries are: PANEL_LIST_DELETE,
PANEL_LIST_DELETE_ROWS, and PANEL_LIST_DELETE_SELECTED_ROWS. Using
PANEL_LIST_DELETE, the attribute value specifies a single list item to delete. The string
and/or image resources are deallocated and the list is updated appropriately.*

The attribute PANEL_LIST_DELETE_ROWS deletes multiple list item rows. This attribute
takes two integer arguments. The first argument is the starting row number, the second argu-
ment is the number of rows to delete. In the following example, rows 6 through 8 in
panel_list_item are removed. Row 0 is the first row.

xv_set(panel_list_item,
PANEL_LIST_DELETE_ROWS, 6, 2,
NULL);

If you use PANEL_LIST_DELETE to delete multiple list items, you need to delete list items in
descending order. When a row is deleted, the row numbers are adjusted to a sequential order.
For example, to delete rows 1 through 5:

int row;
for (row = 5; row >=1; row--)

xv_set(panel_list_item, PANEL_LIST_DELETE, row, NULL);

To add to a scrolling list, starting at a particular row, you can use PANEL_LIST_IN-

SERT_STRINGS or PANEL_LIST_INSERT_GLYPHS. PANEL_LIST_INSERT_STRINGS inserts
strings into a specified scrolling list before a specified row. PANEL_LIST_INSERT_GLYPHS

inserts glyphs into a specified scrolling list before a specified row.

*See Appendix D for a description of an improved list insertion method that is available in XView Version 3.2. and
newer releases.

Panels

Panels 181

To add a new row, PANEL_LIST_INSERT is used in the same way as PANEL_LIST_DELETE.
When adding a new row in this manner, all the succeeding row numbers are incremented and
the list size grows by one. Space for a new item is created, and a new string or glyph may be
added. These are all done at the time the attribute is evaluated, so they may be combined into
one xv_set() call. You can move a row by deleting it from its old location and reassign-
ing it to a new location. Look at the following code:

char *buf[128];

strcpy(buf, xv_get(list_item, PANEL_LIST_STRING, 4));

xv_set(list_item,
PANEL_LIST_DELETE, 4,
PANEL_LIST_INSERT, 8,
PANEL_LIST_STRING, 8, buf,
NULL);

The value for the string must be copied because as soon as the list item is deleted, the data is
freed.

If a panel list may not contain duplicate entires, PANEL_LIST_INSERT_DUPLICATE needs to
be set to FALSE. The default value for this attribute is TRUE, which allows duplicate strings
to be inserted.

7.11.3 List Selection

Items in the list are selected by using the SELECT mouse button while pointing at an item or
by dragging the pointer over the list items, or with the attribute PANEL_LIST_SELECT. When
PANEL_LIST_SELECT is used to select an item that is currently visible, then the list may be
scrolled when PANEL_LIST_SELECT is set. To disable the scrolling, set XV_SHOW to FALSE

for the scrolling list before the specified row is selected with PANEL_LIST_SELECT.

Selected choice(s) can be set at list creation or later by using PANEL_LIST_SELECT. For ex-
ample:

PANEL_LIST_SELECT, 3, TRUE,

will select row three. If the list item is nonexclusive, you can set more than one choice at one
time. For example:

PANEL_LIST_SELECT, 3, TRUE,
PANEL_LIST_SELECT, 13, TRUE,
PANEL_LIST_SELECT, 14, TRUE,

will select rows 3, 13, and 14.

To determine if a row is selected, use:

xv_get(list_item, PANEL_LIST_SELECTED, i);

182 XView Programming Manual

This call to xv_get() returns TRUE if row i is selected. To return the first selected row, use
PANEL_LIST_FIRST_SELECTED as follows:

int first_selected;
first_selected = (int)xv_get(list_item, PANEL_LIST_FIRST_SELECTED);

PANEL_LIST_NEXT_SELECTED returns the next selected row after a specified row. This attri-
bute takes a single integer argument representing the row to start from. If no row is selected
following the specified row, PANEL_LIST_NEXT_SELECTED returns -1.

7.11.4 List Notification

The procedure specified via the attribute PANEL_NOTIFY_PROC is called when a row is se-
lected, de-selected, added, or deleted. List notify procedures are passed the following: the
list item, the string indicating the label of the item being acted upon, any client data associat-
ed with the list entry, a parameter indicating the action being taken, the event which caused
notification, and the row number of the row being operated on. The form of the procedure is:

int
list_notify_proc(item, string, client_data, op, event, row)

Panel_item item; /* panel list item */
char *string;
Xv_opaque client_data;
Panel_list_op op;
Event *event;
int row; /* row number */

item is the panel list item that contains the row that was acted upon. The string parame-
ter is the label of the row. If there is no string associated with the row, the parameter is NULL.
If the row contains both a string and an image, then the string is passed as the parameter.

op is one of the following:

PANEL_LIST_OP_SELECT
PANEL_LIST_OP_DESELECT
PANEL_LIST_OP_VALIDATE
PANEL_LIST_OP_DELETE

If the user selects a row that is not currently selected, the notify procedure is called twice.
The first time it is called with the previously selected row, the op is
PANEL_LIST_OP_DESELECT. The next time the function is called, the op is
PANEL_LIST_OP_SELECT. If the user selects an item that is already selected, the function is
called once, passing the row selected (op is PANEL_LIST_OP_SELECT). Validate is called
when the user inserts a new row (op is set to PANEL_LIST_OP_VALIDATE). The notify
procedure should return XV_OK to accept the row, or XV_ERROR to reject the row. Delete is
called when the user deletes a row (op is set to PANEL_LIST_OP_DELETE).

Panels

Panels 183

7.11.4.1 List item client data

The client_data parameter is set to whatever client data is associated with the row.
list_glyphs.c uses the attribute PANEL_LIST_CLIENT_DATAS to assign a set of values to the
list items. Each value could have been assigned to the rows one by one using the attribute
PANEL_LIST_CLIENT_DATA. This attribute takes two values: the first is the number of the
row to assign the data to, and the second is the data itself.

xv_create(panel, PANEL_LIST,
...
PANEL_LIST_CLIENT_DATA, 0, "one",
PANEL_LIST_CLIENT_DATA, 1, "two",
PANEL_LIST_CLIENT_DATA, 2, "three",
...
NULL);

You can still assign client data to the panel list item itself using XV_KEY_DATA as with any
other XView object. However, this data can only be retrieved using xv_get() from the
panel list item itself, the first parameter in the callback function.

7.11.5 The Scrolling List Menu

PANEL_ITEM_MENU sets or gets the scrolling list’s read menu if the Scrolling List is in read
mode or the edit menu if the Scrolling List is in edit mode. The mode of the scrolling list is
set with the attribute PANEL_LIST_MODE. PANEL_LIST_MODE takes one of two values:
PANEL_LIST_READ and PANEL_LIST_EDIT. The attribute PANEL_VALUE_

STORED_LENGTH controls the amount of text that may be edited when in edit mode.

7.12 Message Items

Message items display a text or image message within a panel. The only visible component
of a message item is the label itself. Message items are useful for annotations of all kinds, in-
cluding titles, comments, descriptions, pictures and dynamic status messages. The message is
often used to identify elements on the panel. A message has no value.

You may set or change the label for a message item via PANEL_LABEL_STRING or
PANEL_LABEL_IMAGE. Message items can have notify procedures which are called when
SELECT_UP occurs over the message item. Panel message items are the only panel items
whose font can be set to boldface. The boldness of message items is controlled using the at-
tribute PANEL_LABEL_BOLD.

Since messages cannot be selected, their primary use is for display purposes only. In
Example 7-4, two message items display normal pipeline pressure, and a warning for high
pipeline pressure.

184 XView Programming Manual

Example 7-4. The message_item.c program

#include <xview/xview.h>
#include <xview/panel.h>

Frame frame;
Panel_item message;
Panel panel;
Panel_item slider;

void
slider_notify_proc(item, value, event)

Panel_item item;
int value;
Event *event;

{
xv_set(message,
PANEL_LABEL_STRING,

value > 500 ? "** HIGH PIPELINE PRESSURE **" : "Okay",
0);

}

main(argc, argv)
int argc;
char **argv;

{
xv_init(XV_INIT_ARGS, argc, argv, 0);

frame = xv_create(NULL, FRAME,
FRAME_LABEL, "Message Item",
0);

panel = xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
0);

slider = xv_create(panel, PANEL_SLIDER,
PANEL_LABEL_STRING, "Pipeline pressure (psi):",
PANEL_MIN_VALUE, 0,
PANEL_MAX_VALUE, 1000,
PANEL_NOTIFY_PROC, slider_notify_proc,
PANEL_SHOW_RANGE, TRUE,
PANEL_VALUE, 100,
0);

message = xv_create(panel, PANEL_MESSAGE,
PANEL_LABEL_STRING, "Okay",
0);

window_fit(panel);
window_fit(frame);

xv_main_loop(frame);
exit(0);

}

Messages produced by this program are shown in Figure 7-15 and Figure 7-16.

Panels

Panels 185

Figure 7-15. Sample panel with message item

Figure 7-16. Sample panel with message item–High Pressure

7.13 Slider Items

Slider items allow the graphical representation and selection of a value within a range. Slid-
ers are appropriate for situations where it is desired to make fine adjustments over a continu-
ous range of values. The user selects the slider bar and drags it to the value that he wishes. A
slider has the following displayable components: the label, the current value, the slider bar
and the minimum and maximum allowable integral values (the range), end boxes, tick marks,
tick mark minimum and maximum tick strings, as well as minimum and maximum value text
strings.

Sliders may be horizontal or vertical depending on the value of PANEL_DIRECTION. This at-
tribute defaults to PANEL_HORIZONTAL, but may be set to a vertical orientation by using the
value PANEL_VERTICAL. The attribute PANEL_SLIDER_END_BOXES sets whether the boxes
at the endpoints of the slider are visible. This attribute defaults to FALSE. The PANEL_TICKS
attribute takes a numeric value that indicates how many evenly spaced “tick-marks” are
drawn next to the item. When PANEL_SHOW_VALUE is TRUE, the current value is shown after
the label in an editable text field. The minimum and maximum allowable values are set with
PANEL_MIN_VALUE and PANEL_MAX_VALUE. The width of the slider bar can be adjusted us-
ing the PANEL_SLIDER_WIDTH attribute. When PANEL_SHOW_RANGE is TRUE, the minimum
value of the slider PANEL_MIN_VALUE is shown to the left of the slider bar and the maximum
value PANEL_MAX_VALUE is shown to the right of the slider bar.* The attributes
PANEL_MIN_TICK_STRING and PANEL_MAX_TICK_STRING specify text labels for the mini-
mum and maximum tick values. On horizontal sliders, these strings appear
underneath the maximum and minimum tick marks. If the attribute PANEL_SHOW_RANGE

does not adequately describe the slider values, PANEL_MIN_VALUE_STRING and

*The top and bottom of the slider is used when the orientation is vertical.

186 XView Programming Manual

PANEL_MAX_VALUE_STRING can specify string value labels for the minimum and maximum
slider values. On horizontal sliders, these strings appear to the left/right of the mini-
mum/maximum end boxes.

7.13.1 Slider Selection

Only the slider bar of a slider may be selected. When the SELECT button is pressed within
the slider drag box, the black area of the bar will advance or retreat with the position of the
cursor. The slider value can also be changed via the numeric text field by clicking in the sli-
der bar to the left (horizontal sliders) or below (vertical sliders) the drag box to decrement the
value, or by clicking in the slider bar to the right (horizontal sliders) or above (vertical sli-
ders) to increment the value.

7.13.2 Slider Notification

Slider notify procedures are passed the item, the item’s value at time of notification, and the
event which caused notification:

void
slider_notify_proc(item, value, event)

Panel_item item;
int value;
Event *event;

The notification behavior of a slider is controlled by the value of PANEL_NOTIFY_LEVEL. It
can be set to one of two values:

PANEL_DONE The default. The notify procedure is called only when the SELECT button
is released within the panel or when the user types in a new value for the
slider’s numeric text field.

PANEL_ALL The notify procedure is called whenever the value of the slider is changed;
this includes when the user selects, drags or releases the SELECT button in
a slider. For each movement of the mouse while dragging the slider drag
box, the slider’s notify procedure is called.

7.13.3 Slider Value

The value of a slider is an integer in the range PANEL_MIN_VALUE to PANEL_MAX_VALUE.
You can retrieve or set a slider’s value with the attribute PANEL_VALUE and the functions
xv_set() or xv_get().

Panels

Panels 187

The following code fragment produces a slider with a label:

xv_create(panel, PANEL_SLIDER,
PANEL_LABEL_STRING, "Brightness: ",
PANEL_VALUE, 75,
PANEL_MIN_VALUE, 0,
PANEL_MAX_VALUE, 100,
PANEL_SLIDER_WIDTH, 300,
PANEL_TICKS, 5,
PANEL_NOTIFY_PROC, brightness_proc,
NULL);

The output is shown in Figure 7-17.

Figure 7-17. Sample panel with slider item

7.14 Gauges

Gauges are just like sliders, but they are “output only” items. That is, you set the value of the
item and the display of the gauge changes just as it would for sliders. Also, there is no op-
tional type-in field and there is no drag box for the user to interactively change the value of
the gauge. The gauge is intended to be used only as a feedback item.

To create a gauge, use the PANEL_GAUGE package. To set a gauge’s width or height, use
PANEL_GAUGE_WIDTH. This attribute sets the length of the object, whether it is vertically or
horizontally oriented. As with the slider, the orientation is set by the attribute
PANEL_DIRECTION.

7.15 Text Items

A panel text item contains as its value a NULL-terminated string. It contains only printable
characters with no newlines. When a panel receives keyboard input (regardless of where the
pointer is as long as it is within the boundaries of the panel), the keyboard event is passed to
the item with the keyboard focus. A caret is used to indicate the insertion point where new
text is added. You can type in more text than fits on the text field. If this happens, a right ar-
row pointing to the left will appear on the left on the field, indicating that some text to the left
of the displayed text is no longer visible. Similarly, if text is inserted causing text on the

188 XView Programming Manual

right to move out of the visible portion of the text item, then an arrow pointing to the right
will appear to the right of the text.

Text items use the attribute PANEL_LABEL_STRING as do most other panel items, to label the
text item. The value of a text item is also a string, an is set by the attribute PANEL_VALUE, as
shown by the following code:

xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Name:",
PANEL_VALUE, "Edward G. Robinson",
NULL);

The output from this code fragment is shown in Figure 7-18.

Figure 7-18. Sample panel with text item

If the item’s PANEL_LAYOUT is set to PANEL_VERTICAL, the value is placed below the label.
The default is PANEL_HORIZONTAL.

The number of characters of the text item’s value that are displayed is set via PANEL_VAL-

UE_DISPLAY_LENGTH. Note that the length of the value display specified by PANEL_VAL-

UE_DISPLAY_LENGTH may not be less than the combined width of the left and right “more
text” buttons. In 12-point font, this is four characters.

PANEL_VALUE_DISPLAY_LENGTH is useful for fixed width characters. PANEL_VALUE_DIS-

PLAY_LENGTH converts characters to pixels by multiplying the number of characters by the
default character width for the font being used. To set the number of characters in the text
item’s value that are displayed in a variable width font, use PANEL_VALUE_DISPLAY_WIDTH.
The argument for PANEL_VALUE_DISPLAY_WIDTH is expressed in pixels instead of charac-
ters. The maximum number of characters that can be typed into a text item (independently of
how many are displayable) is set via the attribute
PANEL_VALUE_STORED_LENGTH. When characters are entered beyond the display length,
and when PANEL_VALUE_STORED_LENGTH is greater than the display length, the value string
is scrolled one character to the left so that the most recently entered character is always visi-
ble. As the string scrolls to the left, the leftmost characters move out of the visible display
area. The presence of these temporarily hidden characters is indicated by a small left-point-
ing triangle.

It is sometimes desirable to have a protected field where the user can enter confidential infor-
mation. The attribute PANEL_MASK_CHAR is provided for this purpose. When the user enters
a character, the character specified as the value of PANEL_MASK_CHAR will be displayed in
place of the character the user has typed. Setting PANEL_MASK_CHAR to an asterisk (*) would

Panels

Panels 189

produce a string of asterisks instead of the characters typed. The value of the text is still the
string the user types.

If you want to disable character echo entirely so that the caret does not advance and it is im-
possible to tell how many characters have been entered, use the space character as the mask.
You can remove the mask and display the actual value string at any time by setting the mask
to NULL.

7.15.1 The Current Keyboard Focus

A panel may have several keyboard focus items that can accept keyboard input. Only one of
these items may be current at any given time. The current keyboard focus item is the one to
which keyboard input is directed and is indicated by a caret at the item’s value. Selection of
a keyboard focus item (i.e., pressing and releasing the SELECT mouse button anywhere with-
in the item’s bounding box) causes that item to become the current keyboard focus item.

NOTE

When the resource OpenWindows.KeyboardCommands is set to SunView1
or Basic, only text items will receive the keyboard focus within a panel.

You can find out which keyboard focus item has the caret or give the caret to a specified key-
board focus item by means of the panel attribute PANEL_CARET_ITEM:

current_item = (Panel_item)xv_get(panel, PANEL_CARET_ITEM);
xv_set(panel, PANEL_CARET_ITEM, another_item, NULL);

You can set the current item to the next or previous keyboard focus item in the panel by using
the following two routines:

Panel_item
panel_advance_caret(panel)

Panel panel;

Panel_item
panel_backup_caret(panel)

Panel panel;

They return the new panel item that has received the keyboard focus. Advancing past the last
keyboard focus item places the keyboard focus at the first keyboard focus item, while back-
ing up past the first keyboard focus item places the keyboard focus at the last keyboard focus
item.

190 XView Programming Manual

7.15.2 Text Selection

You can use the attribute PANEL_TEXT_SELECT_LINE to select and highlight the entire con-
tents of the text field.

7.15.3 Text Notification

The notification behavior of text items is more complex than that of other item types. You
can control whether your notify procedure is called on each input character or only on select-
ed characters.

When your notify procedure will be called is determined by the value of
PANEL_NOTIFY_LEVEL. Possible values are given in Table 7-1.

Table 7-1. Text Item Notification Level

Notification Level Level Causes Notify Procedure to be Called . . .

PANEL_NONE Never
PANEL_NON_PRINTABLE On each non-printable input character.
PANEL_SPECIFIED If the input char is found in the string given for the

attribute PANEL_NOTIFY_STRING.
PANEL_ALL On each input character.

The default for PANEL_NOTIFY_LEVEL is PANEL_SPECIFIED, and the default for
PANEL_NOTIFY_STRING is \n\r\t (i.e., notification on line-feed, carriage-return and tab).
The value PANEL_SPECIFIED only works for characters that do not map to semantic actions.
To provide notification for characters that map to semantic actions, such as 177 (delete nor-
mally maps to ACTION_ERASE_CHAR_BACKWARD), use either PANEL_EVENT_PROC,
notify_interpose_event_func(), or set PANEL_NOTIFY_LEVEL to PANEL_ALL.

The user’s editing characters are treated specially (for example the backspace character).
They are not appended to the value string. If you have asked for a character by including it
in PANEL_NOTIFY_STRING, the PANEL package calls your notify procedure. After the notify
procedure returns, the appropriate editing operation will be applied to the value string. (Note
that the editing characters are never appended to the value string, regardless of the return val-
ue of the notify procedure.)

Characters other than the special characters described above are treated as follows. If the
character typed by the user does not result in your notify procedure getting called, then the
character, if printable, is appended to the value string. If it is not printable, it is ignored. If
your notify procedure is called, what happens to the value string and whether the keyboard
focus moves to another item is determined by the notify procedure’s return value. Table 7-2
shows the possible return values.

Panels

Panels 191

Table 7-2. Return Values for Text Item Notify Procedures

Value Returned Action Caused

PANEL_INSERT Character is appended to item’s value.
PANEL_NEXT Keyboard focus moves to next text item.
PANEL_PREVIOUS Keyboard focus moves to previous text item.
PANEL_NONE Ignore the input character.

If you do not specify your own notify procedure, the default procedure,
panel_text_notify(), is called at the appropriate time as determined by the setting of
PANEL_NOTIFY_LEVEL.

7.15.4 Writing Your Own Text Notify Procedure

By writing your own notify procedure, you can tailor the notification behavior of a given
keyboard focus item to support the needs of any application. At one extreme, you may want
to process each character as the user types it in. For a different application, you may not care
about the characters as they are typed in and may only want to look at the value of the string
in response to some other button. A typical example is getting the value of a filename field
when the user presses a Load File panel button.

The form of the text notification procedure is:

Panel_setting
panel_text_notify(item, event)

Panel_item item;
Event *event;

This procedure returns a panel setting enumeration that has the following effects:

PANEL_NONE Do not advance the keyboard focus to the next keyboard focus item.
The current keyboard focus item and insertion point remain un-
changed.

PANEL_NEXT The keyboard focus moves to the next keyboard focus item (defined
by the keyboard focus item that was created after the current key-
board focus item). If there is no next text item, the first keyboard fo-
cus item in the panel is used.

PANEL_PREVIOUS The keyboard focus moves to the previous keyboard focus item in the
panel (defined by the keyboard focus item that was created before the
current keyboard focus item). If there is no previous keyboard focus
item, the last keyboard focus item in the panel is used.

PANEL_INSERT The character which caused the notification procedure to be called is
inserted into the text item’s value at the location of the caret (insertion
point).

192 XView Programming Manual

7.15.5 Text Value

You can set or get the value of a keyboard focus item at any time via PANEL_VALUE. The fol-
lowing call retrieves the value of name_item into name:

Panel_item name_item;
char name[NAME_ITEM_MAX_LENGTH];

...
strcpy(name, (char *)xv_get(name_item, PANEL_VALUE));

Note that name_item should have been created with a PANEL_VALUE_STORED_LENGTH not
greater than NAME_ITEM_MAX_LENGTH so the buffer name will not overflow.

7.16 Numeric Text Items

Panel numeric text items are virtually the same as panel text items except that the value
displayed is of type int. Also, convenience features (such as increment and decrement but-
tons) ease the manipulation of the text string’s numeric value. There is little programmatic
difference between the text item and the numeric text item. You create a numeric text item
using the PANEL_NUMERIC_TEXT package. You can also set the minimum and maximum
range for the numeric text field by using PANEL_MIN_VALUE and PANEL_MAX_VALUE, respec-
tively.

7.17 Multiline Text Items

Multiline text items are a special type of panel text item that allow a text field to display mul-
tiple lines. You create a multiline text item using the PANEL_MULTILINE_TEXT package.
Multiline text items use the attribute PANEL_DISPLAY_ROWS to specify the number of rows of
text to display. PANEL_VALUE_DISPLAY_LENGTH specifies the length in characters of a row
in a multiline text field. PANEL_VALUE_DISPLAY_WIDTH specifies the length in pixels of
each row. A multiline text item will have scrollbars if the stored length is greater than the
displayed length (rows × columns). The maximum stored length for a multiline text item is
specified using PANEL_VALUE_STORED_LENGTH.* If PANEL_LINE_BREAK_ACTION is
PANEL_WRAP_AT_CHAR, the lines wrap as soon as the number of characters on a line exceeds
the length of the line. If this attribute is PANEL_WRAP_AT_WORD, the lines in the multiline
text item wrap only at word breaks.

*XView Version 3 only supports multiline text items with scrollbars.

Panels

Panels 193

NOTE

Multiline text items display multiple rows, or “lines,” but do not contain embed-
ded returns or line feeds.

Example 7-5 shows how to create a multiline text item with scrollbars.

Example 7-5. The multiline.c program

/*
* multiline.c -- simple panel multiline text item example.
*/
#include <xview/xview.h>
#include <xview/panel.h>

Frame frame;
Panel panel;

main(argc, argv)
int argc;
char **argv;

{

xv_init(XV_INIT_ARGS, argc, argv, NULL);

frame = xv_create(NULL, FRAME, NULL);
panel = xv_create(frame, PANEL, NULL);
xv_create(panel, PANEL_MULTILINE_TEXT,

PANEL_LABEL_STRING, "Product Description:",
PANEL_DISPLAY_ROWS, 6,
PANEL_VALUE_DISPLAY_LENGTH, 32,
PANEL_VALUE, "This wonderful product is \

designed to allow the user to combine and manipulate both \
text and graphic objects easily. The goal of the design team \
is to provide an intuitive, logical interface.",

NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

The output of this code fragment is shown in Figure 7-19.

7.18 Drop Target Items

A panel drop target item is a bordered image in a panel area that is used to transfer data be-
tween applications. Before you use a panel drop target item you need to be familiar with the
SELECTION and DRAGDROP packages; these are described in Chapter, 18, Selections, and
Chapter 19, Drag and Drop.

A panel drop target item is an object in the class Panel_drop_target_item which is
equivalent to a Panel_item. A drop target item’s owner is a Panel. Examples of several
drop target items are shown in Figure 7-20.

194 XView Programming Manual

Figure 7-19. Panel multiline text item

To use the PANEL_DROP_TARGET package in an application, you need to include both the
<xview/dragdrop.h> and <xview/svrimage.h> header files. The program panel_dnd.c, show-
ing a panel drag and drop example, is presented in Appendix F, Example Programs.

File View Edit Find

Load... Save... Print

Snap View

Text Editor V3 - (NONE), dir; /tmp_mnt/home/user1

/tmp_mnt/home/user1

Snap Type:

Snap Delay:

Window Region Screen

0 2 4 8 16 seconds

Beep During Countdown

Hide Window During Capture

SELECT - Select Window. ADJUST or MENU - Can

Drop Items

Figure 7-20. Sample panel with drop target items

Panels

Panels 195

7.18.1 Programming a Panel Drop Target Item

To use a panel drop target item follow these programming steps:

• Create the drop target item.

• Specify the glyphs.

• Create drag and drop object.

• Define the drop target item’s requestor.

• Control the glyphs.

• Drop on the target item.

• Drag from the drop target item.

7.18.1.1 Create the drop target item

You create a panel drop target using xv_create() with the PANEL_DROP_TARGET pack-
age. The following code fragment shows a how to create a drop target item called
drop_target:

Panel_drop_target_item drop_target;
drop_target = xv_create(panel, PANEL_DROP_TARGET, NULL);

7.18.1.2 Specify the glyphs

The attribute PANEL_DROP_GLYPH specifies the glyph for a “normal” drop target. The normal
glyph is shown when the drop target item is inactive (no data transfer is occurring).
PANEL_DROP_BUSY_GLYPH specifies the glyph for the “busy” drop target. The busy drop tar-
get glyph is displayed when the drop target item is receiving a drop, or when data is being
sent to another application. You can define the bits for the glyphs as follows (assuming the
files normal.icon and busy.icon contain appropriate data):

static unsigned short normal_bitmap[] = {
#include "normal.icon"
};

static unsigned short busy_bitmap[] = {
#include "busy.icon"
};

Once the bits are defined, you create server images to represent them as follows:

normal_glyph = xv_create(NULL, SERVER_IMAGE,
XV_HEIGHT, 64,
XV_WIDTH, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, normal_bitmap,
NULL);

196 XView Programming Manual

busy_glyph = xv_create(NULL, SERVER_IMAGE,
XV_HEIGHT, 64,
XV_WIDTH, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, busy_bitmap,
NULL),

Set the panel drop target attributes to use the server images defined above:

xv_set(drop_target,
PANEL_DROP_GLYPH, normal_glyph,
PANEL_DROP_BUSY_GLYPH, busy_glyph,
NULL);

7.18.1.3 Create the drag and drop object

If the drop target item will support drags, create a Drag_drop object and set the attribute
PANEL_DROP_DND. This attribute is the DRAGDROP object associated with the panel drop tar-
get item. The Drag_drop object is used to initiate a drag and drop operation. If
PANEL_DROP_DND does not exist, then the panel drop target item will not support drags and is
called an empty drop target. In this case, PANEL_DROP_FULL will be FALSE (the default).

Drag_drop dnd;
dnd = xv_create(panel, DRAGDROP, NULL);

If the drop target item will support drags, then set the appropriate attributes on the Dnd ob-
ject (rank, cursor, etc.).

Create a selection item associated with the Dnd object. This defines the data and the conver-
sion(s) supported for the source of the drag. For example:

xv_create(dnd, SELECTION_ITEM,
SEL_DATA, "dnd selection data",
NULL);

After data is defined, you need to set PANEL_DROP_FULL to TRUE. When set to TRUE,
PANEL_DROP_FULL indicates that valid, “draggable” data is set on the PANEL_DROP_DND ob-
ject’s selection items. For example:

xv_set(drop_target,
PANEL_DROP_DND, dnd,
PANEL_DROP_FULL, TRUE,
NULL);

7.18.1.4 Define the drop target item’s requestor

The panel package creates a selection requestor, from the SELECTION_REQUESTOR package
that is associated with each drop target item. This selection requestor’s attributes need to be
set. PANEL_DROP_SEL_REQ returns the SELECTION_REQUESTOR associated with the panel
drop target item. The following code fragment gets the selection requestor associated with
an item:

Selection_requestor sel_req;

Panels

Panels 197

sel_req = xv_get(item, PANEL_DROP_SEL_REQ);

7.18.1.5 Controlling the glyphs

The drop target item package handles this step. When something is dragged into the drop tar-
get box, the busy glyph is displayed. This action is initiated when an ACTION_DRAG_PRE-

VIEW semantic action and LOC_WINENTER event id combination is received on the drop target
box. When the cursor is dragged out of the drop target box, the glyph changes back to the
normal state. An ACTION_DRAG_PREVIEW semantic action and LOC_WINEXIT event id com-
bination on the drop target box initiates this.

7.18.1.6 Dropping on the drop target

When something is dropped on the drop target item, the panel package calls
dnd_decode_drop(). This action is initiated by an ACTION_DRAG_COPY or AC-

TION_DRAG_MOVE. When dnd_decode_drop() returns, the panel drop target item’s
notify procedure is called. For details, see Section 7.18.2, “Drop Target Notification.”

7.18.1.7 Dragging from the drop target item

When SELECT is pressed while over the drop target item, if PANEL_DROP_FULL is TRUE,
dnd_send_drop() is called. At this time the glyph is changed to its busy state. When
dnd_send_drop() returns, the panel drop target item’s notify procedure is called.

7.18.2 Drop Target Notification

When the user drops an item on the panel drop target item, the item and the event that initiat-
ed the drop are passed to the notify procedure. The form of a panel-drop-target notify proce-
dure is:

int
drop_target_notify_proc(item, value, event)

Panel_drop_target_item item;
int value
Event *event;

The item is the panel drop target that was dropped on. The argument value contains the re-
turn value from dnd_decode_drop(). The event is the event which initiates the drop
(i.e., ACTION_DRAG_COPY or ACTION_DRAG_MOVE).

When the notify procedure returns, the glyph is returned to its normal state. The notify pro-
cedure returns one of the following: XV_OK or XV_ERROR. When the notify procedure re-
turns, one of the following actions occurs:

1. If the return value is XV_OK, then the function dnd_done() is called.

2. If the return value is XV_ERROR, then the function dnd_done() is not called.

198 XView Programming Manual

7.19 Advanced Panel Usage

The following sections address some advanced topics dealing with panels. They cover at-
taching data to panel items, repainting panels and panel items, and handling events in panels
and in panel items. Handling panel repainting and panel events are features which are avail-
able but are not generally used by most applications. Attaching data to panel items should be
a practice closely followed for more efficient programs.

7.19.1 Attaching Data to Panel Items

Callback routines are called separately and independently from the application’s main rou-
tine. If the callback routine needs data, there are two ways to make it available. One way is
to store the data in global variables or data structures so the callback routine can reference
the data. Another way is to attach the data directly to panel items (whose handle has already
been retrieved by the notification procedure).

In the spirit of good programming practice, it is wise to avoid creating global variables. The
preferred method for making data available to callback routines is to attach the data to the
panel items. A handle to the panel item is already made available to the callback function as
the first parameter to the function. Two attributes can be used to attach data to panel items:
XV_KEY_DATA or PANEL_CLIENT_DATA.*

Using XV_KEY_DATA requires a key, which must be some arbitrary, but unique, integer. An
example of usage follows:

static int My_item_key = 0;
...
if (!My_item_key) My_item_key = xv_unique_key();
xv_create(panel, PANEL_BUTTON,

PANEL_BUTTON_LABEL, "Push Me",
XV_KEY_DATA, My_item_key, "text",
PANEL_NOTIFY_PROC, my_notify_proc,
...
NULL);

If this method is used, my_notify_proc() retrieves the data using xv_get():

char *data = (char *)xv_get(item, XV_KEY_DATA, My_item_key);

The common element in this case is the use of My_item_key. A static int need not
be used, but it is better than creating a global int variable to store the key. If that were the
case, you might as well make the data portion that you wanted to attach to the panel item a
global variable.

One advantage to using XV_KEY_DATA is that you can specify any number of keys and attach
as many pieces of data to objects as you like.

*XV_KEY_DATA can be used with any XView object. Client data can as well, but the name to use varies with the
object package, e.g., WIN_CLIENT_DATA is for windows, MENU_CLIENT_DATA is for menus, etc.

Panels

Panels 199

An alternate method for attaching data to panel items is to use PANEL_CLIENT_DATA. This
attribute is similar to XV_KEY_DATA in that the data is attached to the item, but in this case,
you can only attach one piece of data to the panel item. You can, however, use both
XV_KEY_DATA and PANEL_CLIENT_DATA on the same panel item. The advantage to using
PANEL_CLIENT_DATA is that you do not have to keep track of a key. Since you can only at-
tach one piece of data to a panel item, xv_get() returns only that data.

For a real example of this situation, let’s modify the quit.c program (from the beginning of
this chapter), which displays a frame, panel and a panel item labeled Quit. The modified
program, client_data.c , is shown in Example 7-6. Selecting the panel button exits the pro-
gram gracefully. The call to xv_destroy_safe(frame) causes the frame to be des-
troyed and thus, xv_main_loop() returns and the program exits.

Example 7-6. The client_data.c program

/*
* client_data.c -- demonstrate the use of PANEL_CLIENT_DATA attached
* to panel items. Attach the base frame to the "Quit" panel item so
* that the notify procedure can call xv_destroy_safe() on the frame.
*/
#include <xview/xview.h>
#include <xview/panel.h>

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
int quit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, quit,
PANEL_CLIENT_DATA, frame,
NULL);

xv_main_loop(frame);
puts("The program is now done.");
exit(0);

}

quit(item)
Panel_item item;
{

Frame frame = (Frame)xv_get(item, PANEL_CLIENT_DATA);
xv_destroy_safe(frame);

}

In this program, the frame object is not a global variable; it is a local, or automatic, vari-
able. Since there is a close association between the panel button and the frame (meaning that
the panel button is going to access the handle to the frame in the callback routine), we attach

200 XView Programming Manual

the frame to the panel button as client data. PANEL_CLIENT_DATA takes a generic address of
type caddr_t. In the callback routine for the panel button, the first parameter to the call-
back function is the panel item that called the notification. From that handle, the frame is re-
trieved via xv_get().

This worked because the frame was created via xv_create(). That is, the object was allo-
cated. You cannot attach data that has not been allocated. Thus, the following code segment
is not advised:

dummy_function() /* Wrong way */
{

char *home = (char *)getenv("HOME");
xv_set(panel_item, XV_KEY_DATA, HOME_KEY, home, NULL);

}

The reason for this is that getenv() returns a pointer to static data that is overwritten on
each call. The next call that the application makes to getenv() will change the value for
the panel item XV_KEY_DATA. Likewise, the following should not be used:

dummy_function() /* Also wrong */
{

char home[MAXPATHLEN], *ptr;
if ((ptr = (char *)getenv("HOME")) != NULL) {

(void) strcpy(home, ptr);
xv_set(panel_item, XV_KEY_DATA, HOME_KEY, home, NULL);

}
}

This does not work because as soon as dummy_function() returns, the value of home is
lost because it is an automatic variable. The correct way to handle this is to make home ei-
ther a static variable or a pointer whose storage is allocated via malloc().

The problem with home being static is that if dummy_function() is called more than
once, the value of home will be overwritten on each call. So, the best way to handle this
case is to allocate the data:

dummy_function() /* Best way */
{

extern char *malloc(), *getenv();
char *home, *ptr;
if ((ptr = getenv("HOME")) != NULL &&

(home = malloc(strlen(ptr)+1))) {
(void) strcpy(home, ptr);
xv_set(panel_item, XV_KEY_DATA, HOME_KEY, home, NULL);

}
}

Having allocated data for XV_KEY_DATA, we now assume the responsibility of freeing that
data when the object is destroyed. Otherwise, the data is left free with no references to it.
This is also known as creating a memory leak. Because you don’t always know when an ob-
ject is being destroyed (destroying a panel may or may not cause a panel item to be des-
troyed), you can specify a function that explicitly frees the data pointed to by XV_KEY_DATA.
To do this, use the attribute XV_KEY_DATA_REMOVE_PROC:

dummy_function()
{

extern void free_data();

Panels

Panels 201

extern char *malloc(), *getenv();
char *home, *ptr;
if ((ptr = getenv("HOME")) != NULL &&

(home = malloc(strlen(ptr)+1))) {
(void) strcpy(home, ptr);
xv_set(panel_item,

XV_KEY_DATA, HOME_KEY, home,
XV_KEY_DATA_REMOVE_PROC, HOME_KEY, free_data,
NULL);

}
}

void
free_data(object, key, data)
Xv_object object;
int key;
caddr_t data;
{

free(data);
}

Whenever an object is freed, all the “key data” objects are scanned. If “remove procedures”
are associated with them, they are called with the key data as the parameter. In this case,
free_data() is called, which frees the data associated with that particular key. The “re-
move procedure” is called only after the object has been completely destroyed; therefore,
there should be no attempt to access the destroyed object in the procedure.

If you need to assign a new key to the same key data of an object, the old key data is auto-
matically freed by XView by calling the remove procedure (if it exists). If you wish to delete
a key without having to assign a new key, then you can call:

xv_set(object, XV_KEY_DATA_REMOVE, key, NULL);

7.19.2 Using PANEL_REPAINT_PROC

The PANEL package provides an property for installing a repaint routine. Warning: use of the
repaint routine allows you to generate a Non-OPEN LOOK user interface.

Example 7-7 demonstrates how a repaint routine can be installed on a panel. This repaint
routine draws a gray background on the panel behind any existing panel items.

Example 7-7. The panel_repaint.c program

/*
* panel_repaint.c -- repaint a panel background without disturbing
* the repainting of panel items.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/svrimage.h>
#include <X11/Xlib.h>
#include <X11/X.h>
#include <X11/bitmaps/gray1>

202 XView Programming Manual

Example 7-7. The panel_repaint.c program (continued)

#define PANEL_GC_KEY 101 /* any arbitrary number */

main(argc, argv)
int argc;
char *argv[];
{

Display *display;
Frame frame;
Panel panel;
int quit();
void panel_repaint();
XGCValues gcvalues;
Server_image grey;

Mask gcmask = 0L;
GC gc;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL,

PANEL_REPAINT_PROC, panel_repaint,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, quit,
PANEL_CLIENT_DATA, frame,
NULL);

window_fit(frame);

grey = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, gray1_width,
XV_HEIGHT, gray1_height,
SERVER_IMAGE_DEPTH, 1, /* clarify for completeness*/
SERVER_IMAGE_BITS, gray1_bits,
NULL);

display = (Display *)xv_get(panel, XV_DISPLAY);
gcvalues.stipple = (Pixmap) xv_get(grey, XV_XID);
gcvalues.fill_style = FillOpaqueStippled;
gcvalues.plane_mask = 1L;
gcvalues.graphics_exposures = False;
gcvalues.foreground = BlackPixel(display, DefaultScreen(display));
gcvalues.background = WhitePixel(display, DefaultScreen(display));
gcmask = GCStipple | GCFillStyle | GCPlaneMask |

GCGraphicsExposures | GCForeground | GCBackground;
gc = XCreateGC(display, xv_get(panel, XV_XID), gcmask, &gcvalues);

/* attach the GC to the panel for use by the repaint proc above */
xv_set(panel, XV_KEY_DATA, PANEL_GC_KEY, gc, NULL);

xv_main_loop(frame);
exit(0);

}

Panels

Panels 203

Example 7-7. The panel_repaint.c program (continued)

/*
* repaint procedure for the panel paints a gray pattern over the
* entire panel. Use the GC attached to the panel via XV_KEY_DATA.
*/
void
panel_repaint(panel, pw, p_area)
Panel panel;
Xv_Window pw;
Rectlist p_area;
{

/* get the GC attached to the panel in main() */
GC gc = (GC)xv_get(panel, XV_KEY_DATA, PANEL_GC_KEY);

/* call XFillRectangle on the entire size of the panel window */
XFillRectangle(xv_get(panel, XV_DISPLAY), xv_get(pw, XV_XID), gc,

0, 0, xv_get(pw, XV_WIDTH), xv_get(pw, XV_HEIGHT));

/* Note this repaints the entire panel. It is best to */
/* repaint just the rectangles passed in p_area */

}

quit(item)
Panel_item item;
{

Frame frame = (Frame)xv_get(item, PANEL_CLIENT_DATA);
xv_destroy_safe(frame);

}

The output produced by this program is shown in Figure 7-21.

Figure 7-21. Panel with gray background

204 XView Programming Manual

The PANEL package does not retain its paint windows by default, so the repaint routine may
be called more frequently than one might expect. Therefore, when the panel is created, the
attribute WIN_RETAINED may be set to TRUE; otherwise, the routine should try to be as com-
putationally cheap as possible to maintain good performance. It is not recommended that
you retain the panel’s window unless you have provided a repaint routine that might utilize
graphics expensively. Typically, you will set the background to a solid color, render a pat-
tern, or display an image.

If a panel item is added, deleted or moved, then the repaint routine is called regardless of
whether or not the panel’s window is retained.

7.19.3 Painting Panel Items

To repaint either an individual item or an entire panel, use:

panel_paint(panel_object, paint_behavior)
Panel_item panel_object;
Panel_setting paint_behavior;

The panel_object may be a panel item or a panel itself. If it is a panel, the items within
the panel are repainted one by one. The argument paint_behavior is either
PANEL_CLEAR, which causes the rectangle occupied by the panel or item to be cleared prior
to repainting, or PANEL_NO_CLEAR, which causes repainting to be done without any prior
clearing. This setting will override the default paint behavior set in the panel item’s
PANEL_PAINT attribute.

7.19.4 Panel Event Handling

This section describes how the PANEL package handles events. If you require a behavior not
provided by default, you can write your own event handling procedure for either an individu-
al item or the panel as a whole. The default behavior for handling panel events conforms to
OPEN LOOK and should be sufficient for most users. This section is intended only for expert
users.

WARNING

Changing the default PANEL package event handling behavior allows you to cre-
ate applications that are not OPEN LOOK-compliant.

The default event handling mechanism for panels processes events for all the panel items in a
uniform way. A single routine reads the events, updates an internal state machine, and maps
the event to an action to be taken by the item. Actions fall into two categories: previewing
and accepting. The previewing action gives the user visual feedback indicating what will
happen when the mouse button is released. The accepting action causes the item’s value to
be changed and/or its notify procedure to be called, with the event passed as an argument.

Panels

Panels 205

The default event-to-action mapping is given in Table 7-3.

Table 7-3. Default Event to Action Mapping

Event Action

Begin previewing.SELECT button down or drag with SELECT button down.
Drag with SELECT button down. Update previewing.

Cancel preview.Drag out of item rectangle with SELECT button down.
SELECT button up Accept.
MENU button down Display menu & accept user’s

selection.
Keystroke Accept keystroke if text item.

What actually happens when an item is told to perform one of the above actions depends on
the type of item. For example, when asked to begin previewing, a button item inverts its la-
bel, a message item does nothing, a slider item redraws the shaded area of its slider bar, etc.

ASCII events and some action events (described in Chapter 6, Handling Input) are auto-
matically redirected towards the item with keyboard focus. Since only one item at a time
may receive keyboard events, if there is more than one item in the panel that can receive key-
board input, the one that is receiving the keyboard events has a solid location cursor (a small
or large solid triangle, also referred to as a caret). You may use PANEL_CARET_ITEM with
xv_set() or xv_get() to set or get the item that currently has the keyboard focus.

Handling events by the application in panels is a task best avoided since the panel does this
automatically. But there are certainly situations where the application might like to super-
vise or handle events itself. In such situations, there are several methods available for event
handling. You can use:

• notify_interpose_event_func()

• PANEL_BACKGROUND_PROC

• PANEL_EVENT_PROC

For normal panels, each of these methods should be used on the panel itself. However, for
the SCROLLABLE_PANEL, the event handler must be set on the panel’s paint window(s) exact-
ly as is done for canvases (using the attribute WIN_EVENT_PROC).

Each of these methods works somewhat differently from one another, but they all have one
thing in common: they are notified when events happen in panels.

206 XView Programming Manual

7.19.5 Using an Interpose Function

The Notifier’s interpose functions may be installed on panels just as they are for any other
window-based package. This is the recommended method for special event handling for
panels and for panel items, since it allows you to interfere with the normal event processing
for the destination panel (or panel item). However, events can continue to be dispatched to
the panel (panel item) through the use of the notify_next_event_func(). Refer to
Chapter 20, The Notifier, for details on interposition.

7.19.6 Using PANEL_BACKGROUND_PROC

The PANEL_BACKGROUND_PROC is similar to the WIN_EVENT_PROC except that the notifica-
tion routine is only notified of events that do not happen in, or are redirected to, any panel
items. The application would want to know about events that are not sent to panel items:

extern void my_event_proc();

panel = (Panel)xv_create(frame, PANEL,
PANEL_BACKGROUND_PROC, my_event_proc,
NULL);

The parameters to the routine for PANEL_BACKGROUND_PROC are:

void
my_event_proc(panel, event)

Panel panel;
Event *event;

The PANEL_BACKGROUND_PROC does not, by default, get keyboard events passed to it.
Therefore, rather than trying to set this mask explicitly in the panel’s window, the attribute
PANEL_ACCEPT_KEYSTROKE can be set to TRUE. With this attribute set, ASCII events and
function-key events are passed to the routine, provided there are no panel items that accept
keyboard input. If there are such items, those panel items will continue to get keyboard
events regardless of the attribute PANEL_ACCEPT_KEYSTROKE. If you wish to get keyboard
events instead of the panel items that consume those events, you should use an event inter-
posing function discussed in Chapter 20.

7.19.7 Using PANEL_EVENT_PROC

Just as PANEL_BACKGROUND_PROC specifies a routine to handle events that happen outside of
panel items, you can also get events that happen only within panel items using
PANEL_EVENT_PROC.

xv_set(panel, PANEL_EVENT_PROC, my_event_proc, NULL);

Using this routine causes the default event handling for that item to be ignored in favor of the
new event procedure. In other words, this routine does interfere with the normal event pro-
cessing for panel items, and the panel item’s callback routine is no longer automatically
called by the PANEL package.

Panels

Panels 207

Applications can get the event handler routine for a panel item with the following call:

Panel_item item;
event_proc = (void (*)())xv_get(item, PANEL_EVENT_PROC);

You may not assume that the default event handler for any panel item is panel_de-
fault_handle_event(), as in previous XView versions. You must xv_get() the
item’s PANEL_EVENT_PROC. The event handler has the following parameters:

void
panel_item_event_proc(item, event)

Panel_item item;
Event *event;

7.19.8 Event Handling Example

The program item_move.c (a longer program listed in Appendix F, Example Programs) dem-
onstrates how events can be handled in panels. The program allows you to create, destroy,
and move around three different types of panel items. Two panels are displayed (see Figure
7-22) The control panel contains two panel items: a text item to type in panel item names and
a choice item providing the different item types that may be created. The destination panel is
where newly created panel items are placed. It is boxed. After items are created, you may
move them around the destination panel using the MENU mouse button. Moving the item off
the destination panel deletes the item.

Figure 7-22. Output of item_move.c in use

The code for item_move.c uses the interpose function, notify_inter-
pose_event_func(), to handle events within the destination panel. This interferes with
the normal event processing for the destination panel; however, events continue to be
dispatched to the panel items through the use of the notify_next_event_func().
Since the event function is only interested in MENU button events that occur on the destina-
tion panel’s panel items, it might seem appropriate to use PANEL_EVENT_PROC since it is
designed to notify the routine only when panel items receive events. However, this method
would not work for this application because when the mouse button is dragged around the

208 XView Programming Manual

frame to move the item, the dragging events might move outside of the button and when that
occurred the event callback would not be called.

7.20 Panel Package Summary

Table 7-4 lists the procedures and macros for the PANEL package. Table 7-5 lists the attri-
butes for the PANEL package. This information is fully described in the XView Reference
Manual.

Table 7-4. Panel Procedures and Macros

Procedures and Macros

panel_advance_caret() PANEL_CHECK_BOX

panel_backup_caret() PANEL_CHOICE_STACK

panel_paint() PANEL_EACH_ITEM()

panel_text_notify() PANEL_END_EACH()

PANEL_TOGGLE

Table 7-5. Panel Package Attributes

Panel Attributes

PANEL_ACCEPT_KEYSTROKE PANEL_LAYOUT

PANEL_BACKGROUND_PROC PANEL_LINE_BREAK_ACTION

PANEL_BUSY PANEL_LIST_CLIENT_DATA

PANEL_CARET_ITEM PANEL_LIST_CLIENT_DATAS

PANEL_CHILD_CARET_ITEM PANEL_LIST_DELETE

PANEL_CHOICE_COLOR PANEL_LIST_DELETE_ROWS

PANEL_CHOICE_IMAGE PANEL_LIST_DELETE_SELECTED_ROWS

PANEL_CHOICE_IMAGES PANEL_LIST_DISPLAY_ROWS

PANEL_CHOICE_NCOLS PANEL_LIST_FIRST_SELECTED

PANEL_CHOICE_NROWS PANEL_LIST_FONT

PANEL_CHOICE_RECT PANEL_LIST_FONTS

PANEL_CHOICE_STRING PANEL_LIST_GLYPH

PANEL_CHOICE_STRINGS PANEL_LIST_GLYPHS

PANEL_CHOOSE_NONE PANEL_LIST_INSERT

PANEL_CHOOSE_ONE PANEL_LIST_INSERT_DUPLICATE

PANEL_CLIENT_DATA PANEL_LIST_INSERT_GLYPHS

PANEL_CURRENT_ITEM PANEL_LIST_INSERT_STRINGS

PANEL_DEFAULT_ITEM PANEL_LIST_MODE

PANEL_DEFAULT_VALUE PANEL_LIST_NEXT_SELECTED

PANEL_DIRECTION PANEL_LIST_NROWS

PANEL_DISPLAY_LEVEL PANEL_LIST_ROW_HEIGHT

PANEL_DISPLAY_ROWS PANEL_LIST_SCROLLBAR

PANEL_DROP_BUSY_GLYPH PANEL_LIST_SELECT

Panels

Panels 209

Table 7-5. Panel Package Attributes (continued)

Panel Attributes

PANEL_DROP_DND PANEL_LIST_SELECTED

PANEL_DROP_FULL PANEL_LIST_SORT

PANEL_DROP_GLYPH PANEL_LIST_STRING

PANEL_DROP_HEIGHT PANEL_LIST_STRINGS

PANEL_DROP_SEL_REQ PANEL_LIST_TITLE

PANEL_DROP_SITE_DEFAULT PANEL_LIST_WIDTH

PANEL_DROP_WIDTH PANEL_MASK_CHAR

PANEL_EVENT_PROC PANEL_MAX_TICK_STRING

PANEL_EXTRA_PAINT_HEIGHT PANEL_MAX_VALUE

PANEL_EXTRA_PAINT_WIDTH PANEL_MAX_VALUE_STRING

PANEL_FEEDBACK PANEL_MIN_TICK_STRING

PANEL_FIRST_ITEM PANEL_MIN_VALUE

PANEL_FIRST_PAINT_WINDOW PANEL_MIN_VALUE_STRING

PANEL_FOCUS_PW PANEL_NCHOICES

PANEL_GAUGE_WIDTH PANEL_NEXT_COL

PANEL_GINFO PANEL_NEXT_ITEM

PANEL_INACTIVE PANEL_NEXT_ROW

PANEL_ITEM_CLASS PANEL_NO_REDISPLAY_ITEM

PANEL_ITEM_COLOR PANEL_NOTIFY_LEVEL

PANEL_ITEM_CREATED PANEL_NOTIFY_PROC

PANEL_ITEM_DEAF PANEL_NOTIFY_STATUS

PANEL_ITEM_LABEL_RECT PANEL_NOTIFY_STRING

PANEL_ITEM_MENU PANEL_OPS_VECTOR

PANEL_ITEM_NTH_WINDOW PANEL_PAINT

PANEL_ITEM_NWINDOWS PANEL_PRIMARY_FOCUS_ITEM

PANEL_ITEM_RECT PANEL_READ_ONLY

PANEL_ITEM_VALUE_RECT PANEL_REPAINT_PROC

PANEL_ITEM_WANTS_ADJUST PANEL_SHOW_RANGE

PANEL_ITEM_WANTS_ISO PANEL_SHOW_VALUE

PANEL_ITEM_X PANEL_SLIDER_END_BOXES

PANEL_ITEM_X_GAP PANEL_SLIDER_WIDTH

PANEL_ITEM_X_POSITION PANEL_STATUS

PANEL_ITEM_Y PANEL_TEXT_SELECT_LINE

PANEL_ITEM_Y_GAP PANEL_TICKS

PANEL_ITEM_Y_POSITION PANEL_TOGGLE_VALUE

PANEL_JUMP_DELTA PANEL_VALUE

PANEL_LABEL_BOLD PANEL_VALUE_DISPLAY_LENGTH

PANEL_LABEL_FONT PANEL_VALUE_DISPLAY_WIDTH

PANEL_LABEL_IMAGE PANEL_VALUE_FONT

PANEL_LABEL_STRING PANEL_VALUE_STORED_LENGTH

PANEL_LABEL_WIDTH PANEL_VALUE_UNDERLINED

PANEL_LABEL_X PANEL_VALUE_X

PANEL_LABEL_Y PANEL_VALUE_Y

210 XView Programming Manual

Table 7-6. New and Changed Panel Package Attributes (Version 3.2)

PANEL_LIST_INACTIVE PANEL_LIST_MASK_GLYPHS

PANEL_LIST_DELETE_INACTIVE_ROWS PANEL_LIST_ROW_VALUES

PANEL_LIST_DO_DBL_CLICK PANEL_LIST_EXTENSION_DATA

PANEL_LIST_MASK_GLYPH PANEL_LIST_EXTENSION_DATAS

Panels

Panels 211

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

8
Text Subwindows

This chapter describes the TEXTSW package, which allows a user or client to display and edit
a sequence of ASCII characters. Figure 8-1 shows an example of a text subwindow. The text
contains a vertical scrollbar but may not contain a horizontal scrollbar. The vertical scrollbar
can be used to split views into several views (see Chapter 5, Canvases and Openwin). The
font used by the text can be specified using the TEXTSW_FONT attribute, but only one font per
text subwindow can be used, regardless of how many views there may be.

The contents of a text subwindow are stored in a file or in memory on the client side, not on
the X server. Whether the source of the text is stored on disk or in memory is transparent to
the user. When the user types characters in the text subwindow, the source might be changed
immediately or synchronized later depending on how the text subwindow is configured. The
TEXTSW package provides basic text editing features such as inserting arbitrary text into a
file. It also provides complex operations such as searching for and replacing a string of text.

Figure 8-1. A sample text subwindow

Text Subw
indow

s

Text Subwindows 215

8.1 Creating Text Subwindows

Applications need to include the file <xview/textsw.h> to use text subwindows. You create a
text subwindow the same way you create any XView object, by calling xv_create() with
the appropriate type parameters:

Textsw textsw;
textsw = (Textsw)xv_create(base_frame, TEXTSW, NULL);

The font used by the text can be specified using TEXTSW_FONT; only one font per text
subwindow can be used. Figure 8-2 shows the class hierarchy for the text subwindows.

Generic
Object (Drawable) Window Textsw(Openwin)

Figure 8-2. Textsw class hierarchy

8.2 Setting Text Subwindow Attributes

As for all XView objects, you can set attribute-value pairs to configure the text subwindow
accordingly. Like the CANVAS package, the text subwindow object is subclassed from the
OPENWIN package and can therefore be split into separate views. The package handles all of
its own events and redisplaying of text, so none of these things is handled by the application.

Most text subwindow attributes are orthogonal; that is, attribute order does not effect the
object. In a few cases, however, the attributes in a list might interact, so you must specify
them in a particular order. Such cases are noted in the sections that follow. For example, you
must pass TEXTSW_STATUS first in any call to xv_create(), if you want to find the status
after setting some other attribute in the same call.

8.3 Text Subwindow Contents

The contents of a text subwindow are a sequence of characters. Each character can be
uniquely identified by its position in the sequence (type Textsw_index). Editing opera-
tions, such as inserting and deleting text, can cause the index of successive characters to
change. The valid indices are 0 through length –1 inclusive, where length is the number of
characters currently in the text subwindow, returned by the TEXTSW_LENGTH attribute.

216 XView Programming Manual

The text subwindow has a notion of the current index after which the next character will be
inserted. This is called the insertion point and is indicated by a caret, as shown in Figure 8-3.

Figure 8-3. A caret marks the insertion point

8.4 Editing a Text Subwindow

A text subwindow can be edited by the user or by a client program. When you create a text
subwindow, the user is normally allowed to edit it. By using the special attributes discussed
in this section, the client program can edit the subwindow. These edits are then stored in
/tmp/textProcess-id.Counter.

The next five sections explain the functions and attributes that you will use to load, read,
write, edit, and finally save a text file.

8.4.1 Loading a File

You can load a file into a text subwindow by using TEXTSW_FILE, as in:

xv_set(textsw, TEXTSW_FILE, file_name, NULL);

Keep in mind that if the existing text has been edited, then these edits will be lost. To avoid
such loss, first check whether there are any outstanding edits by calling:

int modified = (int)xv_get(textsw, TEXTSW_MODIFIED)

If there have been updates, you may choose to synchronize with the source if necessary. That
is, if the existing text is part of a file, you can overwrite the existing changes before loading
in a new file.

The above call to xv_set(), which loads the new file, positions the new text so that the first
character displayed has the same index as the first character that was displayed in the previ-
ous file. This is probably not what you want. The code segment below shows how to load
the file at a set position:

xv_set(textsw,
TEXTSW_FILE, file_name,
TEXTSW_FIRST, position,
NULL);

The first character displayed has its index set by position. The order of these attributes
matters. Because attributes are evaluated in the order given, reversing the order would first
reposition the existing file, then load the new file. This would cause an unnecessary repaint.
It would also mis-position the old file if it was shorter than position.

Text Subw
indow

s

Text Subwindows 217

8.4.2 Checking the Status of the Text Subwindow

Both of the calls in the previous example blindly trust that the load of the new file was suc-
cessful. This is, in general, a bad idea. The following code segment shows how to find out
whether the load succeeded, and if not, why it failed:

Textsw textsw;
Textsw_status status;

textsw = (Textsw)xv_create(base_frame,
TEXTSW,
TEXTSW_STATUS, &status,
TEXTSW_FILE, file_name,
TEXTSW_FIRST, position,
NULL);

NOTE

The TEXTSW_STATUS attribute and handle must appear in the attribute list before
the operation whose status you want to determine.

The TEXTSW_STATUS attribute is only valid for xv_create().

The range of values for such a variable are enumerated in Table 8-1. Note that in the first
column, each value begins with the prefix TEXTSW_STATUS_, which has been omitted from
the table to improve readability.

Table 8-1. Range of Values for Status Variables

Value (TEXTSW_STATUS_ . . .) Description

OKAY The operation encountered no problems.

BAD_ATTR The attribute list contained an illegal or unrecog-
nized attribute.

BAD_ATTR_VALUE The attribute list contained an illegal value for an
attribute, usually an out-of-range value for an enu-
meration.

CANNOT_ALLOCATE A call to calloc(2) or malloc(2) failed.

CANNOT_OPEN_INPUT The specified input file does not exist or cannot be
accessed.

CANNOT_INSERT_FROM_FILE The operation encountered a problem when trying to
insert from file.

OUT_OF_MEMORY The operation ran out of memory while editing in
memory.

OTHER_ERROR The operation encountered a problem not covered by
any of the other error indications.

218 XView Programming Manual

8.4.3 Writing to a Text Subwindow

To insert text into a text subwindow at the current insertion point, call:

Textsw_index
textsw_insert(textsw, buf, buf_len)

Textsw textsw;
char *buf;
int buf_len;

The return value is the number of characters actually inserted into the text subwindow. This
number will equal buf_len unless either the text subwindow has had a memory allocation
failure or the portion of text containing the insertion point is read only. The insertion point is
moved forward by the number of characters inserted.

This routine does not do terminal-style interpretation of the input characters. Thus, editing
characters (such as CTRL-H or DEL for character erase) are simply inserted into the text
subwindow rather than performing edits to the existing contents of the text subwindow. To
emulate a terminal, scan the characters to be inserted and invoke textsw_edit() where
appropriate, as described in the next section.

8.4.3.1 Setting the insertion point

The attribute TEXTSW_INSERTION_POINT is used to interrogate and set the insertion point.
For instance, the following call determines where the insertion point is:

Textsw_index point;

point = (Textsw_index)xv_get(textsw, TEXTSW_INSERTION_POINT);

Whereas the following call sets the insertion point to be just before the third character of the
text:

xv_set(textsw, TEXTSW_INSERTION_POINT, 2, NULL);

To set the insertion point at the end of the text, set TEXTSW_INSERTION_POINT to the special
index TEXTSW_INFINITY. This call does not ensure that the new insertion point will be visi-
ble in the text subwindow, even if TEXTSW_INSERT_MAKES_VISIBLE is TRUE. To guarantee
that the caret will be visible afterwards, call textsw_possibly_normalize(), a pro-
cedure that is described later in this chapter.

8.4.4 Reading from a Text Subwindow

Many applications that incorporate text subwindows never need to read the contents of the
text directly from the text subwindow. For instance, the text subwindow might display text
for the user to view but not to edit.

Even when the user is allowed to edit text, some applications simply wait for the user to per-
form some action that indicates that all of the edits have been made. The application can
then use either textsw_save() or textsw_store_file() to place the text in the file.

Text Subw
indow

s

Text Subwindows 219

The text can then be read via the usual file input utilities, or the file itself can be passed off to
another routine or program.

It is, however, useful to be able to directly examine the text in the text subwindow. You can
do this using the TEXTSW_CONTENTS attribute. The code fragment below illustrates how to
use TEXTSW_CONTENTS to get a span of characters from the text subwindow. It gets 1000
characters beginning at position 500 out of the text subwindow and places them into a NULL-
terminated string.

#define TO_READ 1000

char buf[TO_READ+1];
Textsw_index next_pos;

next_pos = (Textsw_index) xv_get(textsw, TEXTSW_CONTENTS, 500,
buf, TO_READ);

if (next_pos != 500+TO_READ) {
/* handle error case */

} else
buf[TO_READ] = ’\0’;

8.4.5 Deleting Text

You can delete a contiguous span of characters from a text subwindow by calling:

Textsw_index
textsw_delete(textsw, first, last_plus_one)

Textsw textsw;
Textsw_index first, last_plus_one;

first specifies the first character of the span that will be deleted; last_plus_one speci-
fies the first character after the span that will not be deleted. first should be less than or
equal to last_plus_one. To delete to the end of the text, pass the special value
TEXTSW_INFINITY for last_plus_one.

The return value is the number of characters deleted or:

last_plus_one - first

unless the specified span is read-only. If the insertion point is in the span being deleted, it
will be left at first.

A side effect of calling textsw_delete() is that the deleted characters become the con-
tents of the global Clipboard. To remove the characters from the text subwindow without
affecting the Clipboard, call:

Textsw_index
textsw_erase(textsw, first, last_plus_one)

Textsw textsw;
Textsw_index first, last_plus_one;

Again, the return value is the number of characters removed, and last_plus_one can be
TEXTSW_INFINITY.

Both of these procedures will return 0 if the operation fails.

220 XView Programming Manual

8.4.6 Emulating an Editing Character

You can emulate the behavior of an editing character, such as CTRL-H, with
textsw_edit():

Textsw_index
textsw_edit(textsw, unit, count, direction)

Textsw textsw;
unsigned unit, count, direction;

Depending on the value of unit, this routine will erase either a character, a word, or a line.
Set unit to:

• TEXTSW_UNIT_IS_CHAR to erase individual characters.

• TEXTSW_UNIT_IS_WORD to erase the span of characters that make up a word (including
any intervening white space or other nonword characters).

• TEXTSW_UNIT_IS_LINE to erase all characters in the line on one side of the insertion
point.

If the direction parameter is 0, the operation will affect characters after the insertion
point; otherwise, it will affect characters before the insertion point.

The count parameter determines the number of times the operation will be applied. Set it to
1 to do the edit once or to a value greater than 1 to do multiple edits in a single call.
textsw_edit() returns the number of characters actually removed.

For example, suppose you want to interpret the function key F7 as meaning delete word for-
ward. On receiving the event code for the F7 key, you would make the call:

textsw_edit(textsw, TEXTSW_UNIT_IS_WORD, 1, NULL);

8.4.7 Replacing Characters

While a span of characters can be replaced by calling textsw_erase() followed by
textsw_insert(), character replacement is done most efficiently by calling:

Textsw_index
textsw_replace_bytes(textsw, first, last_plus_one, buf, buf_len)

Textsw textsw;
Textsw_index first, last_plus_one;
char *buf;
int buf_len;

The span of characters to be replaced is specified by first and last_plus_one, just as
in the call to textsw_erase(). The new characters are specified by buf and buf_len,
just as in the call to textsw_insert(). Once again, if last_plus_one is
TEXTSW_INFINITY, the replace operation affects all characters from first to the end of the
text. If the insertion point is in the span being replaced, it will be left at:

first + buf_len

Text Subw
indow

s

Text Subwindows 221

The return value is the net number of bytes inserted. The number is negative if the original
string is longer than the one that replaces it. If a problem occurs when an attempt is made to
replace a span, it will return an error code of 0.

textsw_replace_bytes(), like textsw_erase(), does not put the characters it
removes on the global Clipboard.

8.4.8 The Editing Log

All text subwindows allow the user to undo editing actions. The TEXTSW package keeps a
running log of all the edits. If a file is associated with the text subwindow, this log is kept in
a file in the /tmp directory. This file can grow until the file system in which this directory
resides runs out of space. To limit the size of the edit log and to avoid filling up all of /tmp,
the user can set the text wrap-around size with TEXTSW_WRAPAROUND_SIZE. If there is no
associated file, the edit log is kept in memory, and the maximum size of the log is controlled
by the attribute TEXTSW_MEMORY_MAXIMUM, which defaults to 20,000 bytes.

Unfortunately, once a memory-resident edit log has reached its maximum size, no more char-
acters can be inserted into or removed from the text subwindow. In particular, since deletions
as well as insertions are logged, space cannot be recovered by deleting characters.

It is important to understand how the edit log works, since you might want to use a text
subwindow with no associated file to implement a temporary scratch area or error message
log. If such a text subwindow is used for a long time, the default limit of 20,000 bytes might
well be reached, and either the user or your code will be unable to insert any more characters,
even though only a few characters might be visible in the text subwindow. Therefore, it is
recommended to set TEXTSW_MEMORY_MAXIMUM to a much higher value, say 200,000.

8.4.9 Which File is Being Edited?

To find out the name of the file in the text subwindow, call:

int
textsw_append_file_name(textsw, name)

Textsw textsw;
char *name;

If the text subwindow is editing memory, then this routine will return a nonzero value.
Otherwise, it will return 0 and append the name of the file to the end of name. The following
code gets the name of the current file:

char name[BUFSIZ];

name[0] = ’\0’;
if (textsw_append_file_name(textsw, name) == 0)

printf("File name is: %s\n", name);

222 XView Programming Manual

8.4.9.1 Interactions with the file system

Suppose the current file is called myfile. If the user chooses textsw_save()), the follow-
ing sequence of file operations occurs:

• myfile is copied to myfile%.

• The contents of myfile% are combined with information from the edit log file
(/tmp/TextProcess-id.Counter) and written over myfile, thereby preserving all its permis-
sions, etc.

• The edit log file is removed from /tmp.

If myfile is a symbolic link to ../some_dir/otherfile, then the backup file is created as
../some_dir/otherfile% .

Keep in mind that the user can change the current directory by selecting “Load File” or “Set
Directory” from the text subwindow menu. If myfile is a relative path name, then both the
copy to myfile% and the save take place in the current directory.

8.5 Saving Edits in a Subwindow

To save any edits made to a file currently loaded into a text subwindow call:

unsigned
textsw_save(textsw, locx, locy)

Textsw textsw;
int locx, locy;

locx and locy are relative to the upper-left corner of the text subwindow and are used to
position the upper-left corner of the alert should the save fail for some reason—usually they
should be 0. The return value is 0 if and only if the save succeeded.

8.5.1 Storing Edits

The text subwindow might not contain a file, or the client might wish to place the edited ver-
sion of the text (whether or not the original text came from a file) in some specific file. To
store the contents of a text subwindow to a file, call:

unsigned
textsw_store_file(textsw, filename, locx, locy)

Textsw textsw;
char *filename;
int locx, locy;

Again, locx and locy are used to position the upper-left corner of the message box. The
return value is 0 if and only if the store succeeded.

By default, this call changes the file that the text subwindow is editing, so that subsequent
saves will save the edits to the new file. To override this policy, set the attribute
TEXTSW_STORE_CHANGES_FILE to FALSE.

Text Subw
indow

s

Text Subwindows 223

8.5.2 Discarding Edits

To discard the edits performed on the contents of a text subwindow, call:

void
textsw_reset(textsw, locx, locy)

Textsw textsw;
int locx, locy;

locx and locy are as above. Note that if the text subwindow contains a file that has not
been edited, the effect of textsw_reset is to unload the file and replace it by memory
provided by the TEXTSW package; thus, the user will see an absolutely empty text subwindow.
Alternatively, if the text subwindow was already editing memory, then another, untouched,
piece of primary memory will be provided and the edited piece will be deallocated.

8.6 Setting the Contents of a Text Subwindow

The rest of this chapter describes the other functions that are available for text subwindows.
These features include setting the contents of a subwindow, setting the primary selection, and
dealing with multiple or split views.

You might want to set the initial contents of a text subwindow that your application uses. To
set the initial contents of a text subwindow, use one of three attributes:
TEXTSW_INSERT_FROM_FILE, TEXTSW_FILE_CONTENTS, and TEXTSW_CONTENTS. Each
attribute is illustrated in code fragments given below.

8.6.1 TEXTSW_FILE_CONTENTS

The attribute TEXTSW_FILE_CONTENTS allows a client to initialize the text subwindow con-
tents from a file yet still edit the contents in memory. The user can return a text subwindow
to its initial state after an editing session by choosing “Undo All Edits” in the text menu.

The code fragment below shows how you would use this attribute:

extern char *filename;

xv_set(textsw,
TEXTSW_FILE_CONTENTS, filename,
TEXTSW_FIRST, 0,
NULL);

When the client calls the undo routine and filename is not a null string, the memory used
by the text subwindow is reinitialized with the contents of the file specified by filename.

When the client calls the undo routine and the filename is a null string, the memory used
by the text subwindow is reinitialized with the previous contents of the text subwindow.

224 XView Programming Manual

8.6.2 TEXTSW_CONTENTS

TEXTSW_CONTENTS lets you insert a text string from memory, instead of a file, into the text
subwindow. The default for this attribute is NULL.

Using xv_create() with this attribute specifies the initial contents for a nonfile text
subwindow.

Using xv_set() with this attribute sets the contents of a window, as in:

xv_set(textsw, TEXTSW_CONTENTS, "text", NULL);

If you use xv_get() with this attribute, you will need to provide additional parameters, as
in:

xv_get(textsw, TEXTSW_CONTENTS, pos, buf, buf_len);

The return value is the next position to be read. The buffer array:

buf[0 ...buf_len-1]

is filled with the characters from textsw beginning at the index pos and is NULL-ter-
minated only if there were too few characters to fill the buffer.

8.6.3 TEXTSW_INSERT_FROM_FILE

TEXTSW_INSERT_FROM_FILE allows a client to insert the contents of a file into a text
subwindow at the current insertion point. It is the programming equivalent of a user choos-
ing “Include File” from the text menu.

The code below demonstrates this attribute:

Textsw textsw;
Textsw_status status;

xv_set(textsw,
TEXTSW_STATUS, &status,
TEXTSW_INSERT_FROM_FILE, filename,
NULL);

Three status values can be returned for this attribute when the argument TEXTSW_STATUS is
passed in the same call to xv_create() or xv_set():

TEXTSW_STATUS_OKAY
TEXTSW_STATUS_CANNOT_INSERT_FROM_FILE
TEXTSW_STATUS_OUT_OF_MEMORY

Text Subw
indow

s

Text Subwindows 225

8.7 Positioning the Text Displayed in a Text Subwindow

Usually, more text is managed by the text subwindow than can be displayed all at once. As a
result, it is often necessary to determine the indices of the characters that are being displayed
and to control exactly which portion of the text is visible.

8.7.1 Screen Lines and File Lines

When there are long lines in the text, it is necessary to distinguish between two definitions of
“line of text.”

A screen line reflects what is actually displayed on the screen. A line begins with the left-
most character in the subwindow and continues across until either a newline character or the
right edge of the subwindow is encountered. A file line, on the other hand, can only be ter-
minated by the newline character. It is defined as the span of characters starting after a new-
line character (or the beginning of the file) running through the next newline character (or the
end of the file).

Whenever the right edge of the subwindow is encountered before the newline, if the follow-
ing attribute-value pair were specified:

TEXTSW_LINE_BREAK_ACTION, TEXTSW_WRAP_AT_CHAR

then the next character and its successors would be displayed on the next lower screen line.
In this case, there would be two screen lines, but only one file line. From the perspective of
the display there are two lines; from the perspective of the file, only one. On the other hand,
if the following attribute-value pair were specified:

TEXTSW_LINE_BREAK_ACTION, TEXTSW_WRAP_AT_WORD

then the entire word would be displayed on the next line.

Unless otherwise specified, all text subwindow attributes and procedures use the file line defi-
nition. Line indices have a zero-origin, like the character indices; that is, the first line has
index 0, not 1.

8.7.2 Absolute Positioning

Two attributes are provided to allow you to specify which portion of the text is displayed in
the text subwindow.

Setting the attribute TEXTSW_FIRST to a given index causes the first character of the line
containing the index to become the first character displayed in the text subwindow. Thus, the
following call causes the text to be positioned so that the first displayed character is the first
character of the line that contains index 1000:

xv_set(textsw, TEXTSW_FIRST, 1000, NULL);

Since the text subwindow is subclassed from the OPENWIN package and can be split into sev-
eral views, the previous code fragment would only cause the positioning of one view. To

226 XView Programming Manual

position all of the views in a text subwindow, use the attribute TEXTSW_FOR_ALL_VIEWS, as
in the following call:

xv_set(textsw,
TEXTSW_FOR_ALL_VIEWS, TRUE,
TEXTSW_FIRST, 1000,
NULL);

Conversely, the following call retrieves the index of the first displayed character:

index = (Textsw_index)xv_get(textsw, TEXTSW_FIRST);

A related attribute, useful in similar situations, is TEXTSW_FIRST_LINE. When used in a call
on xv_set() or xv_get(), the value is a file line index within the text.

You can determine the character index that corresponds to a given line index (both zero-
origin) within the text by calling:

Textsw_index
textsw_index_for_file_line(textsw, line)

Textsw textsw;
int line;

The return value is the character index for the first character in the line, so character index 0
always corresponds to line index 0.

8.7.3 Relative Positioning

To move the text in a text subwindow up or down by a small number of lines, call the routine:

void
textsw_scroll_lines(textsw, count)
Textsw textsw;
int count;

A positive value for count causes the text to scroll up, while a negative value causes the
text to scroll down.

When calling textsw_scroll_lines(), you might want to know how many screen
lines are in the text subwindow. You can find this out by calling:

int
textsw_screen_line_count(textsw)

Textsw textsw;

8.7.4 Which File Lines are Visible?

Exactly which file lines are visible on the screen is determined by calling:

void
textsw_file_lines_visible(textsw, top, bottom)

Textsw textsw;
int *top, *bottom;

Text Subw
indow

s

Text Subwindows 227

This routine fills in the addressed integers with the file line indices of the first and last file
lines being displayed in the specified text subwindow.

8.7.4.1 Guaranteeing what is visible

To ensure that a particular line or character is visible, call:

void
textsw_possibly_normalize(textsw, position)

Textsw textsw;
Textsw_index position;

The text subwindow must be displayed on the screen before this function will work.

If the character at the specified position is already visible, then this routine does nothing.
If it is not visible, then it repositions the text so that it is visible and at the top of the subwin-
dow.

If a particular character should always be at the top of the subwindow, then calling the fol-
lowing routine is more appropriate:

void
textsw_normalize_view(textsw, position)

Textsw textsw;
Textsw_index position;

8.7.4.2 Ensuring that the insertion point is visible

Most of the programmatic editing actions do not update the text subwindow to display the
caret, even if TEXTSW_INSERT_MAKES_VISIBLE is set. If you want to ensure that the inser-
tion point is visible, use:

textsw_possibly_normalize(textsw,
(Textsw_index) xv_get(textsw, TEXTSW_INSERTION_POINT));

8.8 Finding and Matching a Pattern

A common operation performed on text is to find a span of characters that match some speci-
fication. The text subwindow provides several rudimentary pattern matching facilities. This
section describes two functions that you can call in order to perform similar operations.

8.8.1 Matching a Span of Characters

To find the nearest span of characters that match a pattern, call:

int
textsw_find_bytes(textsw, first, last_plus_one, buf,

buf_len, flags)

228 XView Programming Manual

Textsw textsw;
Textsw_index *first, *last_plus_one;
char *buf;
unsigned buf_len;
unsigned flags;

The pattern to match is specified by buf and buf_len. The matching operation looks for
an exact and literal match—it is sensitive to case and does not recognize any kind of meta-
character in the pattern. first specifies the position at which to start the search. If flags
is 0, the search proceeds forward through the text; if flags is 1, the search proceeds back-
wards. The return value is –1 if the pattern cannot be found; otherwise it is some non-
negative value, in which case the indices addressed by first and last_plus_one will
have been updated to indicate the span of characters that match the pattern.

8.8.2 Matching a Specific Pattern

Another useful operation is to find delimited text. For example, you might want to find the
starting and ending brace in a piece of code. To find a matching pattern, call:

int
textsw_match_bytes(textsw, first, last_plus_one,

start_sym, start_sym_len,
end_sym, end_sym_len, field_flag)

Textsw textsw;
Textsw_index *first, *last_plus_one;
char *start_sym, *end_sym;
int start_sym_len, end_sym_len;
unsigned field_flag;

first stores the starting position of the pattern that you want to search for.
last_plus_one stores the cursor position of the end pattern. Its value is one position past
the text. start_sym and end_sym store the beginning position and ending position of the
pattern, respectively. start_sym_len and end_sym_len store the starting and ending
pattern’s length, respectively.

Use one of the following three field flag values to search for matches:

TEXTSW_DELIMITER_FORWARD

Begins from first and searches forward until it finds start_sym and matches it
forward with end_sym.

TEXTSW_DELIMITER_BACKWARD

Begins from first and searches backward for end_sym and matches it backward
with start_sym.

TEXTSW_DELIMITER_ENCLOSE

Begins from first and expands both directions to match start_sym and
end_sym of the next level.

If no match is found, then textsw_match_bytes() will return a value of –1. If a match
is found, then it will return the index of the first match.

Text Subw
indow

s

Text Subwindows 229

The code fragment below can be used to find delimited text. Notice that the field_flag
value is TEXTSW_DELIMITER_FORWARD.

Textsw_index first, last_plus_one, pos;

first = (Textsw_index) xv_get(textsw, TEXTSW_INSERTION_POINT);
pos = textsw_match_bytes(textsw, &first, &last_plus_one,

"/*", 2,
"*/", 2, TEXTSW_DELIMITER_FORWARD);

if (pos > 0) {
textsw_set_selection(textsw, first, last_plus_one, 1);
xv_set(textsw, TEXTSW_INSERTION_POINT, last_plus_one, NULL);

} else
(void) window_bell(textsw);

This code searches forward from first until it finds the starting /* and matches it forward
with the next */. If no match is found, a bell will ring in the text subwindow.

8.9 Marking Positions

Often a client wants to keep track of a particular character or group of characters that are in
the text subwindow. Given that arbitrary editing can occur in a text subwindow and that it is
very tedious to intercept and track all of the editing operations applied to a text subwindow, it
is often easier to simply place one or more marks at various positions in the text subwindow.
These marks are automatically updated by the text subwindow to account for user and client
edits. There is no limit to the number of marks you can add.

A new mark is created by calling:

Textsw_mark
textsw_add_mark(textsw, position, flags)

Textsw textsw;
Textsw_index position;
unsigned flags;

The flags argument is either TEXTSW_MARK_DEFAULTS or TEXTSW_MARK_

MOVE_AT_INSERT. The latter causes an insertion at the marked position to move the mark to
the end of the inserted text, whereas the former causes the mark to not move when text is
inserted at the mark’s current position. As an example, suppose that the text managed by the
text subwindow consists of the two lines:

this is the first line
not this, which is the second

Assume a mark is set at position 5 (just before the i in is on the first line) with flags of
TEXTSW_MARK_MOVE_AT_INSERT.

If the user makes a selection just before the is (thereby placing the insertion point before the
i, at position 5) and types an h, making the text read:

this his the first line
not this, which is the second

the mark moves with the insertion point and they both end up at position 6.

230 XView Programming Manual

However, if the flags had been TEXTSW_MARK_DEFAULTS, then the mark would remain at
position 5 after the user typed the h, although the insertion point moved on to position 6.

Now, suppose instead that the user made a selection before the this on the first line, and typed
Kep, making the text read:

Kepthis is the first line
not this, which is the second

In this case, no matter what flags the mark had been created with, it would end up at posi-
tion 8, still just before the i in is.

If a mark is in the middle of a span of characters that is subsequently deleted, the mark moves
to the beginning of the span. Going back to the original scenario, with the original text and
the mark set at position 5, assume that the user deletes from the h in this through the e in the
on the first line, resulting in the text:

te first line
not this, which is the second

When the user is done, the mark will be at position 1, just before the e in te.

The current position of a mark is determined by calling:

Textsw_index
textsw_find_mark(textsw, mark)

Textsw textsw;
Textsw_mark mark;

An existing mark is removed by calling:

void
textsw_remove_mark(textsw, mark)

Textsw textsw;
Textsw_mark mark;

Note that marks are dynamically allocated, and it is the client’s responsibility to keep track
of them and to remove them when they are no longer needed.

8.9.1 Getting a Text Selection

A user selects a portion of the contents of the text subwindow using a pointer. A text selec-
tion is indicated on the screen with reverse-video highlighting. An application needs to
know which window has the current selection and what the contents of a text selection are.
The TEXTSW package does not provide procedures to get this information. Instead, these
functions are carried out by the Selection Service. For an example of how this is done, see
Chapter 18, Selections. Figure 8-4 shows a text selection.

Text Subw
indow

s

Text Subwindows 231

Figure 8-4. A text selection

8.9.2 Setting the Text Selection

Primary and secondary selections are maintained. The primary or secondary selection can be
set by calling the following:

void
textsw_set_selection(textsw, first, last_plus_one, type)

Textsw textsw;
Textsw_index first, last_plus_one;
unsigned type;

A value of 1 for type means primary selection, while a value of 2 means secondary selection
and a value of 17 is pending delete. Note that there is no requirement that all or part of the
selection be visible; use textsw_possibly_normalize() to guarantee visibility (see
Section 8.7.4, “Which File Lines are Visible?”).

8.10 Dealing with Multiple Views

By splitting a text view, the user can create multiple views of the text being managed by the
text subwindow. Although these additional views are usually transparent to the client code
controlling the text subwindow, it might occasionally be necessary for a client to deal
directly with all of the views. This is accomplished by using the following routines, with the
knowledge that split views are simply extra text subwindows that happen to share the text of
the original text subwindow.

Textsw
textsw_first(textsw)

Textsw textsw;

Given an arbitrary view out of a set of multiple views, textsw_first() returns the first
view (currently, this is the original text subwindow that the client created). To move through
the other views of the set, call:

Textsw
textsw_next(textsw)

Textsw textsw;

Given any view of the set, textsw_next() returns some other member of the set or NULL
if there are none left to enumerate. The loop coded below is guaranteed to process all of the
views in the set:

232 XView Programming Manual

for (textsw = textsw_first(any_split); textsw;
textsw = textsw_next(textsw)) {

/* processing involving textsw */
}

When you create a text subwindow, take into account that the user might split the window. If
you try to do something like enlarge the window, you might run into problems.

8.11 Text Subwindow Destroy Confirmation

A confirmation notice is displayed when a text subwindow is about to be destroyed. A text
subwindow is destroyed when the text subwindow or its enclosing frame is the object of a
xv_destroy() call (this may occur when application is quit from the window manager’s
menu). Supplying the text subwindow confirmation notice is referred to as vetoing the des-
troy. A confirmation notice is provided when the text subwindow’s ignore limit has been
reached. The ignore limit specifies the number of edits permitted before the confirmation
notice is displayed and is set with TEXTSW_IGNORE_LIMIT. Valid values for
TEXTSW_IGNORE_LIMIT are 0, meaning destroy will be vetoed if any edits have been done,
and TEXTSW_INFINITY, meaning the destroy will never be vetoed.

8.12 Notifications from a Text Subwindow

The text subwindow notifies its client about interesting changes in the subwindow’s or text’s
state by calling a notification procedure. It also calls this procedure in response to user
actions. If the client does not provide an explicit notification procedure by using the attribute
TEXTSW_NOTIFY_PROC, then the text subwindow provides a default procedure. The declara-
tion for this procedure looks like:

void
notify_proc(textsw, avlist)

Textsw textsw;
Attr_avlist avlist;

avlist contains attributes that are the members of the Textsw_action enumeration.

Your notification procedure must be careful either to process all of the possible attributes or
to pass through the attributes that it does not process to the standard notification procedure.
This is important because among the attributes that can be in the avlist are those that cause
the standard notification procedure to implement the possible Front, Back, Open, Close, and
Quit accelerators of the user interface.

Example 8-1 presents a client notify procedure for a text subwindow.

Example 8-1. Client notify procedure for a text subwindow

void (*textsw_default_notify)();

void
client_notify_proc(textsw, attributes)

Text Subw
indow

s

Text Subwindows 233

Example 8-1. Client notify procedure for a text subwindow (continued)

Textsw textsw;
Attr_avlist attributes;
{

int pass_on = FALSE;
Attr_avlist attrs;

for (attrs = attributes; *attrs; attrs = attr_next(attrs)) {
switch ((Textsw_action)(*attrs)) {

case TEXTSW_ACTION_CAPS_LOCK:
/* Swallow this attribute */
ATTR_CONSUME(*attrs);
break;

case TEXTSW_ACTION_CHANGED_DIRECTORY:
/* Monitor the attribute, don’t swallow it */
strcpy(current_directory, (char *)attrs[1]);
pass_on = TRUE;
break;

default:
pass_on = TRUE;
break;

}
}
if (pass_on)

textsw_default_notify(textsw, attributes);
}

textsw_default_notify =
(void (*)())xv_get(textsw, TEXTSW_NOTIFY_PROC);

xv_set(textsw, TEXTSW_NOTIFY_PROC, client_notify_proc, NULL);

The Textsw_action attributes that can be passed to your notify procedure are listed in
Table 8-2. Note that in the first column, each attribute begins with the prefix
TEXTSW_ACTION_, which has been omitted from the table to improve readability. Remember
that the attributes constitute a special class that are passed to your text subwindow notifica-
tion procedure. They are not attributes of the text subwindow in the usual sense and cannot
be retrieved or modified using xv_get() or xv_set().

Table 8-2. Textsw_action Attributes

Attribute
(TEXTSW_ACTION_ . . .)

Type Description

CAPS_LOCK Boolean The user pressed the Caps Lock key to change
the setting of the Caps Lock (it is initially 0,
meaning off).

CHANGED_DIRECTORY char * The current working directory for the process
has been changed to the directory named by the
provided string value.

EDITED_FILE char * The file named by the provided string value has
been edited. Appears once per session of edits
(see below).

234 XView Programming Manual

Table 8-2. Textsw_action Attributes (continued)

Attribute
(TEXTSW_ACTION_ . . .)

Type Description

EDITED_MEMORY (no value) Monitors whether an empty text subwindow has
been edited.

FILE_IS_READONLY char * The file named by the provided string value does
not have write permission.

LOADED_FILE char * The text subwindow is being used to view the
file named by the provided string value.

TOOL_CLOSE (no value) The frame containing the text subwindow should
become iconic.

TOOL_DESTROY Event * The tool containing the text subwindow should
exit, without checking for a veto from other
subwindows. The value is the user action that
caused the destroy.

TOOL_QUIT Event * The tool containing the text subwindow should
exit normally. The value is the user action that
caused the exit.

TOOL_MGR Event * The tool containing the text subwindow should
do the window manager operation associated
with the provided event value.

USING_MEMORY (no value) The text subwindow is being used to edit a string
stored in primary memory, not a file.

The attribute TEXTSW_ACTION_EDITED_FILE is a slight misnomer, as it is given to the notify
procedure after the first edit to any text, whether or not it came from a file. This notification
happens only once per session of edits, whereas, on the other hand, notification of
TEXTSW_ACTION_LOADED_FILE is considered to terminate the old session and start a new
one.

NOTE

The attribute TEXTSW_ACTION_LOADED_FILE must be treated very carefully
because the notify procedure gets called with this attribute in several situations:
after a file is initially loaded, after any successful “Save Current File” menu
operation, after an “Undo All Edits” menu operation, and during successful calls
to textsw_reset(), textsw_save(), and textsw_store().

Text Subw
indow

s

Text Subwindows 235

The appropriate response by the procedure is to interpret these notifications as being equiva-
lent to:

The text subwindow is displaying the file named by the provided string value; no
edits have been performed on the file yet. In addition, any previously displayed
or edited file has been either reset, saved, or stored under another name.

8.12.1 Text Subwindow Interposition

If you need to interpose on a text subwindow, get the text subwindow’s view window and
interpose on it.

Xv_Window window;
Textsw textsw;
int win_no;

window = (Xv_Window)xv_get(textsw, OPENWIN_NTH_VIEW, win_no);

For more information on registering events for text subwindows, see Section 6.3, “Register-
ing Events;” for more information on interposition, refer to Section 20.9, “Interposition.”

8.13 Text Subwindow Package Summary

Table 8-3 lists the procedures and macros for the TEXTSW. Table 8-4 lists the attributes for
the TEXTSW package. This information is described fully in the XView Reference Manual.

Table 8-3. Text Subwindow Procedures and Macros

Procedures and Macros

textsw_add_mark() textsw_next()

textsw_append_file_name() textsw_normalize_view()

textsw_delete() textsw_notify_proc()

textsw_edit() textsw_possibly_normalize()

textsw_erase() textsw_remove_mark()

textsw_file_lines_visible() textsw_replace_bytes()

textsw_find_bytes() textsw_reset()

textsw_find_mark() textsw_save()

textsw_first() textsw_screen_line_count()

textsw_index_for_file_line() textsw_scroll_lines()

textsw_insert() textsw_set_selection()

textsw_match_bytes() textsw_store_file()

236 XView Programming Manual

Table 8-4. Text Subwindow Attributes

TEXTSW_AGAIN_RECORDING TEXTSW_IGNORE_LIMIT

TEXTSW_AUTO_INDENT TEXTSW_INSERT_FROM_FILE

TEXTSW_AUTO_SCROLL_BY TEXTSW_INSERT_MAKES_VISIBLE

TEXTSW_BLINK_CARET TEXTSW_INSERTION_POINT

TEXTSW_BROWSING TEXTSW_LENGTH

TEXTSW_CHECKPOINT_FREQUENCY TEXTSW_LINE_BREAK_ACTION

TEXTSW_CLIENT_DATA TEXTSW_LOWER_CONTEXT

TEXTSW_CONFIRM_OVERWRITE TEXTSW_MEMORY_MAXIMUM

TEXTSW_CONTENTS TEXTSW_MULTI_CLICK_SPACE

TEXTSW_CONTROL_CHARS_USE_FONT TEXTSW_MULTI_CLICK_TIMEOUT

TEXTSW_DESTROY_VIEW TEXTSW_NOTIFY_PROC

TEXTSW_DISABLE_CD TEXTSW_READ_ONLY

TEXTSW_DISABLE_LOAD TEXTSW_STATUS

TEXTSW_EDIT_COUNT TEXTSW_STORE_CHANGES_FILE

TEXTSW_EXTRAS_CMD_MENU TEXTSW_SUBMENU_EDIT

TEXTSW_FILE TEXTSW_MODIFIED

TEXTSW_FILE_CONTENTS TEXTSW_SUBMENU_FILE

TEXTSW_FIRST TEXTSW_SUBMENU_FIND

TEXTSW_FIRST_LINE TEXTSW_SUBMENU_VIEW

TEXTSW_FONT TEXTSW_UPPER_CONTEXT

TEXTSW_HISTORY_LIMIT

XV_LEFT_MARGIN XV_RIGHT_MARGIN

Text Subw
indow

s

Text Subwindows 237

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

9
TTY Subwindows

The TTY (or terminal emulator) subwindow emulates a standard terminal, the principal dif-
ference being that the row and column dimensions of a TTY subwindow can vary from that
of a standard terminal. In a TTY subwindow, you can run arbitrary programs, including a
complete interactive shell. Or you can emulate terminal interface applications that use the
curses(3X) terminal screen optimization package without actually running a separate pro-
cess. The TTY subwindow accepts the standard ANSI escape sequences for doing ASCII
screen manipulation, so you can use termcap or termio screen-handling routines. This chap-
ter discusses the TTYSW package. Figure 9-1 shows the class hierarchy for the TTYSW pack-
age.

Generic
Object (Drawable) Window Tty

Figure 9-1. TTY package class hierarchy

9.1 Creating a TTY Subwindow

Programs using TTY subwindows must include the file <xview/tty.h>. Like all XView win-
dows, you create a TTY subwindow by calling xv_create() with the appropriate type
parameter, as in:

Tty tty;
tty = xv_create(frame, TTY, NULL);

The default TTY subwindow will fork a shell process and the user can use it interactively to
enter commands. This program does not interact with the processing of the application in
which the TTY subwindow resides; it is an entirely separate process. For example, if you
want to start the TTY subwindow with another program, say man, you can do so by specify-
ing the name of the program to run via the TTY_ARGV attribute, as shown in Example 9-1.

TTY Subw
indow

s

TTY Subwindows 241

Example 9-1. The sample_tty.c program

/*
* sample_tty.c -- create a base frame with a tty subwindow.
* This subwindow runs a UNIX command specified in an argument
* vector as shown below. The example does a "man cat".
*/
#include <xview/xview.h>
#include <xview/tty.h>

char *my_argv[] = { "man", "cat", NULL };

main(argc, argv)
char *argv[];
{

Tty tty;
Frame frame;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL); |
frame = (Frame)xv_create(NULL, FRAME, NULL);
tty = (Tty)xv_create(frame, TTY,

WIN_ROWS, 24,
WIN_COLUMNS, 80,
TTY_ARGV, my_argv,
NULL);

window_fit(frame);
xv_main_loop(frame);

}

The output of Example 9-1 is shown in Figure 9-2. Note that you can have only one TTY
subwindow per process.

9.2 Driving a TTY Subwindow

You can drive the terminal emulator programmatically. There are procedures both to send
input to the terminal emulator (as if the user had typed it in the TTY subwindow) and to send
output (as if a program running in the TTY subwindow had output it). You can send input to
a TTY subwindow programmatically with the function:

int
ttysw_input(tty, buf, len)

Tty tty;
char *buf;
int len;

ttysw_input() appends the character sequence in buf that is len characters long onto
tty’s input queue. It returns the number of characters accepted. The characters are treated
as if they were typed from the keyboard in the TTY subwindow. ttysw_input() pro-

242 XView Programming Manual

vides a simple way for a window program to send input to a program running in its TTY
subwindow. You can send output to a TTY subwindow programmatically with the function:

int
ttysw_output(tty, buf, len)

Tty tty;
char *buf;
int len;

ttysw_output() runs the character sequence in buf that is len characters long through
the terminal emulator of tty. It returns the number of characters accepted. The effect is
similar to executing this:

echo character_sequence > /dev/ttyN

where ttyN is the pseudo-TTY associated with the TTY subwindow. ttysw_output()
can be used to send ANSI escape sequences to the TTY subwindow.

Figure 9-2. Output of sample_tty.c

Note the differences between the input and output TTY routines. If an application is running
in the TTY subwindow, then the characters sent to the TTY subwindow using
ttysw_input() are sent to that program as its stdin. Characters sent to the TTY
subwindow using ttysw_ouput() are sent to the TTY subwindow itself and have nothing
to do with the application that might be running in the window.

TTY Subw
indow

s

TTY Subwindows 243

The program in Example 9-2 creates a text subwindow in which the user can type input.
There is a panel button called “Text to TTY” which, if selected, reads the data in the text
subwindow and sends it to the TTY subwindow using ttysw_input().

Example 9-2. The textsw_to_ttysw.c program

/*
* textsw_to_ttysw.c -- send text from a text subwindow to a
* tty subwindow using ttysw_output()
*/
#include <stdio.h>
#include <xview/panel.h>
#include <xview/xview.h>
#include <xview/textsw.h>
#include <xview/tty.h>
Textsw textsw;
Tty ttysw;

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
void text_to_tty(), exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
NULL);

panel = (Panel)xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Text To Tty",
PANEL_NOTIFY_PROC, text_to_tty,
NULL);

window_fit(panel);

textsw = (Textsw)xv_create(frame, TEXTSW,
WIN_ROWS, 10,
WIN_COLUMNS, 80,
NULL);

ttysw = (Tty)xv_create(frame, TTY,
WIN_BELOW, textsw,
WIN_X, 0,
TTY_ARGV, TTY_ARGV_DO_NOT_FORK,
NULL);

window_fit(frame);
xv_main_loop(frame);

}

244 XView Programming Manual

Example 9-2. The textsw_to_ttysw.c program (continued)

/*
* callback routine for the panel button -- read text from textsw
* and send it to the ttysw using ttysw_output()
*/
void
text_to_tty(item, event)
Panel_item item;
Event *event;
{

char buf[BUFSIZ];

(void) xv_get(textsw, TEXTSW_CONTENTS, 0, buf, sizeof buf);
ttysw_output(ttysw, buf, strlen(buf));

}

Figure 9-3 shows the output of Example 9-2.

Figure 9-3. Output of textsw_to_ttysw.c TTY Subw
indow

s

TTY Subwindows 245

Using ttysw_output() shows that the text is simply output to the dummy terminal emu-
lator described by ttysw. ttysw_input() is useful for sending data as input to a pro-
gram running in the TTY subwindow. For example, a window-based front end for a text edi-
tor could be written where all the common functions such as Save and Next Page can be pro-
grammed into panel buttons. Selecting one of those panel buttons would cause a constant
string to be sent to the application to be processed as input. The write filename function in vi
could have a button that uses ttysw_input() to send the string (w!\n) to the TTY
subwindow containing the program.

9.3 Monitoring the Program in the TTY Subwindow

When you use the TTY_ARGV attribute to pass the name of a program to run to the TTY
subwindow, the program runs as a forked child process. If the attribute:

TTY_QUIT_ON_CHILD_DEATH

is set to TRUE, then the application exits when the forked program exits. But, by default, this
attribute is set to FALSE. You can use TTY_PID to monitor the state of the child process run-
ning in the TTY window via the Notifier using notify_set_wait3_func(). The cli-
ent’s wait3() function gets called when the state of the process in the TTY subwindow
changes:*

#include <sys/wait.h>
static Notify_value my_wait3();

...
ttysw = xv_create(base_frame, TTY,

TTY_ARGV, my_argv,
NULL);

child_pid = (int)xv_get(ttysw, TTY_PID);
notify_set_wait3_func(ttysw, my_wait3, child_pid);
...

The wait3() function can then do something useful, such as destroying the TTY window or
starting up another process. The code fragment below detects when any of the TTY subwin-
dow’s child processes has died.

static Notify_value
my_wait3(ttysw, pid, status, rusage)
Tty ttysw;
int pid;
union wait *status;
struct rusage *rusage;
{

int child_pid;

notify_next_wait3_func(ttysw, pid, status, rusage);
if (!(WIFSTOPPED(*status))) {
/* rerun the program */

xv_set(ttysw, TTY_ARGV, my_argv, NULL);

*This includes when the program stops in addition to when it exits.

246 XView Programming Manual

child_pid = (int)xv_get(ttysw, TTY_PID);
notify_set_wait3_func(ttysw, my_wait3, child_pid);

}
return NOTIFY_DONE;

}

You can set TTY_PID as well as get it, but if you set it, you are responsible for setting:

notify_set_wait3_func()

to catch the child’s death. You are also responsible for directing the standard input and stan-
dard output of the child to the pseudo-TTY.

9.4 Talking Directly to the TTY Subwindow

Setting TTY_ARGV to TTY_ARGV_DO_NOT_FORK tells the system not to fork a child in the TTY
subwindow. In combination with TTY_TTY_FD, this allows the tool to use standard I/O rou-
tines to read and write to the TTY subwindow by getting the file descriptor of the pseudo-
TTY associated with the TTY subwindow. You can then use this to read and write to the
pseudo-TTY using standard UNIX I/O routines.

Example 9-3 uses a TTY subwindow to create a pseudo terminal in which curses routines can
be used. Five panel items are displayed. Along with the usual Quit button to exit the pro-
gram, a Print button displays the text in the text panel item at the coordinates input in the X
and Y numeric text items.

Example 9-3. The ttycurses.c program

/*
* ttycurses.c -- An application that uses a tty subwindow that
* emulates a tty so well, you can use curses(3x) routines in it.
* This program does not handle resizes -- resizing the base frame
* produces unpredictable results. To handle resizing properly,
* the application should install a resize event handler and
* call endwin() followed by initscr() to reinitialize curses
* to reflect the size of the window.
*
* cc ttycurses.c -lxview -lcurses -ltermlib
*/
#include <curses.h>
#undef WINDOW /* defined by curses.h -- needs to be undefined */
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/textsw.h>
#include <xview/tty.h>

/* panel items contain the x,y info for outputting text to the ttysw */
Panel_item x, y, text;

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;

TTY Subw
indow

s

TTY Subwindows 247

Example 9-3. The ttycurses.c program (continued)

Panel panel;
Tty ttysw;
char buf[16];
void output(), exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
FRAME_SHOW_FOOTER, TRUE,
NULL);

panel = (Frame)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Print",
PANEL_NOTIFY_PROC, output,
NULL);

x = (Panel_item)xv_create(panel, PANEL_NUMERIC_TEXT,
PANEL_LABEL_STRING, "X:",
PANEL_VALUE_DISPLAY_LENGTH, 3,
NULL);

y = (Panel_item)xv_create(panel, PANEL_NUMERIC_TEXT,
PANEL_LABEL_STRING, "Y:",
PANEL_VALUE_DISPLAY_LENGTH, 3,
NULL);

text = (Panel_item)xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Text:",
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANEL_VALUE, "X",
NULL);

window_fit(panel);

ttysw = (Tty)xv_create(frame, TTY,
WIN_BELOW, panel,
WIN_X, 0,
TTY_ARGV, TTY_ARGV_DO_NOT_FORK,
NULL);

window_fit(frame);

dup2((int)xv_get(ttysw, TTY_TTY_FD), 0); /* dup2 closes 0 first */
dup2((int)xv_get(ttysw, TTY_TTY_FD), 1); /* dup2 closes 1 first */

/* initscr() initializes the curses package and determines
* characteristics about the window as if it were a terminal.
* The curses specific variables, LINES and COLS are now set
* to the row and column sizes of the window.
*/
initscr();

xv_set(x, PANEL_MAX_VALUE, COLS-1, NULL);
xv_set(y, PANEL_MAX_VALUE, LINES-1, NULL);
sprintf(buf, "LINES: %d", LINES–1);

248 XView Programming Manual

Example 9-3. The ttycurses.c program (continued)

xv_set(frame, FRAME_LEFT_FOOTER, buf, NULL);
sprintf(buf, "COLS: %d", COLS–1);
xv_set(frame, FRAME_RIGHT_FOOTER, buf, NULL);

xv_main_loop(frame);
}
/*
* callback routine for the <print> panel button. Get the coordinates
* and the text to print on the tty subwindow and use curses library
* routines to render the text.
*/
void
output()
{

int X = (int)xv_get(x, PANEL_VALUE);
int Y = (int)xv_get(y, PANEL_VALUE);
char *Text = (char *)xv_get(text, PANEL_VALUE);
mvaddstr(Y, X, Text);
refresh();

}

9.5 TTY Subwindow Function Key Escape Sequences

XView provides a default .ttyswrc file for the shelltool which provides the SunView
escape key sequences for the following keys: L3, F1-F12, R1-R7, R9, R11, R13, and R15 (for
more details see $OPENWINHOME/lib/.ttyswrc). To override the default file, place any
.ttyswrc file in your $HOME directory. To avoid using any .ttyswrc file, place the follow-
ing line in your .Xdefaults file:

term.useAlternateTtyswrc: False

In addition, you will need to remove any .ttyswrc files from your $HOME directory. To spec-
ify a different alternate file than the one in $OPENWINHOME/lib/.ttyswrc, place the follow-
ing into your .Xdefaults file:

term.alternateTtyswrc: filename

where filename is the path and name of the file to use. For example:

term.alternateTtyswrc: /usr/lib/ttyswrc

When using a Sun Type 4 keyboard with an X11 server other than OpenWindows 3.0, escape
key sequences cannot be produced for keys F11 and F12 due to a limitation in the standard
X11 keysym definition file. The base keysym file distributed by the X Consortium limits the
number of unique function keys to a maximum of 35 (for more details see
$OPENWINHOME/include/X11/keysym.h). The Sun Type 4 keyboard has 37 keysyms. For
OpenWindows, there are two extra keysyms Sun_F36 and Sun_F37 which allow XView and
other X-based programs to perform unique actions on the F11 and F12 keys (for more details
see $OPENWINHOME/include/X11/Sunkeysym.h).

TTY Subw
indow

s

TTY Subwindows 249

9.6 TTY Package Summary

The TTYSW procedures are shown in Table 9-1. Table 9-2 lists the TTYSW attributes. This
information is described fully in the XView Reference Manual.

Table 9-1. TTY Subwindow Procedures

ttysw_input()
ttysw_output()

Table 9-2. TTY Subwindow Attributes

TTY_ARGV

TTY_ARGV_DO_NOT_FORK

TTY_CONSOLE

TTY_PAGE_MODE

TTY_PID

TTY_QUIT_ON_CHILD_DEATH

TTY_TTY_FD

WIN_FONT

WIN_SET_FOCUS

250 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

10
Scrollbars

Scrollbars are used to change what you view in a subwindow. For instance, in a text subwin-
dow, scrollbars are used to scroll through a document. In a canvas subwindow, scrollbars can
be used to see another portion of the paint window (which can be larger than the canvas
subwindow). This chapter addresses specific functions of scrollbars themselves. These func-
tions are applicable to any XView package that has scrollbars attached. If you are interested
in how to utilize scrollbars for a particular package, you should consult the chapter that dis-
cusses that package.

OPEN LOOK describes scrollbars using the visual metaphor of an elevator riding on a cable,
which is attached at both ends to anchors. Figure 10-1 shows a scrollbar from the OPEN
LOOK GUI Specification Guide.

Figure 10-1. An OPEN LOOK scrollbar

Scrollbars

Scrollbars 253

The elevator contains directional arrows and a drag box. A subwindow can have vertical or
horizontal scrollbars. Horizontal scrollbars are placed to the right of the subwindow while
vertical scrollbars are placed at the bottom. OPEN LOOK defines precisely how scrollbars
look and behave—the programmer or user cannot change it. All the programmer can control
is the scrollbar’s color, length, and various other common and generic attributes.

One of the functions of the scrollbar is the ability to split a view. The OPENWIN package pro-
vides objects such as text subwindows and canvases that may be split into several views; the
scrollbar provides the functional interface. Certain XView packages, such as text subwin-
dows, automatically create their own scrollbars. Canvases, on the other hand, require the
programmer to create and attach scrollbars.

The scrollbar’s look and feel is related to the size of the object it scrolls. Attributes are asso-
ciated with each of the following terms:

Orientation The orientation of a scrollbar indicates whether it is horizontal or vertical.

Object Length The length of the object is registered with the scrollbar. The proportional
indicator (the darkened part of the elevator cable) uses this value. For
example, the object length for a text subwindow is the number of lines in
the editing buffer.

Page Length When the object length is larger than what the view window can contain,
the overall area is broken up into pages. When the user selects the elevator
cable, the scrollbar scrolls in page segments in the direction of the cursor
(e.g., left, right, up, or down) relative to the elevator.

Unit Length When the user clicks on the elevator arrows, the scrollbar scrolls one unit.
Units are measured in pixels, so arbitrary or abstract objects that are to be
scrolled should be measured in terms of pixels so that scrolling seems con-
sistent with the object. For example, a text subwindow sets its scrollbar’s
unit length to the size of the characters in the font. Unit scrolling results in
the window moving line by line up or down.

View Length The view length is the same size as the height or width of the subwindow
the scrollbar is associated with depending on the scrollbar’s orientation.

Figure 10-2 illustrates the terminology used above.

10.1 Creating Scrollbars

The definitions necessary to use scrollbars are found in the header file <xview/scrollbar.h>.
The basic scrollbar is created using the following code fragment:

Scrollbar scrollbar;

scrollbar = (Scrollbar)xv_create(owner, SCROLLBAR, NULL);

254 XView Programming Manual

(Values measured in units)

S
C

R
O

L
L

B
A

R
_

V
IE

W
_

S
T

A
R

T (
2)

S
C

R
O

L
L

B
A

R
_

V
IE

W
_

L
E

N
G

T
H (
5)

object
being
scrolled

unit size

S
C

R
O

L
L

B
A

R
_

O
B

JE
C

T
_

L
E

N
G

T
H

 (
8)

S
C

R
O

L
L

B
A

R
_

V
IE

W
_

S
T

A
R

T

S
C

R
O

L
L

B
A

R
_

V
IE

W
_

L
E

N
G

T
H

Figure 10-2. Relationship between a scrollbar and the object it scrolls

The owner must be an object subclassed from the OPENWIN package or the FRAME package.
Figure 10-3 shows the class hierarchy for the SCROLLBAR package.

Scrollbars

Scrollbars 255

Generic
Object (Drawable) Window Scrollbar

Figure 10-3. Scrollbar class hierarchy

The scrollbar inherits certain attributes from the parent while other attributes are initialized
automatically. For example, if the owner of the scrollbar is a canvas, the scrollbar’s color is
inherited from the canvas, while the scrollbar’s object length is set by the canvas explicitly;
that is, you are not required to set it. This is usually desirable when creating objects that are
used together.

10.2 Relationship Between Scrollbars and Objects

Most scrollbar attributes describe the relationship between the scrollbar and the object such
as a canvas or text subwindow that is affected by scrolling. The foremost is
SCROLLBAR_PIXELS_PER_UNIT, which describes the number of pixels in a scrolling unit.
For text subwindows, the unit is the text width and height. For canvases, it is one pixel (by
default). If you were to build a canvas subwindow intended to browse a set of 64x64 bit-
maps, then you would set this to 64. Scrolling actions occur in scrollbar units, so this would
mean that the clicking on one of the elevator arrows causes a scrolling movement of 64 pix-
els at a time. Most scrollbar attribute values are based on the unit value.

The size of the object itself (a graphic image, text stream or whatever) is stored as the
SCROLLBAR_OBJECT_LENGTH while the size of the viewable window is represented as the
scrollbar’s SCROLLBAR_VIEW_LENGTH. After having been scrolled, the scrollbar’s current
offset into the object is reflected in SCROLLBAR_VIEW_START. When paging is done (select-
ing the cable portion of the elevator), the amount scrolled is set by
SCROLLBAR_PAGE_LENGTH. These values are in object units, so to get their values in pixels,
multiply by the value of SCROLLBAR_PIXELS_PER_UNIT.

The scrollbar manages its own events, resizes and repaints automatically. It is not necessary
to interpose event handlers for the scrollbar. By default, the event handling mechanism
determines the type of scrolling that has been done and changes the appropriate attributes.
All OPENWIN objects that support scrollbars also redisplay the window to show the results of
scrolling.

Even though you do not need to know when the scrollbar is scrolled to manage the scrolling,
you might be interested in knowing when the scrolling action occurs. XView objects such as
text subwindows that manage their own data (text, in this case) handle this automatically.
See Chapter 5, Canvases and Openwin, for discussion on scrolling canvases.

256 XView Programming Manual

If a window that has a scrollbar is resized, the scrollbar is resized accordingly. If the window
is sized too small for all of the parts of the scrollbar to be visible or usable, then those parts
cannot be available. At the very least, the scrolling arrows must be visible. Figure 10-4
shows a text subwindow that has been split twice. Notice the scrollbars to the right of the
text subwindows. The uppermost window cannot be split again because the minimum size of
the scrollbar has been reached.

Figure 10-4. Splitting a text subwindow twice

Scrollbars

Scrollbars 257

10.3 An Example

Let’s suppose that you want to display a list of icons that have dimensions of 64x64. You
wish to display the icons in rows and columns in a canvas. Because there may be more icons
than the canvas can display at once, you attach scrollbars to the canvas. When the user uses
the scrollbars to view the icons, each scrolling action should scroll an entire icon or set of
icons into view. Paging should scroll the next page of icons into view.

For demonstration purposes, rather than display actual icons, we present a grid where each
cell in the grid represents an icon (see Figure 10-5).

1.1

2.1

3.1

4.1

5.1

6.1

7.1

1.2

2.2

3.2

4.2

5.2

6.2

7.2

1.3

2.3

3.3

4.3

5.3

6.3

7.3

1.4

2.4

3.4

4.4

5.4

6.4

7.4

8.4

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

1.6

2.6

3.6

4.6

5.6

6.6

7.6

8.6

1.7

2.7

3.7

4.7

5.7

6.7

7.7

8.7

3.2

4.2

5.2

6.2

7.2

3.3

4.3

5.3

6.3

7.3

3.4

4.4

5.4

6.4

7.4

3.5

4.5

5.5

6.5

7.5

3.6

4.6

5.6

6.6

7.6

3.2

4.2

5.2

6.2

7.2

3.3

4.3

5.3

6.3

7.3

3.4

4.4

5.4

6.4

7.4

3.5

4.5

5.5

6.5

7.5

3.6

4.6

5.6

6.6

7.6

backing
bitmap

canvas
subwindow

base frame with
canvas subwindow

Figure 10-5. Model for scroll_cells.c

258 XView Programming Manual

Each cell is considered a unit to the scrollbars, so the number of pixels per scrollbar-unit
must be set to the size of the cell. Thus, the attribute SCROLLBAR_PIXELS_PER_UNIT is set
to 64 for each scrollbar (the width and height are the same). With this attribute set, when the
user selects an arrow on the scrollbar, an entire cell is scrolled into view (depending on which
arrow is selected).

We set SCROLLBAR_PAGE_LENGTH to be the same as SCROLLBAR_VIEW_LENGTH to specify
the paging size. When the user selects any part of the scrollbar cable, the view is paged and a
new set of icons is scrolled into view (depending on which side of the elevator is selected).
The page length could be set to one unit less than the view length, so that paging causes the
last cell in the old block to be the first cell in the new block. Remember, the “lengths” men-
tioned here are given in units.

The setting of the scrollbar unit size also assures that the upper-left corner of a cell maps to
the upper-left corner of the window so as not to display a portion of the cell. This guarantee
cannot be made for the lower and right-hand edges of the window because we cannot control
the resizing of the frame by the user.

In the program in Example 10-1, the variable cell_map is a Pixmap of depth 1. But, the
depth is arbitrary—we use 1 because we know that the icons we are displaying are of depth
1. The canvas, on the other hand, may be any depth at all; color canvases have a depth
greater than 1. Copying drawables of different depths onto one another is an X Protocol
error, so we use XCopyPlane() to guarantee that the pixmap is rendered into the canvas
correctly.

Example 10-1. The scroll_cells.c program

/*
* scroll_cells.c -- scroll a bitmap of cells around in a canvas.
* The cells are rectangular areas labeled with numbers which may
* represent arbitrary data such as icon images. The cell sizes are
* defined to be 64 by 64 aligned in rows and columns. This example
* is used to demonstrate how to configure scrollbars to accommodate
* arbitrary data within a window.
*/
#include <stdio.h>
#include <X11/X.h>
#include <X11/Xlib.h> /* Using Xlib graphics */
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/scrollbar.h>
#include <xview/font.h>
#include <xview/xv_xrect.h>

#define CELL_WIDTH 64
#define CELL_HEIGHT 64
#define CELLS_PER_HOR_PAGE 5 /* when paging w/scrollbar */
#define CELLS_PER_VER_PAGE 5 /* when paging w/scrollbar */
#define CELLS_PER_ROW 8
#define CELLS_PER_COL 16

Pixmap cell_map; /* pixmap copied onto canvas window */
Scrollbar horiz_scrollbar;
Scrollbar vert_scrollbar;

Scrollbars

Scrollbars 259

Example 10-1. The scroll_cells.c program (continued)

GC gc; /* General usage GC */

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Canvas canvas;
void repaint_proc();

/* Initialize, create frame and canvas... */
xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
FRAME_SHOW_FOOTER, TRUE,
NULL);

canvas = (Canvas)xv_create(frame, CANVAS,
/* make subwindow the size of a "page" */
XV_WIDTH, CELL_WIDTH * CELLS_PER_HOR_PAGE,
XV_HEIGHT, CELL_HEIGHT * CELLS_PER_VER_PAGE,
/* canvas is much larger than the window */
CANVAS_WIDTH, CELL_WIDTH * CELLS_PER_ROW + 1,
CANVAS_HEIGHT, CELL_HEIGHT * CELLS_PER_COL + 1,
CANVAS_AUTO_EXPAND, FALSE,
CANVAS_AUTO_SHRINK, FALSE,
/* don’t retain window -- we’ll need
* to repaint it all the time */
CANVAS_RETAINED, FALSE,
/* we’re using Xlib graphics calls in repaint_proc() */
CANVAS_X_PAINT_WINDOW, TRUE,
CANVAS_REPAINT_PROC, repaint_proc,
/* we’ll be repainting over exposed areas,
* so don’t bother clearing */
OPENWIN_AUTO_CLEAR, FALSE,
NULL);

/*
* Create scrollbars attached to the canvas. When user clicks
* on cable, page by the page size (PAGE_LENGTH). Scrolling
* should move cell by cell, not by one pixel (PIXELS_PER_UNIT).
*/
vert_scrollbar = xv_create(canvas, SCROLLBAR,

SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL,
SCROLLBAR_PIXELS_PER_UNIT, CELL_HEIGHT,
SCROLLBAR_OBJECT_LENGTH, CELLS_PER_COL,
SCROLLBAR_PAGE_LENGTH, CELLS_PER_VER_PAGE,
SCROLLBAR_VIEW_LENGTH, CELLS_PER_VER_PAGE,
NULL);

horiz_scrollbar = xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_HORIZONTAL,
SCROLLBAR_PIXELS_PER_UNIT, CELL_WIDTH,
SCROLLBAR_OBJECT_LENGTH, CELLS_PER_ROW,
SCROLLBAR_PAGE_LENGTH, CELLS_PER_HOR_PAGE,
SCROLLBAR_VIEW_LENGTH, CELLS_PER_HOR_PAGE,

260 XView Programming Manual

Example 10-1. The scroll_cells.c program (continued)

NULL);

/*
* create pixmap and draw cells into it ... this is the abstraction.
* The cell_map is copied into the window via XCopyPlane in the
* repaint procedure.
*/
{

short x, y, pt = 0;
Xv_Font font;
XPoint points[256]; /* keep Xlib calls to a minimum */
XGCValues gcvalues;
Display *dpy = (Display *)xv_get(canvas, XV_DISPLAY);

font = (Xv_Font)xv_find(frame, FONT,
FONT_NAME, "icon",
NULL);

cell_map = XCreatePixmap(dpy, DefaultRootWindow(dpy),
CELLS_PER_ROW * CELL_WIDTH + 1,
CELLS_PER_COL * CELL_HEIGHT + 1,
1); /* We only need a 1-bit deep pixmap */

/* Create the gc for the cell_map -- since it is 1-bit deep,
* use 0 and 1 for fg/bg values. Also, limit number of
* events generated by setting graphics exposures to False.
*/
gcvalues.graphics_exposures = False;
gcvalues.background = 0;
gcvalues.foreground = 1;
if (font)

gcvalues.font = (Font)xv_get(font, XV_XID);
gc = XCreateGC(dpy, cell_map,

GCFont|GCForeground|GCBackground|GCGraphicsExposures,
&gcvalues);

if (!font) {
/* dot every other pixel */
for (x = 0; x <= CELL_WIDTH * CELLS_PER_ROW; x += 2)

for (y = 0; y <= CELL_HEIGHT * CELLS_PER_COL; y += 2) {
if (x % CELL_WIDTH != 0 && y % CELL_HEIGHT != 0)

continue;
points[pt].x = x, points[pt].y = y;
if (++pt == sizeof points / sizeof points[0]) {

XDrawPoints(dpy, cell_map, gc, points, pt,
CoordModeOrigin);

pt = 0;
}

}
if (pt != sizeof points) /* flush remaining points */

XDrawPoints(dpy, cell_map, gc,
points, pt, CoordModeOrigin);

}
/* Icon font not available. Instead, label each cell
* with a string describing the cell’s coordinates.
*/
for (x = 0; x < CELLS_PER_ROW; x++)

Scrollbars

Scrollbars 261

Example 10-1. The scroll_cells.c program (continued)

for (y = 0; y < CELLS_PER_COL; y++) {
char buf[8];
if (!font) {

sprintf(buf, "%d,%d", x+1, y+1);
XDrawString(dpy, cell_map, gc,

x * CELL_WIDTH + 5, y * CELL_HEIGHT + 25,
buf, strlen(buf));

} else {
buf[0] = x + y * CELLS_PER_COL;
XDrawString(dpy, cell_map, gc,

x * CELL_WIDTH, y * CELL_HEIGHT, buf, 1);
}

}
/* we’re now done with the cell_map, so free gc and create
* a new one based on the window that will use it. Otherwise,
* the GC may not work because of different depths.
*/
if (font)

xv_destroy(gc);
XFreeGC(dpy, gc);
gcvalues.background = WhitePixel(dpy, DefaultScreen(dpy));
gcvalues.foreground = BlackPixel(dpy, DefaultScreen(dpy));
gcvalues.plane_mask = 1L;
gc = XCreateGC(dpy, DefaultRootWindow(dpy),

GCForeground|GCBackground|GCGraphicsExposures, &gcvalues);
}

/* shrink frame to minimal size and start notifier */
window_fit(frame);
xv_main_loop(frame);

}

/*
* The repaint procedure is called whenever repainting is needed in
* a paint window. Since the canvas is not retained, this routine
* is going to be called any time the user scrolls the canvas. The
* canvas will handle repainting the portion of the canvas that
* was in view and has scrolled onto another viewable portion of
* the window. The xrects parameter will cover the new areas that
* were not in view before and have just scrolled into view. If
* the window resizes or if the window is exposed by other windows
* disappearing or cycling through the window tree, then the number
* of xrects will be more than one and we’ll have to copy the new
* areas one by one. Clipping isn’t necessary since the areas to
* be rendered are set by the xrects value.
*/
void
repaint_proc(canvas, paint_window, dpy, win, xrects)
Canvas canvas;
Xv_Window paint_window;
Display *dpy;
Window win;
Xv_xrectlist *xrects;
{

int x, y;

262 XView Programming Manual

Example 10-1. The scroll_cells.c program (continued)

x = (int)xv_get(horiz_scrollbar, SCROLLBAR_VIEW_START);
y = (int)xv_get(vert_scrollbar, SCROLLBAR_VIEW_START);

for (xrects->count--; xrects->count >= 0; xrects->count--) {
printf("top–left cell = %d, %d –– %d,%d %d,%d0, x+1, y+1,

xrects->rect_array[xrects->count].x,
xrects->rect_array[xrects->count].y,
xrects->rect_array[xrects->count].width,
xrects->rect_array[xrects->count].height);

XCopyPlane(dpy, cell_map, win, gc,
xrects->rect_array[xrects->count].x,
xrects->rect_array[xrects->count].y,
xrects->rect_array[xrects->count].width,
xrects->rect_array[xrects->count].height,
xrects->rect_array[xrects->count].x,
xrects->rect_array[xrects->count].y, 1L);

}
}

10.4 Managing Your Own Scrollbar

A scrollbar may have delayed binding—that is, it may be created without an owner and
attached to objects that were created separately.

In most cases, you would probably never need to create a scrollbar that was not part of a text
subwindow or a canvas. These two packages handle all of the dirty work involved in manag-
ing and maintaining the types of attributes mentioned above. If you are using the CANVAS or
TEXTSW packages, you do not need to worry about any of this. If you do try to create your
own scrollbars and have them manage your own windows, you will probably find that you
will have reinvented the wheel in the form of the CANVAS package.

If you are going to attempt this type of activity, you will need to follow these guidelines:

• Maintain the relationship between the object to be scrolled and the scrollbar itself. This
includes using all the scrollbar attributes mentioned in Section 10.1, “Creating
Scrollbars.”

• Manage geometry (size, position, and orientation) of the scrollbar. You must place the
scrollbars in the appropriate places around the object you intend to scroll. Typically, the
scrollbars should match the width and height of the object being scrolled.

• Install appropriate SCROLLBAR_NORMALIZE_PROC and SCROLLBAR_COMPUTE_

SCROLL_PROC procedures to change the display of the scrolling object.

Scrollbars

Scrollbars 263

10.4.1 Monitoring When Scrollbar Events Occur

When events take place in the scrollbar, the scrollbar normally interprets these events as
scrolling events and adjusts itself appropriately. Since scrollbars are attached to objects such
as canvases and text subwindows, those objects are also notified of the scrolling event so they
can control the display of the data within their associated windows. For example, a canvas
may get a SCROLLBAR_REQUEST event indicating that the user has initiated a scrolling action
and that the object associated with the scrollbar needs to change its display by the requested
amount.

The object to which the scrollbar is attached is set using the scrollbar attribute,
SCROLLBAR_NOTIFY_CLIENT.* The internals to the scrollbar attempt to get information
from this client, such as its size. For canvases, the view window is used. Since you normally
query for user events on the canvas’s paint window, this doesn’t interfere with the scrollbar
processing and also explains why your event handlers never see this event. For text subwin-
dows, programmers normally do not concern themselves with events, so again, scrollbar pro-
cessing is not affected.

If you are interested in managing the scrolling mechanisms of a scrollbar, or if all you need is
to be notified of when the user invokes scrolling actions, you can install an event-interposing
function on the scrollbar itself. This involves using the routine notify_inter-
pose_event_func() discussed in Chapter 20, The Notifier. You can set one up in the
following way:

Canvas canvas;
Scrollbar sb;
Notify_func monitor_scroll();
...
canvas = xv_create(frame, CANVAS, NULL);

sb = xv_create(canvas, SCROLLBAR, NULL);

notify_interpose_event_func(xv_get(sb, SCROLLBAR_NOTIFY_CLIENT),
monitor_scroll, NOTIFY_SAFE);

...

When the user invokes any scrolling events in the scrollbar, the function monitor_scroll
is called with the event type set to SCROLLBAR_REQUEST.

Example 10-2 demonstrates how this is done in an application. By default, a canvas is set up
of size 1000x1000 and a scrollbar attached. When the user scrolls the canvas, the function
monotir_scroll() is called, which prints information about how much the canvas
scrolled.

Example 10-2. The scrollto.c program

/* scroll_to.c -- demonstrate how to monitor the scrolling
* requests invoked by the user. Requests can be monitored,
* ignored or changed programmatically. This program creates

*While this is a settable attribute, it is not recommended that you change the notify client for scrollbars for the current
release.

264 XView Programming Manual

Example 10-2. The scrollto.c program (continued)

* a canvas window by default or a textsw with the -textsw
* command line option. Both contain a scrollbar.
*/
#include <stdio.h>
#include <xview/xview.h>
#include <xview/textsw.h>
#include <xview/canvas.h>
#include <xview/scrollbar.h>

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Textsw textsw;
Canvas canvas;
Scrollbar sbar;
Notify_value monitor_scroll();

(void) xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = xv_create(NULL, FRAME, NULL);

if (argc > 1 && !strcmp(argv[1], "-textsw")) {
textsw = xv_create(frame, TEXTSW,

TEXTSW_FILE_CONTENTS, "/etc/termcap",
NULL);

sbar = xv_get(textsw, TEXTSW_SCROLLBAR);
} else {

canvas = xv_create(frame, CANVAS,
CANVAS_WIDTH, 1000,
CANVAS_HEIGHT, 1000,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS_AUTO_EXPAND, FALSE,
NULL);

sbar = xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL,
SCROLLBAR_PIXELS_PER_UNIT, 10,
NULL);

}
notify_interpose_event_func(xv_get(sbar, SCROLLBAR_NOTIFY_CLIENT),

monitor_scroll, NOTIFY_SAFE);

xv_main_loop(frame);
}

/*
* To change the behavior of the scrolling of the canvas, do not pass
* on the event via notify_next_event_func() when the event type is
* SCROLLBAR_REQUEST.
*/
Notify_value
monitor_scroll(client, event, sbar, type)
Notify_client client;
Event *event;
Scrollbar sbar;

Scrollbars

Scrollbars 265

Example 10-2. The scrollto.c program (continued)

Notify_event_type type;
{

int view_start, last_view_start, pixels_per, is_neg = 0, total;

if (event_id(event) == SCROLLBAR_REQUEST) {
view_start = (int)xv_get(sbar, SCROLLBAR_VIEW_START);
last_view_start = (int)xv_get(sbar, SCROLLBAR_LAST_VIEW_START);
pixels_per = (int)xv_get(sbar, SCROLLBAR_PIXELS_PER_UNIT);
if ((total = view_start - last_view_start) < 0)

total = -total, is_neg = 1;
printf("scrolled from %d to %d: %d pixels (%d units) %s\n",

last_view_start, view_start, pixels_per * total, total,
is_neg? "up" : "down");

}
return notify_next_event_func(client, event, sbar, type);

}

If the command-line option -textsw is given, a text subwindow is used instead of a canvas.

The application can change the scrolling behavior by not calling the function
notify_next_event_func(). It can choose to set the scrollbar to any position it
desires via xv_set() and the appropriate attributes, or it can ignore the scroll request
entirely. In any event, the function should return either NOTIFY_DONE or the return value of
notify_next_event_func().

The parameters to monitor_scroll() include the client (the object set by
SCROLLBAR_NOTIFY_CLIENT), as well as the event (which is probably
SCROLLBAR_REQUEST), the scrollbar itself, and an unused type parameter indicating
whether this was called via NOTIFY_SAFE or NOTIFY_IMMEDIATE.

10.4.2 Providing a Scrollbar Compute Procedure

Normally, the starting position of the scrollbar’s current view is computed by its package’s
default scroll procedure, scrollbar_default_compute_scroll_proc(). You can
install you own scroll procedure using the SCROLLBAR_COMPUTE_SCROLL_PROC attribute.
This procedure converts the physical scrollbar information into client object information;
that is, it returns the offset and the object length of the object to scroll. The form of the com-
pute scroll routine is:

void
scrollbar_compute_scroll_proc(sb, pos, length, motion,

&offset, &object_length)
Scrollbar sb;
int pos;
int length;
Scroll_motion motion;
unsigned long offset;
unsigned long object_length;

This procedure computes the offset, and the scrollbar package will scroll to this offset into
the object when the compute procedure returns. This function should return the offset and

266 XView Programming Manual

object_length where pos is the position in the cable. The default_com-
pute_scroll_proc can be called to perform the normal scroll. If a normalize_proc
is not set then the offset becomes the viewstart, after bounds checking, and the scrollbar
package will scroll to this offset into the object. For example:

Example 10-3. Scrollbar compute scroll procedure example

void
compute_scroll1(scrollpub,pos,avail_cable,motion,offset,object_len)

Scrollbar scrollpub;
int pos;
int avail_cable;
Scroll_motion motion;
unsigned long *offset;
unsigned long *object_len;
{
int new_start = TEXTSW_CANNOT_SET;
int lines = 0;

*obj_length = es_get_length(folio->views->esh);

switch (motion) {
case SCROLLBAR_ABSOLUTE:

if (length == 0)
new_start = pos;
else
new_start = *obj_length * pos / length;
break;

case SCROLLBAR_POINT_TO_MIN:
case SCROLLBAR_MIN_TO_POINT:{

if (lines == 0)
lines++; /* Always make some progress */

if (motion == SCROLLBAR_MIN_TO_POINT)
lines = -lines;

}
break;

case SCROLLBAR_PAGE_FORWARD:
lines = line_table.last_plus_one - 2;
break;

case SCROLLBAR_PAGE_BACKWARD:
lines = last_plus_one + 2;
break;

case SCROLLBAR_LINE_FORWARD:
lines = 1;
break;

case SCROLLBAR_LINE_BACKWARD:
lines = -1;
break;

case SCROLLBAR_TO_START:
new_start = 0;
break;

case SCROLLBAR_TO_END:
new_start = *obj_length;
break;

default:
break;

}

Scrollbars

Scrollbars 267

Example 10-3. Scrollbar compute scroll procedure example (continued)

xv_set(sb, SCROLLBAR_VIEW_LENGTH, last_plus_one - first,
0);

*offset = first;
return (XV_OK);

}

In this example, the textsw package keeps track of the object size based on the number of
characters in the view. When the user scrolls, the object length will most probably change, so
the textsw package uses its own compute scroll procecure to calculate a new object length
and offset each time there is a scroll request. This is needed for cases when the user scrolls
backwards and data is still coming into the textsw, so the object length grows (the propor-
tional indicator shrinks).

10.4.2.1 Indicating scrollbar motion

The attribute SCROLLBAR_MOTION provides the scrolling motion that resulted during a
scrollbar_request event. This attribute is get only. Possible valid motions returned are:

ABSOLUTE
POINT_TO_MIN (from here_to_top on menu)
PAGE_FORWARD
LINE_FORWARD
MIN_TO_POINT (from top_to_here on menu)
PAGE_BACKWARD
LINE_BACKWARD
TO_END
TO_START
PAGE_ALIGNED

10.4.3 Providing a Scrollbar Normalize Procedure

The scrollbar package provides for a special offset routine that may be used to adjust the new
scroll position before the scrollbar package scrolls to the starting location computed by the
scrollbar compute procedure. This special offset routine, called the normalize procedure,
allows you to perform a scroll adjustment when, for example, the new scroll position would
split an object in the view. By default, no normalize procedure is specified and the scrollbar
package scrolls to the starting location computed by the compute procedure, as shown in the
previous section. Use SCROLLBAR_NORMALIZE_PROC to name a normalize procedure used to
adjust the offset.

The function set with SCROLLBAR_NORMALIZE_PROC should return vstart. The function takes
the offset given by the compute_proc and adjusts it. The scrollbar package will then
scroll to this offset into the object. The form of the normalize scroll routine is:

void
my_scrollbar_normalize_proc(sb, voffset, motion, vstart)

Scrollbar sb;
long unsigned offset;

268 XView Programming Manual

Scroll_motion motion;
long unsigned *vstart; /* new offset, this is the new view start*/

See the following example:

Example 10-4. Scrollbar normalize procedure example

panel_normalize_scroll(sb, offset, motion, vs)
Scrollbar sb;
long unsigned offset;
Scroll_motion motion;
long unsigned *vs; /* new offset == new viewstart */

{
line_ht = (int) xv_get(sb, SCROLLBAR_PIXELS_PER_UNIT);

/* If everything in the panel is in view, then don’t scroll. */
if ((int) xv_get(sb, SCROLLBAR_OBJECT_LENGTH) <=

(int) xv_get(sb, SCROLLBAR_VIEW_LENGTH))
return (*vs = offset);

switch (motion) {
case SCROLLBAR_ABSOLUTE:
case SCROLLBAR_LINE_FORWARD:
case SCROLLBAR_TO_START:

align_to_max = TRUE;
scrolling_up = TRUE;
break;

case SCROLLBAR_PAGE_FORWARD:
case SCROLLBAR_TO_END:

align_to_max = TRUE;
scrolling_up = TRUE;

break;

case SCROLLBAR_POINT_TO_MIN:
align_to_max = TRUE;
scrolling_up = TRUE;
break;

case SCROLLBAR_MIN_TO_POINT:
align_to_max = TRUE;
scrolling_up = FALSE;
break;

case SCROLLBAR_PAGE_BACKWARD:
case SCROLLBAR_LINE_BACKWARD:

align_to_max = FALSE;
scrolling_up = FALSE;
break;

}

*vs = offset;
return (XV_OK);
}

Scrollbars

Scrollbars 269

The panel package uses this to ensure panel items are aligned properly and partial items are
not visible. The scrollbar package calls scrollbar_compute_scroll_proc and
scrollbar_normalize_proc in that order whenever any scrolling is done.

10.5 Scrollbar Package Summary

The procedures and macros in the SCROLLBAR package are listed in the next two tables.
Table 10-1 lists the procedure for the SCROLLBAR package. Table 10-2 lists the attributes in
the SCROLLBAR package. This information is described fully in the XView Reference Man-
ual.

Table 10-1. Scrollbar Procedures

scrollbar_paint()
scrollbar_default_compute_scroll_proc()

Table 10-2. Scrollbar Attributes

SCROLLBAR_DIRECTION SCROLLBAR_PAGE_LENGTH

SCROLLBAR_LAST_VIEW_START SCROLLBAR_PIXELS_PER_UNIT

SCROLLBAR_MENU SCROLLBAR_SPLITTABLE

SCROLLBAR_NOTIFY_CLIENT SCROLLBAR_VIEW_LENGTH

SCROLLBAR_OBJECT_LENGTH SCROLLBAR_VIEW_START

SCROLLBAR_MOTION

270 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

11
Menus

Menus play an important role in an application’s user interface. An OPEN LOOK menu may
display text or graphics. Menus may be attached to most XView objects such as menu but-
tons, scrollbars or text subwindows, or they may exist independently from objects and be
displayed on demand.

The user may cause a menu to be pinned up by selecting an optional pushpin in the pop-up
menu. When this happens, the menu is taken down and a corresponding command frame is
put up at the same location. Panel items in the pinup window correspond to the menu items
in the menu. Once a menu has been pinned up, the user continues to interact with it just as if
the menu were popped up each time. Menus that are used frequently are good candidates for
having pushpins so the user does not have to repeat the sequence of redisplaying the menu to
make selections.

OPEN LOOK requires that menus have titles. Menus or submenus that originate from menu
buttons or pullright items do not need to have titles, since the name of the menu button or
menu item acts as the title.

Fonts may not be specified in either menu items or menu titles; menu items follow the same
constraints outlined for panel buttons. However, if text is not used, then menu items may
contain graphic images, in which case, the font is of no concern. That is, you could specify a
Server_image that has a string rendered in a particular font.

11.1 Menu Types

There are three different types of menus: pop-up, pulldown, and pullright menus. The gen-
eral term pop-up menu may describes all three types in certain contexts since menus are
popped up. However, pulldown and pullright menus have distinct characteristics that make
them unique.

M
enus

Menus 273

11.1.1 Pop-up Menus

Pop-up menus are displayed when the user selects the MENU mouse button over XView
objects such as scrollbars or text subwindows. An OPEN LOOK window manager also utilizes
pop-up menus in the root window and from base frame title bars. XView objects handle the
display of menus automatically. Applications may wish to track ACTION_MENU events in
objects such as canvases and display their own pop-up menus. Figure 11-1, from the OPEN
LOOK GUI Specification Guide, shows a Window menu-generated from the title bar of an
OPEN LOOK base frame.

Figure 11-1. The Window menu

11.1.2 Pulldown Menus

Pulldown menus are attached to menu buttons. Menu buttons have a set of choices associ-
ated with them that the user can access only via the pulldown menu. When the user presses
the MENU mouse button over a menu button, the choices are displayed in the form of a pull-
down menu. If the menu button is selected using the SELECT button, the default menu item
is selected. See Chapter 7, Panels, for details on creating menu buttons. Figure 11-2, from
the OPEN LOOK GUI Specification Guide, shows sample pulldown menus activated from a
menu button.

11.1.3 Pullright Menus

OPEN LOOK provides for items in the menu to have pullright menus associated with them.
Also called cascading menus, these menus are activated from the user dragging the MENU
mouse button to the right of a menu item that has an arrow pointing to the right. The cascad-
ing menu that results is a pop-up menu that can also have menu items with pullrights atta-
ched. Figure 11-3, from the OPEN LOOK GUI Specification Guide, shows a pullright menu
originating from a menu item in a pulldown menu.

274 XView Programming Manual

Figure 11-2. Menu buttons each with a pulldown menu

Figure 11-3. Pushpins in a menu and a submenu

M
enus

Menus 275

11.2 Menu Items

In addition to the menu types, there are different types of menu items: choice, exclusive , and
nonexclusive . The different menu item types may be associated with each type of menu.

Each menu has a default selection associated with it. This item is displayed uniquely from
other menu items and designates a default action to take if the user wants to select the menu
without displaying it (see pulldown menus below). Typically, the 0th item in the menu is the
default, but that may be changed either by the application or by the user.

11.2.1 Choice Items

The choice item is the default menu item type used when a menu is created. The default
selection in a menu has a ring around it. When a pop-up menu is displayed, it is positioned
so that the mouse is pointing at the default item. Choice menu items may have pullright
menus associated with them, in which case there is a pullright arrow at the right side of the
item. If the selection of a menu item brings up a dialog box (command frame), then the label
for the menu item typically ends in ellipses (. . .).

11.2.2 Exclusive Items

When a choice item is selected, an action is taken and the menu forgets about it. Exclusive
menu items retain the fact that they are selected even after the menu has popped down. If the
user selects a new item, the new item is remembered. Because this is an exclusive menu,
only one choice may be selected at a time. The default item is indicated by a double-lined
box around the item. Figure 11-4 is from the OPEN LOOK GUI Specification Guide.

Figure 11-4. Exclusive settings on a menu

276 XView Programming Manual

When exclusive settings are used on menus, the current choice has a bold border when the
pointer is not on a menu choice. When the user drags the pointer onto other settings, the bold
border follows the pointer. Exclusive choice menus may not have items with pullright
menus.

11.2.3 Nonexclusive Items

Also called toggle items, menus that have toggle items support multiple choices from the
menu to be selected at the same time. That is, the user may toggle whether a particular
choice is selected. This action has no affect on the other menu items. Figure 11-5 shows an
example of a menu that has items and a submenu that has nonexclusive settings.

Figure 11-5. Nonexclusive settings on a submenu

In this figure, the chosen settings on the submenu are Bold and Italic. The choices not
selected are Underline and Overstrike.

11.3 Creating Menus

The header file for the MENU package is <xview/openmenu.h>, but the file is already included
by <xview/xview.h>. Another name for the MENU package is MENU_COMMAND_MENU. The
basic menu is created using xv_create():

Menu menu;

menu = (Menu)xv_create(server, MENU, NULL);

Menus (and sometimes menu items) are discrete objects that may have delayed binding. That
is, they may be created independently from any XView object and attached later using

M
enus

Menus 277

attributes specific to that object, such as the way that PANEL_ITEM_MENU can be used to
attach an existing menu to a menu button. However, the association between menus and the
items they are attached to does not imply “ownership.”

The owner of a menu is a server object. By default, (if NULL is specified as the owner) the
default server is used. Menus may be used only on the server specified; they may not be
shared across different servers. Thus, the menu owner is only a concern for applications that
spread across multiple servers. See Chapter 15, Nonvisual Objects, for details on opening a
connection to different servers.

The parent of a menu, however, may be a pullright item from another menu. See Section
11.8, “Pullright Menus,” later in this chapter.

Figure 11-6 shows the class hierarchy for the a menu object.

Generic
Object Menu

Figure 11-6. Menu class hierarchy

Exclusive menus are created using the MENU_CHOICE_MENU package, as in the following ex-
ample:

Menu menu;

menu = (Menu)xv_create(NULL, MENU_CHOICE_MENU,
MENU_STRINGS, "choice1", "choice2", "choice3", NULL,
NULL);

Nonexclusive menus are created using the MENU_TOGGLE_MENU package, as in the following
example:

Menu menu;
Server_image image1, image2, image3;

menu = (Menu)xv_create(NULL, MENU_TOGGLE_MENU,
MENU_IMAGES, image1, image2, image3, NULL,
NULL);

278 XView Programming Manual

11.4 Displaying Menus

Menus are displayed (popped up) using the function menu_show().* It displays the speci-
fied menu and immediately returns. The function takes the form:

void
menu_show(menu, window, event, NULL);

Menu menu;
Xv_Window window;
Event *event;

The menu is a menu created from xv_create() or a menu extracted from an existing
XView object (such as a button menu). The X window associated with the menu calls
XGrabPointer() to grab the server’s mouse events. The pointer grab stays in effect until
the user releases the MENU mouse button (e.g., the ACTION_MENU action with
event_is_up() being TRUE). This is independent of the event that caused the menu to be
displayed. Releasing the MENU button results in the user having either made a selection, not
made a selection or pinned up the menu (provided that the menu has a pushpin).

The window attribute defines the window where the menu appears. The event parameter
contains the event that caused the decision to display the menu. The most common use for it
is to extract the x,y coordinate pair so as to remember the location of the pointer at the time
the menu was displayed. This event structure can be retrieved later by calling:

Event *event = (Event *)xv_get(menu, MENU_FIRST_EVENT);

Similarly, when the user releases the MENU button, this event can be retrieved using the
MENU_LAST_EVENT attribute.

The last parameter to menu_show() must be NULL. It actually represents a list of attribute-
value pairs but is used internally by other XView packages that utilize menus.

Menus can also be created at run time by procedures that are called whenever a menu is
needed. This is covered in Section 11.9, “Menu-generating Procedures.”

The routine MENU_DONE_PROC is called whenever a pop-up menu has been taken down (after
a menu item has been selected), pinned up, or simply dismissed without a selection being
made. This overrides the default action of setting XV_SHOW to FALSE, so this responsibility
lies with the MENU_DONE_PROC routine.

*This function is called internally by other XView objects such as scrollbars, menu buttons, and text subwindows to
display menus associated with them.

M
enus

Menus 279

11.5 A Simple Program

Given the information provided so far, we can demonstrate how to pop up a menu. Example
11-1 shows how the canvas object tracks pointer events and calls menu_show() when the
ACTION_MENU event occurs.

Example 11-1. The simple_menu.c program

/*
* simple_menu.c -
* Demonstrate the use of an XView menu in a canvas subwindow.
* A Menu is brought up with the MENU mouse button. The choices
* in the menu toggle the display of the scrollbar next to the canvas.
*/
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/scrollbar.h>

#define SCROLLBAR_KEY 100
#define MENU_KEY 200

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Canvas canvas;
Scrollbar scrollbar;
Menu menu;
void menu_notify_proc(), pw_event_proc();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

/*
* Create a frame, canvas and menu.
* A canvas receives input in its canvas_paint_window().
*/
frame = (Frame)xv_create(NULL, FRAME,

FRAME_LABEL, argv[0],
NULL);

canvas = (Canvas)xv_create(frame, CANVAS,
XV_WIDTH, 300,
XV_HEIGHT, 200,
NULL);

scrollbar = (Scrollbar)xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL,
NULL);

menu = (Menu)xv_create(NULL, MENU,
MENU_TITLE_ITEM, "Scrollbar",
MENU_STRINGS, "On", "Off", NULL,
MENU_NOTIFY_PROC, menu_notify_proc,
XV_KEY_DATA, SCROLLBAR_KEY, scrollbar,
NULL);

280 XView Programming Manual

Example 11-1. The simple_menu.c program (continued)

xv_set(canvas_paint_window(canvas),
WIN_EVENT_PROC, pw_event_proc,
XV_KEY_DATA, MENU_KEY, menu,
NULL);

window_fit(frame);
window_main_loop(frame);

}

/*
* menu_notify_proc - toggle the display of the scrollbar
* based on which menu item was chosen.
*/
void
menu_notify_proc(menu, menu_item)
Menu menu;
Menu_item menu_item;
{

char *menu_choice = (char *)xv_get(menu_item, MENU_STRING);
int show_it = !strcmp(menu_choice, "On");

xv_set(xv_get(menu, XV_KEY_DATA, SCROLLBAR_KEY),
XV_SHOW, show_it,
NULL);

}

/*
* Call menu_show() to display menu.
*/
void
pw_event_proc(canvas_pw, event)
Xv_Window canvas_pw;
Event *event;
{

if (event_action(event) == ACTION_MENU && event_is_down(event)) {

Menu menu = (Menu)xv_get(canvas_pw, XV_KEY_DATA, MENU_KEY);
menu_show(menu, canvas_pw, event, NULL);

}
}

In Example 11-1 above, simple_menu.c shows the simplest and most common method for
creating and using pop-up menus. The menu, menu items, and callback routine are all
created at the same time using the call:

menu = (Menu)xv_create(NULL, MENU,
MENU_TITLE_ITEM, "Scrollbar",
MENU_STRINGS, "On", "Off", NULL,
MENU_NOTIFY_PROC, menu_notify_proc,
NULL);

Figure 11-7 shows the result of running simple_menu.c and selecting the menu.

M
enus

Menus 281

Figure 11-7. Output of simple_menu.c when the menu is popped up

Since this menu is not attached to a menu button panel item and is not a pullright menu of
another menu item, a title bar is added using MENU_TITLE_ITEM. When a menu has a title,
the 0th menu item is the menu title. In the example above, the 0th menu item is the title item
labeled “Scrollbar.” The first menu item is the first item created after the title. Above, the
first menu item is the item labeled “On” and the second menu item is the item labeled “Off.”
When there is no title, the first menu item is placed in position zero. Add a title bar using
MENU_TITLE_ITEM only if the menu is a pop-up menu. Using titles on menus originating
from menu buttons is not OPEN LOOK-compliant.

The attribute MENU_STRINGS takes a list of strings and creates a menu item for each string.

NOTE

The MENU package, in contrast to the PANEL package, does not save strings which
you pass in as the menu item’s label (string). You should either pass a constant
string, as in the example above, or static storage that you have dynamically allo-
cated (e.g., malloc()).

menu_notify_proc() is a routine that is called whenever any of the menu items are
selected. The routine is passed a handle to the menu and the menu item selected. The canvas
serves no other purpose than to capture events—the event callback routine for the canvas
determines if the user generated the ACTION_MENU event and, if so, calls menu_show().

The use of XV_KEY_DATA is used to associate one object with another. In this case, we asso-
ciate the scrollbar with the menu so when the menu callback routine is called, the scrollbar
can be retrieved easily. The menu, on the other hand, is associated with the canvas’s paint
window since that window is going to get the event that pops up the menu.

282 XView Programming Manual

The use of XV_KEY_DATA removes the need for the menu and the scrollbar to be global vari-
ables. It also clarifies the association between the objects that would otherwise not be as
clear. Other examples of XV_KEY_DATA, including a complete discussion on usage, can be
found in Chapter 7, Panels, and Chapter 3, Creating XView Applications.

11.6 Creating Menu Items

As noted, the use of MENU_STRINGS results in the creation of menu items in-line; that is, they
are created automatically by the MENU package during the creation of the menu object. Other
methods for creating menu items in-line include using the attributes, MENU_ITEM and
MENU_ACTION_ITEM.*

MENU_ACTION_ITEM is used as a shortcut for separately specifying a label and a callback
routine:

menu = (Menu)xv_create(NULL, MENU,
MENU_ACTION_ITEM, "item1", callback1,
MENU_ACTION_ITEM, "item2", callback2,
...
NULL);

Two other methods for creating menu items are to:

• Use a separate call to xv_create() with the MENUITEM package.
• Provide a menu-generation routine.

The following subsections discuss the use of MENU_ITEM to create menu items in-line,
MENUITEM to create separate menu items, and MENU_GEN_PROC to specify a routine that cre-
ates menus.

11.6.1 Using MENU_ITEM

Using the attribute MENU_ITEM indicates that a new menu item is to be created and appended
to the existing menu. Use of this attribute means that the menu item is created in-line so a
separate call to xv_create() is not necessary. The form of the value portion of the attri-
bute is a NULL-terminated list of menu-item, attribute-value pairs:

extern void on_notify_proc(), off_notify_proc();
menu = (Menu)xv_create(NULL, MENU,

MENU_TITLE_ITEM, "Scrollbar",
MENU_ITEM,

MENU_STRING, "On",
MENU_NOTIFY_PROC, on_notify_proc,
NULL,

MENU_ITEM,
MENU_STRING, "Off",
MENU_NOTIFY_PROC, off_notify_proc,
NULL,

*The attributes MENU_IMAGES and MENU_ACTION_IMAGE are just like MENU_STRINGS and MENU_
ACTION_ITEM except that Server_images are used as labels rather than text.

M
enus

Menus 283

NULL);

The code fragment shown above creates a menu with the same two menu items as shown in
the previous example, except that the menu items are created more directly by the use of
MENU_ITEM. Here we can specify item-specific attributes rather than accept all the defaults
for the menu. In this case, we set a different notification routine for each menu item.*

If you have a Server_image to display rather than a string, you can replace MENU_STRING
above with MENU_IMAGE and specify a Server_image rather than a string.

11.6.2 Using MENU_ACTION_ITEM

Rather than specifying menu item creation using a separate attribute-value list, the attribute
MENU_ACTION_ITEM can be used as a shortcut, as shown in the example below:

menu = (Menu)xv_create(NULL, MENU,
MENU_TITLE_ITEM, "Scrollbar",
MENU_ACTION_ITEM, "On", on_notify_proc,
MENU_ACTION_ITEM, "Off", off_notify_proc,
NULL);

The attribute MENU_ACTION_IMAGE, with a Server_image as its value, may be used inter-
changeably with MENU_ACTION_ITEM and its string value.

11.6.3 Using MENUITEM

The MENUITEM package allows you to create separate menu items using separate calls to
xv_create(). The attributes used are menu item-specific attributes—the same as those
that are used in the MENU_ITEM attribute above.

Menu_item on, off;

on = (Menu_item)xv_create(NULL, MENUITEM,
MENU_STRING, "On",
MENU_NOTIFY_PROC, on_notify_proc,
NULL);

off = (Menu_item)xv_create(NULL, MENUITEM,
MENU_STRING, "Off",
MENU_NOTIFY_PROC, off_notify_proc,
NULL);

xv_set(menu,
MENU_APPEND_ITEM, on,
MENU_APPEND_ITEM, off,
NULL);

These menu items are not created in-line; they are created independently using separate calls
to xv_create(). They must therefore be added to the menu independently. In this case,

*Notification (callback) routines are discussed in Section 11.13, “Notification Procedures.”

284 XView Programming Manual

they are added using MENU_APPEND_ITEM (see the next section for more information).

11.7 Adding Menu Items

There are several methods for adding separately created menu items to menus. For a list of
menu item attributes, see the package summary at the end of this chapter. These attributes
can be used when you are using xv_set() on a menu.

The code fragment below demonstrates the use of MENU_APPEND_ITEM. The menu items are
created independently of the menu itself. They are added to the menu as they are created by
using the attribute MENU_APPEND_ITEM:

char *names[] = { "One", "Two", "Three", "Four", "Five" };
Menu menu;
Menu_item mi;
int i;
void my_notify_proc();

menu = (Menu)xv_create(NULL, MENU, NULL);

for (i = 0; i < 5; i++) {
mi = (Menu_item)xv_create(NULL, MENUITEM,

MENU_STRING, names[i],
MENU_NOTIFY_PROC, my_notify_proc,
MENU_RELEASE,
NULL);

xv_set(menu, MENU_APPEND_ITEM, mi, NULL);
}

This use of MENU_RELEASE is to indicate that the menu item is intended to be freed when the
item’s parent menu is destroyed. This attribute takes no value; specifying it is equivalent to
specifying a TRUE value. Not specifying it implies FALSE. In-line menu items have this attri-
bute set by default, but menu items that are not created in-line must set this attribute expli-
citly if you want them to be freed automatically. You do not want to set this attribute if you
intend to use this menu item in more than one menu or if you want to reuse it later. See Sec-
tion 11.17, “Destroying Menus.”

11.8 Pullright Menus

A pullright menu is simply another menu that is attached to a menu item. Note that for a
menu item to contain a pullright menu, the pullright menu must already have been created.
This means that any menu group should be created from the bottom up. The attributes
MENU_PULLRIGHT, MENU_PULLRIGHT_ITEM, and MENU_PULLRIGHT_IMAGE all allow a
pullright menu to be attached to a menu item.

In the first case, MENU_PULLRIGHT can be assigned to a menu item to attach an existing menu
to it, as shown below:

extern Server_image image1, image2, image3;

M
enus

Menus 285

Menu image_menu, menu;
void image_notify_proc();

image_menu = (Menu)xv_create(NULL, MENU,
MENU_IMAGES, image1, image2, image3, NULL,
MENU_NOTIFY_PROC, image_notify_proc,
NULL);

menu = (Menu)xv_create(NULL, MENU,
MENU_ITEM,

MENU_STRING, "images",
MENU_PULLRIGHT, image_menu,
NULL,

NULL);

In the previous example, a menu of server images is created and is initialized to contain three
images. Another menu is created that is initialized for one menu item, but that menu item has
a pullright menu that is set to the menu_images menu.

The menu item created may also be initialized using the MENU_PULLRIGHT_ITEM attribute.
This attribute takes two parameters as its value: a string and a menu. Therefore, the above
code fragment could have been written:

menu = (Menu)xv_create(NULL, MENU,
MENU_PULLRIGHT_ITEM, "images", image_menu,
NULL);

Had the label for the pullright menu item been a Server_image rather than a string, the
call would look like:

extern Server_image label_image;

menu = (Menu)xv_create(NULL, MENU,
MENU_PULLRIGHT_IMAGE, label_image, image_menu,
NULL);

In the code fragment below, we use another piece of code to demonstrate the same principle.
This example demonstrates how a menu that represents font sizes may be set as the pullright
menu for a list of fonts:

Menu font_menu, size_menu;
Menu_item mi;
int i;
void notify_font();
char buf[4], *p;
...
size_menu = (Menu)xv_create(NULL, MENU,

MENU_NOTIFY_PROC, notify_size,
NULL);

286 XView Programming Manual

for (i = 8; i <= 20; i += 2) {
sprintf(buf, "%d", i);
p = strcpy(malloc(strlen(buf)+1), buf);
mi = (Menu_item)xv_create(NULL, MENUITEM,

MENU_STRING, p,
MENU_RELEASE,
MENU_RELEASE_IMAGE,
MENU_NOTIFY_PROC, notify_font,
NULL);

xv_set(size_menu, MENU_APPEND_ITEM, mi, NULL);
}

font_menu = (Menu)xv_create(NULL, MENU,
MENU_TITLE_ITEM, "Fonts",
MENU_PULLRIGHT_ITEM, "courier", size_menu,
MENU_PULLRIGHT_ITEM, "boston", size_menu,
MENU_PULLRIGHT_ITEM, "times-roman", size_menu,
MENU_PULLRIGHT_ITEM, "lucidasans", size_menu,
MENU_PULLRIGHT_ITEM, "palatino-roman", size_menu,
NULL);

Each item in the main menu (font_menu) has a pullright menu (size_menu) associated
with it. In the for loop where the string for the menu item is assigned, the data is allocated
using malloc() and buf is copied into the allocated data using strcpy(). We cannot
use buf directly, because unlike panel items, the menu item string is not copied by the MENU
package—we must pass in allocated data. Because of this, we also specify the attribute
MENU_RELEASE_IMAGE so that when the item is destroyed, the allocated data will be freed.
Also note that because we used xv_create() to create the menu item, we specify
MENU_RELEASE to indicate that the menu item should be freed when the parent menu is des-
troyed.

11.9 Menu-generating Procedures

In certain situations, the menu items for a particular menu cannot be known ahead of time.
For example, a mail application allows users to write mail messages to files in a designated
folder directory. If a menu is going to display the current folders in that directory, then the
menu items should be updated any time a folder is created or deleted from that directory. But
rather than updating the folder at the time the directory contents change, it would be better to
scan the directory and use each filename in the directory as a menu item.

For such situations, it is necessary to defer the creation of the folder menu until it needs to be
displayed. Therefore, you still create the pullright menu item so the user can select the item.
But rather than specifying a pullright menu associated with the item, specify a routine that
will generate the menu. When the menu needs to be displayed, the routine is called which
returns a menu.

To do this, you specify the attribute MENU_GEN_PULLRIGHT when creating the menu item, as
shown below:

Menu menu, gen_folder_menu();
void change_to_folder();

M
enus

Menus 287

menu = (Menu)xv_create(NULL, MENU,
MENU_TITLE_ITEM, "Mail Folders",
MENU_NOTIFY_PROC, change_to_folder,
MENU_STRINGS, "/usr/spool/mail", "˜/mbox", NULL,
MENU_ITEM,

MENU_STRING, "˜/Mail"
MENU_GEN_PULLRIGHT, gen_folder_menu,
NULL,

NULL);

There is a shortcut attribute that allows you to specify both the menu item’s string and the
MENU_GEN_PULLRIGHT procedure in the same call. The attribute is MENU_GEN_

PULLRIGHT_ITEM. It is used as follows:

MENU_GEN_PULLRIGHT_ITEM, "˜/Mail", gen_folder_menu,

The menu-generating routine may do whatever is necessary to build a new menu, but you
should be careful that the routine does not take too much processing time, since the user is
waiting with the MENU button pressed for the menu to be displayed. Also remember that a
pointer grab is going on, so the routine should avoid any interaction with the user (such as
error dialog boxes).

The form of the menu-generating procedure is:

Menu
menu_gen_proc(menu_item, op)

Menu_item menu_item;
Menu_generate op;

This routine may be called each time the menu is needed. If the menu only needs to be
created once, you can return to the same menu each time you need the menu.

The op parameter is one of the following enumerated types:

typedef enum {
MENU_DISPLAY,
MENU_DISPLAY_DONE,
MENU_NOTIFY,
MENU_NOTIFY_DONE

} Menu_generate;

op indicates the condition in which your routine has been called. The MENU_DISPLAY value
indicates that the menu is going to be displayed while MENU_DISPLAY_DONE indicates that
the menu has been displayed and dismissed. If the user makes a selection in the menu, the
routine is called with MENU_NOTIFY before the menu’s callback routine is called, then again
with MENU_NOTIFY_DONE after the routine is called. If the user makes no selection, the latter
two cases are not called. If they are called (the user did make a selection), then the latter two
cases are called after MENU_DISPLAY_DONE is called.

Because you create your menus, you would think that you should destroy them as well.
However, because of the unpredictable sequence of actions taken by the user, there is no way
to determine when to free the menu. Therefore, you should never destroy menus at all. If the
menu-generating procedure is called multiple times for the same menu, just reconstruct the
menu from the same menu handle that you have.

288 XView Programming Manual

Furthermore, the menu-generating routine must always return the same menu that it passed to
you. You cannot return other menus to display. If the new menu is going to contain a com-
pletely different set of menu items, you should destroy all the menu items before creating the
new list. As it is the same with PANEL_LIST items, menu items are destroyed in reverse
order.

The special case for this problem is: what if there is no menu to redisplay again? In this case,
you are allowed to build a new menu and return a handle to it. The following code shows an
example, testing to see if there already is a menu associated with a particular pullright menu
item.

Menu
menu_gen_proc(menu_item, op)
Menu_item menu_item;
Menu_generate op;
{

int i;
Menu menu;

...
switch (op) {

...
case MENU_DISPLAY :

if (menu = (Menu)xv_get(menu_item, MENU_PULLRIGHT)) {
/* first destroy old menu items */
for (i = (int)xv_get(menu, MENU_NITEMS); i > 0; i--) {

xv_set(menu, MENU_REMOVE, i, NULL);
xv_destroy(xv_get(menu, MENU_NTH_ITEM, i));

}
else

menu = (Menu)xv_create(NULL, menu, NULL);
/* now rebuild the menu items */

...
}
...

}

In the above code fragment, we are removing the menu items sequentially in reverse order by
using the MENU_REMOVE attribute. We start with the last item and move to item 1. The first
item, remember, is the title item, if it exists. If you want to retain this item, stop at menu item
2.

The sample program menu_dir2.c in Appendix F, Example Programs, demonstrates how a
menu-generating routine is used.

A debugging hint: If your menu-generating routine generates a run-time error, be careful
when trying to debug the program under a debugger. The problem is that when you run the
program in a debugger and the program generates a run-time error, the debugger will stop
execution and wait for input. In the meantime, the server has a pointer grab so keyboard
focus is directed to the menu’s window which is not able to receive input.

At this point, there is no way to interact with any program on the console—you will have to
go to another server, computer or terminal connected to your workstation and kill the
debugger (this will terminate the program and release the pointer grab). You may think of
more clever ways to handle this situation depending on your workstation configuration, but

M
enus

Menus 289

the point is that you should be aware of the extremely inconvenient side effects whenever
you play with server grabs.

11.9.1 Parent Menus

Recall that the menu notification routines take two parameters: the menu that was popped up
and the menu item that was selected. However, if the user chose an item from a long cascade
of pullright menus, it may be necessary to determine the initial (root) menu of the cascade.
To support this, the attribute MENU_PARENT is used to get the owner of a menu or menu item.

This attribute can only be used with xv_get(). When MENU_PARENT is used with a menu
item, xv_get() returns the handle of the enclosing menu.

Menu menu;

menu = xv_get(item, MENU_PARENT);

On the other hand, if xv_get() is passed a menu, the menu item returned is the menu item
from which the submenu was pulled-right.

Menu_item item;

item = xv_get(menu, MENU_PARENT);

If the item returned is NULL, the menu is the root menu.

MENU_PARENT is only valid while the menu is active. Since menus can be shared, saying that
a menu’s parent is the one who uses it as a MENU_PULLRIGHT is not valid, since many menus
could have that one menu as a MENU_PULLRIGHT.

The following code fragment shows how the entire menu cascade is traversed, starting from
the leaf of the menu tree (the item the user selected).

Menu menu, item;

while (item = (Xv_opaque)xv_get(menu, MENU_PARENT))
if ((Xv_pkg *)xv_get(item, XV_TYPE) != MENUITEM)

break;
else

menu = xv_get(item, MENU_PARENT);

The above loop starts by getting the parent of an arbitrary menu. This menu could be the
menu parameter in a menu item’s callback routine. If the parent menu returned is NULL, then
the menu is already the top level menu. Otherwise, get the type of the object returned. If the
menu is a pullright menu, then the parent of the menu should be a MENUITEM (since its
pullright is a menu). If it is not, then it could be a server object. Whatever it is, we have
reached the top level of the menu cascade and should break out of the loop.

290 XView Programming Manual

11.9.2 Using MENU_GEN_PROC

MENU_GEN_PROC specifies a function that is used to modify, add, or delete menu items from
the menu whose handle is passed to the procedure. The op argument tells the state of the
menu when the function is called. The argument op is one of the values: MENU_DISPLAY,
MENU_DISPLAY_DONE, MENU_NOTIFY, or MENU_NOTIFY_DONE as defined by
Menu_generate in openmenu.h. You do not destroy the menu itself. If you do not know
what the item will show as text or as an image at the time the menu is created or if there is
other unknown information, you can defer the creation of the menu item until the item is
actually needed by specifying the item creation routine.

11.10 Using Toggle Menus

Toggle menus are menus with nonexclusive settings. The user can toggle menu items, turn-
ing them on or off. More than one menu item may be selected at a time. The only difference
for creating these menu items is that MENU_TOGGLE_MENU is used as the package parameter
to xv_create() and that menu items may not have pullright menus associated with them.
Therefore, these are typically simple menus.

In the code below, we build a toggle menu that has three items in it. If the menu has been
displayed and the user makes a selection, on or off, the notification routine is called no differ-
ently from any other menu notification procedure:

void toggle_bold(), toggle_size(), toggle_italic();
Menu menu;

menu = (Menu)xv_create(NULL, MENU_TOGGLE_MENU,
MENU_TITLE_ITEM, "Text Rendering",
MENU_ACTION_ITEM, "Bold Style", toggle_bold,
MENU_ACTION_ITEM, "Large Font", toggle_size,
MENU_ACTION_ITEM, "Italics", toggle_italic,
NULL);

In this case, we are specifying three different notify procedures for each menu item. Since
each performs a completely separate function, the menu items need not call the same routine.

To determine exactly which menu items are selected, you must loop through all the items in
the menu:

M
enus

Menus 291

toggle_notify(menu, item)
Menu menu
Menu_item item;
{

int i;

for (i = (int)xv_get(font_menu, MENU_NITEMS); i > 0; i--)
if (xv_get(xv_get(font_menu, MENU_NTH_ITEM, i),

MENU_SELECTED)) {
printf("item %d selected\n", i);
/* do whatever other processing may need to be done */

}
}

This loop starts at the last item and works towards the first. The first item starts at 1, not 0;
the 0th item is the menu’s title item and cannot be retrieved.

11.11 Menu Layout

By default, pop-up menus place their items vertically. If there are too many items, a new col-
umn may be started in order to display the entire menu on the screen. You can specify the
number of rows and columns for the menu by using the attributes MENU_NROWS and
MENU_NCOLS.

Although specifying menu item layout is certainly legal and acceptable to OPEN LOOK,
explicit menu item layout should be avoided for anything other than static menus. Dynamic
menus will have problems maintaining menu item order, and if you use a pin-up menu, the
command frame will almost certainly not match the appearance of the menu. To guarantee
that your pin-up menu looks the same as the menu, specify your own pin-up procedure. (See
the following section for more information.)

11.12 Making Pin-up Menus

As the programmer, you may give the user the option of pinning up a menu by providing the
pushpin in the pop-up menu. To accomplish this, XView provides the attribute
MENU_GEN_PIN_WINDOW. If specified, XView generates the pin window frame automatically
by creating a command frame, a panel and a series of panel items that correspond to the menu
items. These pin window components are actually created the first time the user pulls down
the menu and pushes the pin in. You cannot use xv_get to retrieve the command frame for
the menu until after the menu is pinned. This new frame is dynamic, so any changes to the
menu are reflected in the pinup frame provided it is not currently being displayed. If the
pinup frame is currently being displayed and the menu contents change, the pinned menu will
not reflect the new changes. The changes will appear the next time the menu is pinned.

Since menu items are translated into panel items in a pinned menu, programmers should not
allow more than 32 unique values for a pinned menu (32 is the size of an unsigned int on
most machines).

292 XView Programming Manual

MENU_GEN_PIN_WINDOW takes two values as parameters. One is a base frame; the other is a
string that acts as a title for the frame. The menu’s pin window is sized according to the
width of the widest menu item, not according to the title. You should choose a title that will
fit within the size of the pin window. If the title specified in MENU_GEN_PIN_WINDOW is too
long, then it will be truncated. Example 11-2 shows how to create a menu with a pushpin.

Example 11-2. How to create a menu containing a pushpin

Frame frame;
Menu menu;
void func1(), func2();
...
/* Create base frame for the application */
frame = (Frame)xv_create(NULL, FRAME, NULL);
...
menu = (Menu)xv_create(NULL, MENU,

/* the pinup menu subframe is a child of the base frame */
MENU_GEN_PIN_WINDOW, frame, "title",
MENU_ITEM,

MENU_STRING, "item1",
MENU_NOTIFY_PROC, func1,
NULL,

MENU_ITEM,
MENU_STRING, "item2",
MENU_NOTIFY_PROC, func2,
NULL,

NULL);
...

The new command frame is created as a subframe of the frame value. The title label for the
menu and the frame is the title value. Note that you should not use MENU_TITLE_ITEM if you
are using MENU_GEN_PIN_WINDOW since a menu item is automatically inserted at the top of
the menu. If this item is removed, the pin will also be removed.

When the menu is displayed as a result of a call to menu_show(), a pushpin in the upper-
left corner of the menu is displayed allowing the user to pin up the menu, that causes the
menu to go away and the subframe to be displayed. You can get a handle to this subframe if
you need it by calling:

Frame subframe = (Frame)xv_get(menu, MENU_PIN_WINDOW);

You can get a handle to the panel associated with that frame by calling:

Panel panel = (Panel)xv_get(frame, FRAME_CMD_PANEL);

If you choose to write your own pin window-generating procedures, there are several attri-
butes that you might find helpful in implementing your routines:

MENU_PIN This Boolean attribute indicates that the menu has a pushpin. If an
application removes the first menu item, which is the title for the pinned
menu, then the menu’s pin will also be removed.

MENU_PIN_WINDOW This attribute assigns the command frame you created to the menu’s pin
window. Once the pushpin is pushed in, the MENU package automati-
cally sets the command frame’s XV_SHOW attribute to TRUE, allowing
the frame to be displayed.

M
enus

Menus 293

MENU_PIN_PROC This attribute provides the menu with a procedure that is called when
the user pushes the pin in. You may override the default procedure that
shows the pin_window of the menu by providing your own routine
using this attribute. This routine overrides the default behavior of set-
ting XV_SHOW on the command frame, so this responsibility lies in this
routine.

MENU_DONE_PROC This routine is called whenever a pop-up menu has been taken down
after a menu item has been selected, pinned up or simply dismissed
without a selection being made. Again, this overrides the default action
of setting XV_SHOW to FALSE, so this responsibility lies with the
MENU_DONE_PROC routine.

11.13 Notification Procedures

When a menu item is selected, a notification procedure is called to notify the host application
that the user has made a selection. If the menu item does not have a notify procedure, the
parent menu’s notification procedure is called instead. If the menu does not have a notifica-
tion procedure, no action is taken. Be sure that each menu item or its parent menu has a
MENU_NOTIFY_PROC routine associated with it. Otherwise, choosing a menu item has no
effect. If you wish to make a menu item inactive, you should set the attribute MENU_INAC-

TIVE to TRUE.

The primary difference between the MENU package and the PANEL package with respect to the
notification mechanism is that if a menu item has no notification procedure associated with it,
the notify procedure of the parent menu is used. The PANEL package has no such feature. To
differentiate between the notify procedure of a menu and the notify procedure of a menu
item, the term action procedure is sometimes used to refer to the menu item’s notify proce-
dure. Thus, you may come across the term action procedure or the attribute
MENU_ACTION_PROC outside of this manual.

However, because there is functionally no difference between the MENU_ACTION_PROC and
the MENU_NOTIFY_PROC and since all other XView objects use notify procedures to register
their callbacks, we are going to attempt to maintain consistency and avoid potential confu-
sion with the terms by referring to both notify procedures commonly using
MENU_NOTIFY_PROC.

The form of the callback routine is:

void
menu_notify_proc(menu, menu_item)

Menu menu;
Menu_item menu_item;

The program in Example 11-3 demonstrates several of the concepts introduced in the chapter
so far. xv_menu.c creates a simple frame, a canvas, and a pop-up menu. The menu is a static
menu because all the menu items are created in-line with the menu-generating procedure.
The menu itself has a notify procedure which is called if any of the menu items specified by
MENU_STRINGS are selected. The result is to display the text of the selected item in the

294 XView Programming Manual

header of the frame. An additional menu item is specified that has a pullright menu that can
be pinned up.

Example 11-3. The xv_menu.c program

/*
* xv_menu.c -
* Demonstrate the use of an XView menu in a canvas subwindow.
* Menu is brought up with right mouse button and the selected
* choice is displayed in the canvas. Allows menu to be pinned.
*/
#include <xview/xview.h>
#include <xview/canvas.h>

Frame frame;

main(argc,argv)
int argc;
char *argv[];
{

Canvas canvas;
Menu menu;
void my_notify_proc(), my_event_proc();
extern void exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME,
FRAME_LABEL, argv[0],
NULL);

canvas = (Canvas)xv_create(frame, CANVAS,
XV_WIDTH, 300,
XV_HEIGHT, 200,
NULL);

menu = (Menu)xv_create(NULL, MENU,
MENU_TITLE_ITEM, "Junk",
MENU_STRINGS, "Yes", "No", "Maybe", NULL,
MENU_NOTIFY_PROC, my_notify_proc,
MENU_ITEM,

MENU_STRING, "Save",
MENU_NOTIFY_PROC, my_notify_proc,
MENU_PULLRIGHT,

xv_create(canvas, MENU,
MENU_GEN_PIN_WINDOW, frame, "Save",
MENU_ITEM,

MENU_STRING, "Update Changes",
MENU_NOTIFY_PROC, my_notify_proc,
NULL,

NULL),
NULL,

MENU_ITEM,
MENU_STRING, "Quit",
MENU_NOTIFY_PROC, exit,
NULL,

NULL);

xv_set(canvas_paint_window(canvas),

M
enus

Menus 295

Example 11-3. The xv_menu.c program (continued)

WIN_CONSUME_EVENTS, WIN_MOUSE_BUTTONS, NULL,
WIN_EVENT_PROC, my_event_proc,
/* associate the menu to the canvas win for easy retrieval */
WIN_CLIENT_DATA, menu,
NULL);

window_fit(frame);
window_main_loop(frame);

}

/*
* my_notify_proc - Display menu selection in frame header.
*/
void
my_notify_proc(menu, menu_item)
Menu menu;
Menu_item menu_item;
{

xv_set(frame,
FRAME_LABEL, xv_get(menu_item, MENU_STRING),
NULL);

}

/*
* Call menu_show() to display menu on right mouse button push.
*/
void
my_event_proc(window, event)
Xv_Window window;
Event *event;
{

if (event_action(event) == ACTION_MENU && event_is_down(event)) {
Menu menu = (Menu)xv_get(window, WIN_CLIENT_DATA);
menu_show(menu, window, event, NULL);

}
}

The output of Example 11-3 is shown in Figure 11-8.

11.14 Finding Menu Items

You can use xv_find() to locate menu items that match certain attribute-value pairs. The
form of using xv_find() for menus is:

Menu_item item;

item = (Menu_item)xv_find(menu, MENUITEM,
<attribute-value list>,
NULL);

xv_find() returns menu items, not menus. By default, when you search for items, each
item in a menu is searched before descending into a menu item’s pullright menu, should it

296 XView Programming Manual

Figure 11-8. Output of xv_menu.c

exist. However, you can override this default behavior by specifying the attribute
MENU_DESCEND_FIRST. During a menu search, if an item with a pullright is found, then this
attribute indicates whether the search should continue through the pullright or to the next
item in the current menu.

If a menu item or a menu item’s pullright is a generate procedure, the generate procedure is
called despite the fact that the menu or menu item will not be displayed. No matter how
many attributes are given, xv_find() will return the first item found that matches all given
attributes even though the item may have more attributes associated with it.

When specifying attribute-value pairs, you specify attributes in the same way as when you
use xv_create(). For example, if you want to find a menu item with the string value of
“fonts” and the callback routine of my_notify_proc, you would use:

menu_item = (Menu_item)xv_find(menu, MENUITEM,
MENU_STRING, "fonts",
MENU_NOTIFY_PROC, my_notify_proc,
NULL);

Unless the attribute XV_AUTO_CREATE is set to FALSE, if xv_find() does not find the
menu item that you are looking for, a new menu item will be created.

M
enus

Menus 297

11.15 Initial and Default Menu Selections

Two special menu items are the default item (MENU_DEFAULT_ITEM) and the selected item
(MENU_SELECTED_ITEM). The default item defaults to the first item in the menu, and the
selected item is the selected item (or items for MENU_TOGGLE_MENU menus).

Although the default menu item may be set by using xv_set(), the user may interactively
change the default menu item by holding down the CONTROL key while also selecting a
menu item with the MENU button. Therefore, if the user selects a menu item that has a
pullright menu, but the pullright menu is not activated ,* when your notify procedure is
called, you may choose to descend into the pullright menu and find the default menu item and
call that item’s callback routine.

11.16 Unpinned Command Frame Dismissal

XView normally handles unpinned command frame dismissal for you when a user action
within the command frame completes successfully. If a menu is brought up from a Menu
Button in the command frame, and the user makes a selection from the menu, the command
frame is dismissed if the pushpin (if visible) is out. By default, the attribute
MENU_NOTIFY_STATUS is set to XV_OK, which indicates that the command frame should be
dismissed if the pushpin is out, and the callback returns successfully. However, if the user-
specified action does not complete successfully, you may not want the command frame to be
dismissed. In this case, within the menu’s notify procedure or within the menu item’s notify
procedure, you should set the value of MENU_NOTIFY_STATUS to XV_ERROR. This indicates
that the user selection was invalid or failed, and prevents the command frame from being
dismissed.

11.17 Destroying Menus

Destruction of menus is an important task because menus are frequently used and, if their
resources are not freed adequately, you could find the size of your application growing rap-
idly until your system runs out of available memory. Therefore, proper cleanup of menu
destruction is imperative. Menus are destroyed using xv_destroy(). In the case of static
menus, nothing more is required than calling xv_destroy(). This is because the internals
of XView automatically set attributes discussed in this section.

Be aware of several situations, such as when you:

• Allocate your own strings or server images as menu item labels.

• Create your own menu items using xv_create(NULL, MENUITEM, ...).

• Generate your own pullright menus.

*This might happen if the user did not drag the mouse far enough to the right.

298 XView Programming Manual

The destruction phase walks down each menu item in the menu and tests each menu item to
see if it has the MENU_RELEASE attribute set. This is not a Boolean attribute—it has no value
associated with it at all. If you specify the attribute, the attribute is set. If you do not specify
it, then the attribute is not set. As noted, menu items that have been created in-line have
MENU_RELEASE set already.

Menu items that you create yourself do not have MENU_RELEASE set by default. You also
may or may not want it set. If you plan to reuse menu items—a need that is common—then
you do not want to set this attribute. However, you must maintain a handle to the menu item
or it is lost. If the attribute is set, then the menu item is freed, but no other data associated
with the menu item is destroyed. Only the item itself is. If you have any allocated data asso-
ciated with the menu item, then you either need to free it yourself or give a hint to XView to
free it for you.

The following subsections discuss other data allocated for menu items. Remember that free-
ing menus and menu items is not done automatically; this only happens as a result of your
calling xv_destroy(). So, if you decide to free menus or menu items, you should be sure
to free pullright menus and/or client data yourself beforehand.

There are cases when xv_destroy() will not remove a menu. In order to free the memory
associated with a menu using xv_destroy(), you need to be certain that no objects refer-
ence the menu. For example, if you attach a menu to a panel button item using the attribute
PANEL_ITEM_MENU, you need to be sure to clear the PANEL_ITEM_MENU attribute before you
try to destroy the menu. In this example, the following calls would be required to clear the
panel button item’s attached menu, and to destroy the menu. For more information on this
topic, refer to the description of XV_REF_COUNT in Chapter 7, Panels.

xv_set(panel_item, PANEL_ITEM_MENU, NULL, NULL);
xv_destroy(menu);

11.17.1 Freeing Allocated Strings

If you create a menu item with allocated data, you should not use them in a MENU_STRINGS
list. Instead, you should create the menu items individually, as shown in Example 11-4.

Example 11-4. Creating individual menu items

char *str1;

if (str1 = malloc(strlen(buf)+1))
strcpy(str1, buf);

menu = xv_create(NULL, MENU,
MENU_ITEM,

MENU_STRING, str1,
MENU_RELEASE_IMAGE,
NULL,

NULL);

The code in Example 11-4 shows a menu item that is created in-line because it is created
using the MENU_ITEM attribute. However, because the string used as the menu item’s label is
allocated, we need to provide XView with a hint to release this data.

M
enus

Menus 299

Similarly, if we used xv_create() to create a Server_image as the menu item’s label,
the MENU_RELEASE_IMAGE attribute suffices to free that data as well.

11.17.2 Freeing Pullright Menus

Even though a menu item has MENU_RELEASE set, if a pullright menu is associated with it, the
menu will not be freed. In many cases, this is acceptable because many menu items may
share the same pullright menu. If you are sure you do not need the menu anymore, then you
should free it. Note that freeing the menu will attempt to free the menu items within it.

This is most commonly done in menu-generating routines installed as the MENU_GEN_

PULLRIGHT attribute.

11.17.3 Menu Client Data

If a menu item is freed, you should be sure to free any client data that is associated with it.
Client data may have been attached to the menu item using XV_KEY_DATA or MENU_

CLIENT_DATA.

If you created menus for panel buttons, and you destroy the MENU button (or the panel asso-
ciated with that button), then you are responsible for destroying the menu you created. The
panel does not handle this for you. Destroying the menu attached to menu buttons is done the
same way as it is for menus.

11.18 Example Program

The following brief descriptions are introductory notes about the programs menu_dir.c (listed
in Example 11-5) and menu_dir2.c (listed in Appendix F, Example Programs). The com-
ments in the programs as well as the code itself should be read for full details.

menu_dir.c demonstrates many of the features of the MENU package presented in this chapter.
It displays a menu that contains all the files from the current directory. If a pathname is given
on the command line, that directory is used. The entire menu hierarchy is built initially at
start-up time, so directories that do not have extremely long paths should be specified.*

For each directory found, a new menu is created and the directory is descended building
items for the new menu. menu_dir2.c also builds cascading menus for directories, but instead
of descending into the directory tree, a menu-generating routine is called only if the user tries
to go into a pullright.

Example 11-5. The menu_dir.c program

/*

*Don’t even think of specifying /.

300 XView Programming Manual

Example 11-5. The menu_dir.c program (continued)

* menu_dir.c -
* Demonstrate the use of an XView menu in a canvas subwindow.
* A menu is brought up with the MENU mouse button and displays
* menu choices representing the files in the directory. If a
* directory entry is found, a new pullright item is created with
* that subdir as the pullright menu’s contents. This implementation
* creates the entire directory tree initially. Do not attempt to
* build a tree from /. You will most likely run out of resources.
*
* argv[1] indicates which directory to start from.
*/
#include <xview/xview.h>
#include <xview/canvas.h>
#include <sys/stat.h>
#include <sys/dir.h>
#include <X11/Xos.h>
#ifndef MAXPATHLEN
#include <sys/param.h> /* probably sun/BSD specific */
#endif /* MAXPATHLEN */

Frame frame;

/*
* main -
* Create a frame, canvas and menu.
* A canvas receives input in its canvas_paint_window().
* Its callback procedure calls menu_show().
*/
main(argc,argv)
int argc;
char *argv[];
{

Canvas canvas;
extern void exit();
void my_event_proc();
Menu menu;
Menu_item mi, add_path_to_menu();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME,
FRAME_LABEL, argv[1]? argv[1] : "cwd",
FRAME_SHOW_FOOTER, TRUE,
NULL);

canvas = (Canvas)xv_create(frame, CANVAS,
FRAME_LABEL, argv[0],
XV_WIDTH, 400,
XV_HEIGHT, 100,
NULL);

mi = add_path_to_menu(argc > 1? argv[1] : ".");
menu = (Menu)xv_get(mi, MENU_PULLRIGHT);

/* associate the menu to the canvas win for easy retrieval */
xv_set(canvas_paint_window(canvas),

WIN_CONSUME_EVENTS, WIN_MOUSE_BUTTONS, NULL,

M
enus

Menus 301

Example 11-5. The menu_dir.c program (continued)

WIN_EVENT_PROC, my_event_proc,
WIN_CLIENT_DATA, menu,
NULL);

window_fit(frame);
window_main_loop(frame);

}

/*
* my_action_proc - display the selected item in the frame footer.
*/
void
my_action_proc(menu, menu_item)
Menu menu;
Menu_item menu_item;
{

xv_set(frame,
FRAME_LEFT_FOOTER, xv_get(menu_item, MENU_STRING),
NULL);

}

/*
* Call menu_show() to display menu on right mouse button push.
*/
void
my_event_proc(canvas, event)
Canvas canvas;
Event *event;
{

if ((event_id(event) == MS_RIGHT) && event_is_down(event)) {
Menu menu = (Menu)xv_get(canvas, WIN_CLIENT_DATA);
menu_show(menu, canvas, event, NULL);

}
}

/*
* return an allocated char * that points to the last item in a path.
*/
char *
getfilename(path)
char *path;
{

char *p;

if (p = rindex(path, ’/’))
p++;

else
p = path;

return strcpy(malloc(strlen(p)+1), p);
}

/*
* The path passed in is scanned via readdir(). For each file in the
* path, a menu item is created and inserted into a new menu. That
* new menu is made the PULLRIGHT_MENU of a newly created panel item
* for the path item originally passed it. Since this routine is

302 XView Programming Manual

Example 11-5. The menu_dir.c program (continued)

* recursive, a new menu is created for each subdirectory under the
* original path.
*/
Menu_item
add_path_to_menu(path)
char *path;
{

DIR *dirp;
struct direct *dp;
struct stat s_buf;
Menu_item mi;
Menu next_menu;
char buf[MAXPATHLEN];

/* don’t add a folder to the list if user can’t read it */
if (stat(path, &s_buf) == -1 || !(s_buf.st_mode & S_IREAD))

return NULL;
if (s_buf.st_mode & S_IFDIR) {

int cnt = 0;
if (!(dirp = opendir(path)))

/* don’t bother adding to list if we can’t scan it */
return NULL;

next_menu = (Menu)xv_create(XV_NULL, MENU, NULL);
while (dp = readdir(dirp))

if (strcmp(dp->d_name, ".") && strcmp(dp->d_name, "..")) {
(void) sprintf(buf, "%s/%s", path, dp–>d_name);
if (!(mi = add_path_to_menu(buf)))

/* unreadable file or dir - deactivate item */
mi = xv_create(XV_NULL, MENUITEM,

MENU_STRING, getfilename(dp->d_name),
MENU_RELEASE,
MENU_RELEASE_IMAGE,
MENU_INACTIVE, TRUE,
NULL);

xv_set(next_menu, MENU_APPEND_ITEM, mi, NULL);
cnt++;

}
closedir(dirp);
mi = xv_create(XV_NULL, MENUITEM,

MENU_STRING, getfilename(path),
MENU_RELEASE,
MENU_RELEASE_IMAGE,
MENU_NOTIFY_PROC, my_action_proc,
NULL);

if (!cnt) {
xv_destroy(next_menu);
/* An empty or unsearchable directory - deactivate item */
xv_set(mi, MENU_INACTIVE, TRUE, NULL);

} else {
xv_set(next_menu, MENU_TITLE_ITEM, getfilename(path), NULL);
xv_set(mi, MENU_PULLRIGHT, next_menu, NULL);

}
return mi;

}
return (Menu_item)xv_create(NULL, MENUITEM,

MENU_STRING, getfilename(path),

M
enus

Menus 303

Example 11-5. The menu_dir.c program (continued)

MENU_RELEASE,
MENU_RELEASE_IMAGE,
MENU_NOTIFY_PROC, my_action_proc,
NULL);

}

11.19 Menu Package Summary

Table 11-1 lists the procedures and macros in the MENU package. Table 11-2 lists the attri-
butes in the MENU package. This information is described fully in the XView Reference Man-
ual.

Table 11-1. Menu Procedures and Macros

MENUITEM_SPACE()

menu_return_item()

menu_return_value()

menu_show

Table 11-2. Menu Attributes

MENU_APPEND_ITEM MENU_NOTIFY_STATUS

MENU_CLASS MENU_NROWS

MENU_COLOR MENU_NTH_ITEM

MENU_CLIENT_DATA MENU_PARENT

MENU_COL_MAJOR MENU_PIN

MENU_DEFAULT MENU_PIN_PROC

MENU_DEFAULT_ITEM MENU_PIN_WINDOW

MENU_DESCEND_FIRST MENU_PULLRIGHT

MENU_DONE_PROC MENU_RELEASE

MENU_FIRST_EVENT MENU_RELEASE_IMAGE

MENU_GEN_PIN_WINDOW MENU_REMOVE

MENU_GEN_PROC MENU_REMOVE_ITEM

MENU_GEN_PULLRIGHT MENU_REPLACE

MENU_IMAGE MENU_REPLACE_ITEM

MENU_IMAGES MENU_SELECTED

MENU_INACTIVE MENU_SELECTED_ITEM

MENU_INSERT MENU_STRING

MENU_INSERT_ITEM MENU_STRINGS

MENU_ITEM MENU_TITLE

MENU_LAST_EVENT MENU_TITLE_ITEM

304 XView Programming Manual

Table 11-2. Menu Attributes (continued)

MENU_NCOLS MENU_TYPE

MENU_NITEMS MENU_VALID_RESULT

MENU_NOTIFY_PROC MENU_VALUE

XV_DEPTH XV_VISUAL

XV_VISUAL_CLASS

M
enus

Menus 305

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

12
Notices

A notice is a pop-up window that notifies the user of a problem or asks a question that
requires a response. Generally, notices report serious warnings or errors. OPEN LOOK notices
do not have headers or footers and cannot be moved. The XView notice object is subclassed
from the XView generic object. As with any XView object, you can configure a notice using
attributes and you can use xv_create(), xv_get(), and xv_set(). Figure 12-1 shows
the notice object class hierarchy.

Generic
Object Notice

Figure 12-1. Notice class hierarchy

XView defines two types of notices, Standard notices and screen-locking notices:

• Standard notices do not lock the screen and are placed centered in the “owner” frame.
This type of notice may either block the application’s thread of execution, or not block.

• Screen-locking notices lock the screen and block input to all applications (the screen is
locked with X grabs). These notices appear with a shadow that emanates from the loca-
tion where an action in an application initiates the notice. This may be a panel button,
such as “Quit,” or some other XView object.

New applications that are created with XView Version 3 should use the NOTICE package
described in this chapter. Older versions of XView only supported notices with a nonobject-
oriented interface using the notice_prompt() function. For compatibility,
notice_prompt() is still supported. However, for new applications its use is not recom-
mended. Furthermore, the NOTICE package is implemented so that updating applications to
use a notice object is an easy task. Notice objects are only created when the notice package
is used (they are not created when notice_prompt() is used). For more information on
notice_prompt(), refer to Appendix B, Notices.

Notices

Notices 307

Figure 12-2 shows an example of a notice window from the OPEN LOOK GUI Specification .

Figure 12-2. A sample notice window

12.1 Creating and Displaying Notices

To use the NOTICE package, include the header file <xview/notice.h>. It provides the neces-
sary types and definitions for using the package. A notice object’s type is Xv_Notice. In
general, create a notice like any other XView object:

Xv_Notice notice;
Frame owner;
notice = xv_create(owner, NOTICE,

NOTICE_MESSAGE_STRING,
"Please confirm your action.",
NULL,

NULL);

Make a notice visible by setting XV_SHOW to TRUE:

xv_set(notice, XV_SHOW, TRUE, NULL);

Clicking on any button in a notice pops-down the notice. It is not necessary to set XV_SHOW
to FALSE on a notice (the notice package handles this internally).

A notice must have an owner that is a subtype of WINDOW, such as a frame or a panel. If NULL
is used for the owner, an error results and the notice is not created. Typically the window of
the application that causes the notice to be created is the notice’s owner. For example, if the
user tries to type in a read-only text subwindow, a notice might appear from that window
informing the user of the error.

308 XView Programming Manual

Your application has control over the type of the notice (standard or screen-locking), the
messages that are displayed in the notice window, and the choices available to the user as
responses. The notice package creates the notice window, and depending on the type of the
notice, either blocks input to the originating application and does not lock the screen while
waiting for the user to make a selection on one of the available button choices, or, locks the
screen and waits for one of the button choices to be selected (in this case, the screen is frozen
and the application is blocked.) For both types of notices, after the user enters a response in a
notice button, the notice window is unmapped.

The attributes NOTICE_MESSAGE_STRING, NOTICE_MESSAGE_STRINGS, and NOTICE_

MESSAGE_STRINGS_ARRAY_PTR can be used to determine what strings are to be
displayed in a notice. NOTICE_MESSAGE_STRING takes as its value one NULL-terminated
string. This string, however, can contain the character “\n” to serve as a line break. The attri-
bute NOTICE_MESSAGE_STRINGS can take a list of the above strings as its value. This list is
NULL-terminated. Each string in the list will start on a new line. Lastly, NOTICE_MES-
SAGE_STRINGS_ARRAY_PTR takes a pointer to a NULL-terminated array of strings.

All the strings mentioned above are centered horizontally in the notice.

Below is an example using NOTICE_MESSAGE_STRING:

Xv_Notice notice;
Frame owner;
notice = xv_create(owner, NOTICE,

NOTICE_MESSAGE_STRING,
"Hello!\nPlease confirm your action.\nPress Continue",

NULL);

The following example demonstrates NOTICE_MESSAGE_STRINGS:

Xv_Notice notice;
Frame owner;
notice = xv_create(owner, NOTICE,

NOTICE_MESSAGE_STRINGS,
"Hello!",
"Please confirm your action.\nPress Continue",

NULL,
NULL);

NOTICE_MESSAGE_STRINGS_ARRAY_PTR takes an array of strings as in the following
example:

char array[5];

array[0] = "Hello!";
array[1] = "This is a sample notice.";
array[2] = "Press Continue.";
array[3] = NULL;

Xv_Notice notice;
Frame owner;

notice = xv_create(owner, NOTICE,
NOTICE_MESSAGE_STRINGS_ARRAY_PTR,

array,
NULL);

Notices

Notices 309

A sample standard notice is demonstrated in Example 12-1.

Example 12-1. The simple_notice.c program

/*
* simple_notice.c -- Demonstrate the use of notices.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/notice.h>

Panel panel;

main(argc,argv)
int argc;
char *argv[];

{
Frame frame;
Xv_opaque my_notify_proc();

/*
* Initialize XView, create a frame, a panel and one panel button.
*/
xv_init(XV_INIT_ARGS, argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, my_notify_proc,
NULL);

/* make sure everything looks good */
window_fit(panel);
window_fit(frame);

/* start window event processing */
xv_main_loop(frame);

}

/*
* my_notify_proc() -- called when the user selects the QUIT button.
* Here the user must choose YES or NO on the notice to confirm
* or deny quitting.
*/
Xv_opaque
my_notify_proc(item, event)
Panel_item item;
Event *event;

{
Xv_notice notice;
int notice_stat;

notice = xv_create(panel, NOTICE,
NOTICE_MESSAGE_STRINGS, "Do you really want to quit?", NULL,
NOTICE_BUTTON_YES, "Yes",
NOTICE_BUTTON_NO, "No",
NOTICE_STATUS, ¬ice_stat,

310 XView Programming Manual

Example 12-1. The simple_notice.c program (continued)

XV_SHOW, TRUE,
NULL);

switch (notice_stat) {
case NOTICE_YES:

/* Quit */
exit(0);

break;

case NOTICE_NO:
/* Don’t quit */

break;

}

xv_destroy_safe(notice);
}

The program simple_notice.c contains a panel with a Quit button. When the user selects the
Quit button, a notice pops up to prompt the user for confirmation. What the user sees is
shown in Figure 12-3. If the user presses “Yes,” the program exits.

Do you really want to quit?

Yes No

Figure 12-3. Output of simple_notice.c while the notice is up

12.1.1 Notice Values and Status

Two responses are normally available whenever a notice appears: “Yes” and “No.” These are
defined for convenience in <xview/notice.h> :

#define NOTICE_YES 1
#define NOTICE_NO 0

Notices

Notices 311

These values correspond to the notice’s status. The notice status contains the value of the but-
ton that was selected on the notice. The location where the status is stored can be set with the
attribute NOTICE_STATUS. If NOTICE_STATUS is not set, the notice status can still be
obtained by using xv_get() on NOTICE_STATUS. If the attributes NOTICE_BUTTON_YES

and NOTICE_BUTTON_NO are used, the notice status is either set to NOTICE_YES or
NOTICE_NO, depending upon the user’s notice button selection, which causes the notice to
pop-down. As shown in simple_notice.c , the strings associated with the “Yes” and “No” but-
tons are set with the attributes NOTICE_BUTTON_YES and NOTICE_BUTTON_NO. The notice
button created with NOTICE_BUTTON_YES is the default button and will have the OPEN LOOK
default ring around it.

The notice choices listed above also respond to accelerator keys. In other words, in addition
to the RETURN key, whatever key that is mapped to the semantic action
ACTION_DEFAULT_ACTION can also be used to select the NOTICE_BUTTON_YES button. The
key that is mapped to the semantic action ACTION_STOP can be used to select the
NOTICE_BUTTON_NO button.

When the notice window is mapped, the cursor is immediately warped (moved) to the default
button since it is the default response of the notice.

It is quite common for the application to have more than one appropriate response to some
kind of notice prompt. Suppose that your application is an editor of some kind. If the user
selects the Quit button and there have been changes to the file that have not been accounted
for, you might wish to inform the user and allow more than one response: quit, updating
changes; quit, ignoring changes; or cancel the quit all together. To implement more than two
choices, use the NOTICE_BUTTON attribute to define the choices available:

xv_create(panel, NOTICE,
NOTICE_MESSAGE_STRINGS,

"There have been modifications since your last update",
"Would you like to quit or continue editing?",
NULL,

NOTICE_BUTTON, "Quit, Update changes", 101,
NOTICE_BUTTON, "Quit, Ignore changes", 102,
NOTICE_BUTTON, "Continue Editing", 103,
NULL);

The NOTICE_BUTTON attribute takes two parameters: the button label* and the value for the
button selection. The application should make its decision on how to proceed based on the
button value specified. In this case, the notice would need to handle cases for NOTICE_STA-
TUS having values of 101, 102, and 103 (in addition to possible errors).

Because the NOTICE_BUTTON attribute is used, there is no button that is bound to the default
NOTICE_YES choice. But since OPEN LOOK requires a default button for every notice, the
default button will be the first button. In this case, the “Quit, Update changes” button will
have the default ring around it.

If no buttons are specified for a notice, a default button labeled “Confirm” with a value set to
NOTICE_YES is provided.

* The button can display text only; no graphic images can be displayed.

312 XView Programming Manual

The Mouseless Model allows keyboard actions for selecting and moving between notice but-
tons (refer to Section 6.13, “The Mouseless Model,” in Chapter 6, Handling Input).

12.2 Types of Notices

The simple_notice.c program shows a default, standard notice. The default notice does
not lock the screen but does block the thread of execution. This section describes the two
types of notices:

• Standard notices that do not lock the screen. Standard notices have two varieties: those
that block the input to the application, and those that do not.

• Screen-locking notices that lock the screen and blocks input to the application.

The Boolean attribute NOTICE_LOCK_SCREEN determines the type of the notice. When
NOTICE_LOCK_SCREEN is FALSE, the attribute NOTICE_BLOCK_THREAD determines whether
the notice blocks the input to the application.

After creating a notice and popping it up or down, you can change its type. For example, if
notice is created with NOTICE_LOCK_SCREEN set to TRUE (a screen-locking notice), the
following call is valid:

xv_set(notice, NOTICE_LOCK_SCREEN, FALSE,
NULL);

After doing this your notice is a standard notice and you can, if necessary, use the type-spe-
cific attributes that apply to the standard notice (such as NOTICE_BLOCK_THREAD).

12.2.1 Standard Notices

When the attribute NOTICE_LOCK_SCREEN is set to FALSE, the notice is a standard notice and
it does not lock the screen (this is the default value for NOTICE_LOCK_SCREEN). Whether it
blocks the thread of execution depends upon the value of the attribute
NOTICE_BLOCK_THREAD (its default value is TRUE). The attribute NOTICE_STATUS is used to
determine which button was pressed.

When the notice is displayed, the state of the application’s other windows is as follows:

• If NOTICE_BLOCK_THREAD is set to TRUE, then no windows of the application, except the
notice window, will detect mouse and keyboard input (also see xv_window_loop()).

• If NOTICE_BLOCK_THREAD is set to FALSE, only the frame that owns the notice will
ignore mouse and keyboard input. Additional frames that need to be put in this state can
be added with NOTICE_BUSY_FRAMES. All such frames will have their headers grayed out
(also see FRAME_BUSY).

Notices

Notices 313

Table 12-1 lists additional notice attributes that apply only to standard notices (when
NOTICE_LOCK_SCREEN is FALSE).

Table 12-1. Notice Attributes (used with NOTICE_LOCK_SCREEN = FALSE)

Attribute Procedures

NOTICE_BLOCK_THREAD create, set

NOTICE_BUSY_FRAMES create, set

NOTICE_EVENT_PROC create, set

Standard notices are centered in the owner frame and are always on top of the frame that
owns them. If the frame is in the iconified state when the notice is mapped, the notice will be
placed centered at the location of the pointer.

NOTICE_BLOCK_THREAD is relevant only for standard notices, those that have
NOTICE_LOCK_SCREEN = FALSE. Example 12-2 shows a standard, thread-blocking
notice.

Example 12-2. Creating a standard notice

/*
* Display a notice that does not lock the screen.
* This doesn’t return until a button on the notice is pressed.
* This is a standard blocking notice.
*/
frame_notice = xv_create(frame, NOTICE,

NOTICE_LOCK_SCREEN, FALSE, /* default */
NOTICE_BLOCK_THREAD, TRUE, /* default */
NOTICE_MESSAGE_STRINGS,

"Are you sure you want to Quit?",
NULL,
NOTICE_BUTTON_YES, "Confirm",
NOTICE_BUTTON_NO, "Cancel",
NOTICE_NO_BEEPING, TRUE,
NOTICE_STATUS, &result,
XV_SHOW, TRUE,
NULL);

switch (result) {
case NOTICE_YES:

/*confirm */
exit(0);
break;

case NOTICE_NO:
/* Cancel */

break;
default:

break;
}

314 XView Programming Manual

12.2.1.1 Using a notice callback

The previous notice examples did not use a callback for notice events. A callback may be
defined to handle the notice events for a standard notice. The attribute NOTICE_EVENT_PROC
specifies an application-defined callback procedure that is called when any of the buttons on
the notice are selected. This procedure has the following format:

void
notice_event_proc(notice, value, event)

Xv_Notice notice; /* public handle to notice */
int value; /* value associated with button */
Event *event; /* Pointer to struct with event info.*/

This procedure is called before the notice pops down. If a procedure is not specified for
NOTICE_EVENT_PROC, the notice still pops down when a button is pressed. Example 12-3
demonstrates a notice using NOTICE_EVENT_PROC. In this example, the callback procedure
my_notice_event_proc() is defined to handle all the notice button selections.

Example 12-3. A notice using a callback

xv_create(parent, NOTICE,
NOTICE_LOCK_SCREEN, FALSE,
NOTICE_BUTTON, "Save Changes", 100,
NOTICE_BUTTON, "Cancel", 101,
NOTICE_BUTTON, "Quit", 102,
NOTICE_MESSAGE_STRINGS,

"Press Save Changes to save changes to file and quit",
"Press Cancel to continue",
"Press Quit to quit",

NULL,
NOTICE_EVENT_PROC, my_notice_event_proc,
NULL);

/* my_notice_event_proc() Procedure */

my_notice_event_proc(notice, value, event)
Xv_Notice notice;
int value;
Event *event;
{

switch(value) {

case 100:
/* code for save changes */

break;

case 101:
/* code for cancel */

break;

case 102:
/* code for quit */

break;

default:
printf("Bad button value!!\n");

Notices

Notices 315

Example 12-3. A notice using a callback (continued)

break;
}

}

12.2.1.2 Selecting the busy frames

You can use NOTICE_BUSY_FRAMES to specify the frames or sub-windows that should be set
to “busy” during notice pop-up. NOTICE_BUSY_FRAMES only takes frames for its values.
The following code shows how to use NOTICE_BUSY_FRAMES.

void my_notice_event_proc();

xv_create(parent, NOTICE,
NOTICE_LOCK_SCREEN, FALSE,
NOTICE_BUTTON, "Save Changes", 100,
NOTICE_BUTTON, "Cancel", 101,
NOTICE_BUTTON, "Quit", 102,
NOTICE_MESSAGE_STRINGS,

"Press Save Changes to save changes to file and quit",
"Press Cancel to continue",
"Press Quit to quit",

NULL,
NOTICE_EVENT_PROC, my_notice_event_proc,
NOTICE_BUSY_FRAMES,

sub_frame1, /* frames to make busy */
sub_frame2, /* during pop-up. */
NULL,

NULL);

12.2.2 Notices That Lock the Screen

To create a screen-locking notice, set NOTICE_LOCK_SCREEN to TRUE. Screen-locking
notices lock the screen and block the thread of execution for the application. You create a
screen-locking notice as follows:

notice = xv_create(frame, NOTICE,
NOTICE_LOCK_SCREEN, TRUE,
NOTICE_MESSAGE_STRINGS,

"Are you sure you want to Quit?",
NULL,

NOTICE_BUTTON_YES, "Confirm",
NOTICE_BUTTON_NO, "Cancel",
XV_SHOW, TRUE,
NULL);

316 XView Programming Manual

Similarly, the calls below set the type of the notice, error_notice, to make it a screen-
locking notice.

xv_set(error_notice, XV_SHOW, TRUE,
NOTICE_LOCK_SCREEN, TRUE,
NULL);

All screen-locking notices block the thread of execution. Additional attributes apply when
NOTICE_LOCK_SCREEN is TRUE. Table 12-2 lists the attributes that apply when
NOTICE_LOCK_SCREEN is TRUE.

Table 12-2. Screen-Locking Notice Attributes (for NOTICE_LOCK_SCREEN = TRUE)

Attribute Procedures

NOTICE_FOCUS_XY create, set

NOTICE_TRIGGER create, set

NOTICE_TRIGGER_EVENT create, set

The position from which the notice shadow emanates is described by the attribute
NOTICE_FOCUS_XY. This value defaults to the current mouse position when the application
maps the notice. Example 12-4 shows code for a screen-locking notice.

Example 12-4. Creating a screen-locking notice

int return_val;
/* Create notice
* Pop up notice with shadow from (100, 200) relative to "parent"
* - this blocks
*/
notice = xv_create(parent, NOTICE,

NOTICE_LOCK_SCREEN, TRUE,
NOTICE_BUTTON, "Save Changes", 100,
NOTICE_BUTTON, "Cancel", 101,
NOTICE_BUTTON, "Quit", 102,
NOTICE_MESSAGE_STRINGS,

"Press Save Changes to save changes to file and quit",
"Press Cancel to continue",
"Press Quit to quit",

NULL,
NOTICE_FOCUS_XY, 100, 200,
NOTICE_STATUS, ¬ice_stat,
XV_SHOW, TRUE,
NULL);

/*
* Notice pops down when a button is pressed.
* notice_stat contains the value of the button that was clicked on.
*/
switch (notice_stat) {

case 100:
/* save changes */

break;

Notices

Notices 317

Example 12-4. Creating a screen-locking notice (continued)

case 101:
/* cancel */
break;

case 102:
/* quit */
break;

}

12.2.2.1 Notice triggers

If you want to assign accelerators to screen-locking notice buttons, or if you find it necessary
to give the user the choice of using mouse buttons or keyboard events to respond to a notice,
you can identify triggers that pop down the notice. The value of NOTICE_STATUS in this
case is NOTICE_TRIGGERED, and the event that caused the trigger will be in the Event
specified by NOTICE_TRIGGER_EVENT. When triggers are not used, the Event pointer can
be NULL. Example 12-5 shows how to use NOTICE_TRIGGER to catch a particular event in a
notice.

Example 12-5. The trigger_notice.c program

/*
* trigger_notice.c -- Demonstrate the use of triggers in notices.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/notice.h>

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Xv_opaque my_notify_proc();
extern void exit();

/*
* Initialize XView, create a frame, a panel and one panel button.
*/
xv_init(XV_INIT_ARGS, argc, argv, NULL);
frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Move",
PANEL_NOTIFY_PROC, my_notify_proc,
NULL);

/* make sure everything looks good */

318 XView Programming Manual

Example 12-5. The trigger_notice.c program (continued)

window_fit(panel);
window_fit(frame);

/* start window event processing */
xv_main_loop(frame);

}

/*
* my_notify_proc() -- called when the user selects the "Move"
* panel button. Put up a notice to get new coordinates
* to move the main window.
*/
Xv_opaque
my_notify_proc(item, event)
Panel_item item;
Event *event;
{

int result, x, y;
Panel panel = (Panel)xv_get(item, PANEL_PARENT_PANEL);
Frame frame = (Frame)xv_get(panel, XV_OWNER);
Xv_notice notice;

x = event_x(event), y = event_y(event);
printf("original click relative to panel: %d, %d0, x, y);
notice = xv_create(panel, NOTICE,
NOTICE_LOCK_SCREEN, TRUE,
NOTICE_TRIGGER_EVENT, event,
NOTICE_STATUS, &result,
XV_SHOW, TRUE,

NOTICE_FOCUS_XY, x, y,
NOTICE_MESSAGE_STRINGS,

"You may move the window to a new location specified by",
"clicking the Left Mouse Button somewhere on the screen",
"or cancel this operation by selecting
NULL,

NOTICE_BUTTON_YES, "cancel",
NOTICE_TRIGGER, MS_LEFT,
NOTICE_NO_BEEPING, TRUE,
NULL);

if (result == NOTICE_TRIGGERED) {
x = event_x(event) + (int)xv_get(frame, XV_X);
y = event_y(event) + (int)xv_get(frame, XV_Y);
printf("screen x,y: %d, %d0, x, y);
xv_set(frame, XV_X, x, XV_Y, y, NULL);

}

xv_destroy_safe(notice);
}

Notices

Notices 319

When this program is run and the user selects the Move panel button, a notice is displayed
instructing the user to select a new position for the application window. When the user
selects a new location, the window frame moves to that position.

When the notice pops down, the Event structure that NOTICE_TRIGGER_EVENT points to
contains the event that triggered the notice (popped it down). The x and y coordinates in the
Event structure are relative to the origin of the notice-owner window.

To translate these coordinates to screen-specific coordinates, save the original event location
and add to that the (x, y) coordinates returned in NOTICE_TRIGGER_EVENT when the notice
pops down, as well as the current coordinates of the frame (main application).

Before leaving trigger_notice.c , we should mention the attribute NOTICE_NO_BEEPING that
is used to prevent the notice from beeping when it is displayed. Beeping the screen is usually
done when there is an error condition you wish to alert the user about. In this example, there
is no error condition—it is a simple dialog with the user.

12.3 Destroying a Notice

Notices can be destroyed with xv_destroy(notice). If a notice is destroyed when it is
visible, it will be taken down. Use xv_destroy_safe() if the destruction is done in a
NOTICE_EVENT_PROC.

12.4 Another Example

In the previous example, we used many of the attributes covered in this section in addition to
using some generic and common attributes for the panel items. Example 12-6 goes a little
further to demonstrate how the NOTICE package works in conjunction with the rest of
XView. It creates a frame, a panel with two panel buttons, and a message item. Initially,
only the Quit button and the Commit button are displayed. When the user selects either but-
ton, a notice pops up asking the user to confirm or cancel the proposed action. If the user
confirms quitting the program, the program quits. Otherwise, the result, either Confirmed or
Canceled, is displayed as the text of the message item. In previous examples, the notice is
destroyed immediately after it is unmapped and the status is obtained. In this example, it is
not destroyed, but is reused over and over again.

Example 12-6. The notice.c program

/*
* notice.c --
* This application creates a frame, a panel, and 3 panel buttons.
* A message button, a Quit button (to exit the program) and a
* dummy "commit" button. Extra data is attached to the panel
* items by the use of XV_KEY_DATA. The callback routine for the
* quit and Commit buttons is generalized enough that it can apply
* to either button (or any arbitrary button) because it extracts
* the expected "data" (via XV_KEY_DATA) from whatever panel

320 XView Programming Manual

Example 12-6. The notice.c program (continued)

* button might have called it.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/notice.h>

/*
* assign "data" to panel items using XV_KEY_DATA ... attach the
* message panel item, a prompt string specific for the panel
* item’s notice prompt, and a callback function if the user
* chooses "yes".
*/
#define MSG_ITEM 10 /* any arbitrary integer */
#define NOTICE_PROMPT 11
#define CALLBACK_FUNC 12

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Panel_item msg_item;
Xv_opaque my_notify_proc();
extern int exit();

/*
* Initialize XView, and create frame, panel and buttons.
*/
xv_init(XV_INIT_ARGS, argc, argv, NULL);
frame = (Frame)xv_create(XV_NULL, FRAME,

FRAME_LABEL, argv[0],
NULL);

panel = (Panel)xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

msg_item = (Panel_item)xv_create(panel, PANEL_MESSAGE, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, my_notify_proc,
XV_KEY_DATA, MSG_ITEM, msg_item,
/*
* attach a prompt specific for this button used by
* the notice.
*/
XV_KEY_DATA, NOTICE_PROMPT, "Really Quit?",
/*
* a callback function to call if the user answers "yes"
* to prompt
*/
XV_KEY_DATA, CALLBACK_FUNC, exit,
NULL);

/*
* now that the Quit button is under the message item,
* layout horizontally
*/

Notices

Notices 321

Example 12-6. The notice.c program (continued)

xv_set(panel, PANEL_LAYOUT, PANEL_HORIZONTAL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Commit...",
PANEL_NOTIFY_PROC, my_notify_proc,
XV_KEY_DATA, MSG_ITEM, msg_item,
/*
* attach a prompt specific for this button used by
* notices
*/
XV_KEY_DATA, NOTICE_PROMPT, "Update all changes?",
/*
* Note there is no callback func here, but one could be
* written
*/
NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

/*
* my_notify_proc()
* The "key data" associated with the panel item is extracted via
* xv_get(). The resulting choice is displayed in the panel
* message item.
*/
Xv_opaque
my_notify_proc(item, event)
Panel_item item;
Event *event;
{

int result;
int (*func)();
char *prompt;
Panel_item msg_item;
Panel panel;
static Xv_notice notice = NULL;

func = (int(*)())xv_get(item, XV_KEY_DATA, CALLBACK_FUNC);
prompt = (char *)xv_get(item, XV_KEY_DATA, NOTICE_PROMPT);
msg_item = (Panel_item)xv_get(item, XV_KEY_DATA, MSG_ITEM);
panel = (Panel)xv_get(item, PANEL_PARENT_PANEL);
/*
* Create the notice and get a response.
*/
if (!notice) {

notice = xv_create(panel, NOTICE,
NOTICE_LOCK_SCREEN, TRUE,
NOTICE_STATUS, &result,
XV_SHOW, TRUE,
NOTICE_MESSAGE_STRINGS,

prompt,
"Press YES to confirm",
"Press NO to cancel",
NULL,

322 XView Programming Manual

Example 12-6. The notice.c program (continued)

NOTICE_BUTTON_YES, "YES",
NOTICE_BUTTON_NO, "NO",
NULL);

}
else {
/*
* If the notice has been created, just set its
* message strings and show it.
*/
xv_set(notice,

XV_SHOW, TRUE,
NOTICE_MESSAGE_STRINGS,

prompt,
"Press YES to confirm",
"Press NO to cancel",
NULL,

NULL);
}

switch(result) {
case NOTICE_YES:

xv_set(msg_item, PANEL_LABEL_STRING, "Confirmed", NULL);
if (func)

(*func)();
break;

case NOTICE_NO:
xv_set(msg_item, PANEL_LABEL_STRING, "Cancelled", NULL);
break;

case NOTICE_FAILED:
xv_set(msg_item, PANEL_LABEL_STRING, "unable to pop-up",
NULL);

break;
default:

xv_set(msg_item, PANEL_LABEL_STRING, "unknown choice",
NULL);

}
}

12.5 Notice Package Summary

Table 12-3 lists the attributes for the NOTICE package. These attributes are described fully in
the XView Reference Manual.

Notices

Notices 323

Table 12-3. Notice Attributes

NOTICE_BLOCK_THREAD NOTICE_LOCK_SCREEN

NOTICE_BUSY_FRAMES NOTICE_MESSAGE_STRING

NOTICE_BUTTON NOTICE_MESSAGE_STRINGS

NOTICE_BUTTON_NO NOTICE_MESSAGE_STRINGS_ARRAY_PTR

NOTICE_BUTTON_YES NOTICE_NO_BEEPING

NOTICE_EVENT_PROC NOTICE_STATUS

NOTICE_FOCUS_XY NOTICE_TRIGGER

NOTICE_FONT NOTICE_TRIGGER_EVENT

XV_KEY_DATA XV_SHOW

324 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

13
Cursors

A cursor is an image that tracks the mouse on the display. Each window has its own cursor
which you can change. There are some cursors defined by OPEN LOOK that correspond to
specific window manager operations such as resizing or dragging windows. For these cases,
you cannot redefine a cursor. However, for windows in your application, you can assign any
cursor image you like.

13.1 Creating Cursors

To use the CURSOR package, include the header file <xview/cursor.h>. It provides the neces-
sary types and definitions for using the package. The cursor object’s type is Xv_Cursor.
Figure 13-1 shows the class hierarchy for a cursor object.

Generic
Object Cursor

Figure 13-1. Cursor class hierarchy

In general, to create a cursor, create an image and a cursor using that image as the
CURSOR_IMAGE data:

Server_image svr_image;
Xv_Cursor cursor;

cursor = (Xv_Cursor)xv_create(owner, CURSOR,
CURSOR_IMAGE, svr_image,
NULL);

The owner of the cursor may be any XView object. The root window associated with the
XView object is used internally by the CURSOR package. If NULL, then the root window of
the default screen is used.

Cursors

Cursors 327

The cursor is then assigned to a window associated with an XView object such as a frame,
canvas, or panel:

xv_set(window, WIN_CURSOR, cursor, NULL);

You must supply the handle of an XView window in the parent parameter when getting
WIN_CURSOR. Getting WIN_CURSOR on the root window will return NULL. It is illegal to
assign a cursor to a window if the screens do not match. This is normally not a problem
unless you are using multiple displays in your application. In this case, you should be sure to
use an XView object that has a common display as the owner for the cursor. In the code line
above, window should be the visible window to the application. For canvases and panels,
this should be the paint window, not the canvas or panel object itself.* If you assign your
own cursor to an openwin object (such as a canvas or panel) and the object has been split
(either by the user splitting views or by the application), then the application is responsible
for assigning the cursor to each new paint window.

13.1.1 simple_cursor.c

To introduce how to use the CURSOR package, we’ll start with a short program that shows
how to set the cursor for a canvas.

Example 13-1. The simple_cursor.c program

/*
* simple_cursor.c -- create a cursor (looks like an hourglass) and
* assign it to a canvas window.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/cursor.h>
#include <xview/svrimage.h>

/* data that describes the cursor’s image -- see SERVER_IMAGE below */
short cursor_bits[] = {
/* Width=16, Height=16, Depth=1, */

0x7FFE,0x4002,0x200C,0x1A38,0x0FF0,0x07E0,0x03C0,0x0180,
0x0180,0x0240,0x0520,0x0810,0x1108,0x23C4,0x47E2,0x7FFE

};

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Canvas canvas;
Xv_Cursor cursor;
Server_image svr_image;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

*See Chapter 5, Canvases and Openwin, for more information about the paint window.

328 XView Programming Manual

Example 13-1. The simple_cursor.c program (continued)

/*
* create a server image to use as the cursor’s image.
*/
svr_image = (Server_image)xv_create(XV_NULL, SERVER_IMAGE,

XV_WIDTH, 16,
XV_HEIGHT, 16,
SERVER_IMAGE_BITS, cursor_bits,
NULL);

/*
* create a cursor based on the image just created
*/
cursor = (Xv_Cursor)xv_create(XV_NULL, CURSOR,

CURSOR_IMAGE, svr_image,
NULL);

/*
* Create a base frame and a canvas
*/
frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
canvas = (Canvas)xv_create(frame, CANVAS,

XV_WIDTH, 100,
XV_HEIGHT, 100,
NULL);

/*
* set the cursor to the paint window for the canvas
* Do not set it for the canvas itself.
*/
xv_set(xv_get(canvas, CANVAS_NTH_PAINT_WINDOW, 0),

WIN_CURSOR, cursor,
NULL);

window_fit(frame);
window_main_loop(frame);

}

Beware that if a canvas (or any openwin object) is split, the new view (which has a corre-
sponding paint window) does not inherit the cursor from the old view window.* Note that
the server images used in cursors must be one-bit deep. Cursors can have two colors associ-
ated with them by specifying foreground and background colors; you cannot specify server
images whose depths are greater than 1. See Section 13.4, “Color Cursors.”

*Chapter 5, Canvases and Openwin, discusses splitting views.

Cursors

Cursors 329

13.2 Predefined Cursors

A number of predefined cursors are available in the CURSOR package for use as OPEN LOOK
cursors. To use these cursors, you may specify the CURSOR_SRC_CHAR and
CURSOR_MASK_CHAR attributes with certain predefined constants as values for these attri-
butes. In <xview/cursor.h>, there are some OPEN LOOK cursor defines prefixed by OLC_.
When using these attributes, you should not use the CURSOR_IMAGE attribute since you can-
not use both simultaneously. Using the previous example, we can remove the
SERVER_IMAGE references and modify the call to create the cursor:

cursor = xv_create(NULL, CURSOR,
CURSOR_SRC_CHAR, OLC_BUSY_PTR,
NULL);

Predefined cursors are really images from a pre-built font. The value in the attribute-value
pair is the character to use from that font—or rather, it is the index into the array of glyphs
that the font contains. The glyph from the font is extracted and used as the image. You can
use the attribute CURSOR_MASK_CHAR similarly. This image is used as the mask for the
source image. If no mask is given, the same image used as the source is used as the mask.*

13.3 The Hotspot and Cursor Location

The hotspot on a cursor is the location in which the cursor is located if the user generates an
event like pressing a mouse button or typing at the keyboard, or if you were to query its posi-
tion. For example, if a cursor is shaped like an arrow, the hotspot should be at the tip of the
arrow. If the hotspot for a cursor were set to (0, 0), then the hotspot would be the upper-left
corner of the image used. A cursor shaped like a bull’s eye (16x16) might have its hotspot
at (7, 7) to indicate that the focus for the cursor is in the middle.† You set a cursor’s hotspot
with the attributes CURSOR_XHOT and CURSOR_YHOT. CURSOR_XHOT specifies the x coordi-
nate of the hotspot. CURSOR_YHOT specifies the y coordinate of the hotspot. You can find out
what the current position of the cursor is by using the attribute WIN_MOUSE_XY, as in:

r = (Rect *)xv_get(window, WIN_MOUSE_XY);

The return value from xv_get() is a pointer to a Rect structure. The r_width and
r_height fields of this structure are unused (0, 0), but the r_top and r_left fields
indicate the position of the hotspot for the cursor with respect to the window, window. The
program in Example 13-2 demonstrates how this is used, and it shows how to create your
own pixmap for a cursor image.

*See XCreateGlyphCursor and XCreatePixmapCursor in Volume Two, Xlib Reference Manual.
†The value 7, 7 is used because the origin is at 0, 0—not 1, 1.

330 XView Programming Manual

Example 13-2. The hot_spot.c program

/*
* hot_spot.c -- create a cursor and query its position on the
* screen and in the panel’s window.
* Our own function, create_cursor(), attaches a new cursor to the
* window parameter passed into the function.
*/
#include <X11/X.h>
#include <X11/Xlib.h> /* for the xlib graphics */
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/cursor.h>
#include <xview/svrimage.h>

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
void do_it();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

/*
* Create a base frame, a panel, and a panel button.
*/
frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
create_cursor(xv_get(panel, CANVAS_NTH_PAINT_WINDOW, 0));
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Push Me",
PANEL_NOTIFY_PROC, do_it,
NULL);

window_fit(panel);
window_fit(frame);
window_main_loop(frame);

}

/*
* When user selects the panel button, the current mouse location is
* printed relative to the panel’s window and to the screen.
* This location is governed by the hot spot on the cursor.
*/
void
do_it(item, event)
{

Rect *r;
Panel panel = (Panel)xv_get(item, PANEL_PARENT_PANEL);

r = (Rect *)xv_get(xv_get(panel, XV_ROOT), WIN_MOUSE_XY);
printf("Root window: %d %d\n", r–>r_left, r–>r_top);
r = (Rect *)xv_get(xv_get(panel,

CANVAS_NTH_PAINT_WINDOW, 0), WIN_MOUSE_XY);
printf("Panel window: %d %d\n", r–>r_left, r–>r_top);

}

Cursors

Cursors 331

Example 13-2. The hot_spot.c program (continued)

/*
* create_cursor() creates a bull’s eye cursor and assigns it
* to the window (parameter).
*/
create_cursor(window)
Xv_Window window;
{

Xv_Cursor cursor;
Server_image image;
Pixmap pixmap;
Display *dpy = (Display *)xv_get(window, XV_DISPLAY);
GC gc;
XGCValues gcvalues;

image = (Server_image)xv_create(XV_NULL, SERVER_IMAGE,
XV_WIDTH, 16,
XV_HEIGHT, 16,
NULL);

pixmap = (Pixmap)xv_get(image, XV_XID);
/* Create GC with reversed foreground and background colors to
* clear pixmap first. Use 1 and 0 because pixmap is 1-bit deep.
*/
gcvalues.foreground = 0;
gcvalues.background = 1;
gc = XCreateGC(dpy, pixmap, GCForeground|GCBackground, &gcvalues);
XFillRectangle(dpy, pixmap, gc, 0, 0, 16, 16);
/*
* Reset foreground and background values for XDrawArc() routines.
*/
gcvalues.foreground = 1;
gcvalues.background = 0;
XChangeGC(dpy, gc, GCForeground | GCBackground, &gcvalues);
XDrawArc(dpy, pixmap, gc, 2, 2, 12, 12, 0, 360 * 64);
XDrawArc(dpy, pixmap, gc, 6, 6, 4, 4, 0, 360 * 64);

/* Create cursor and assign it to the window (parameter) */
cursor = xv_create(XV_NULL, CURSOR,

CURSOR_IMAGE, image,
CURSOR_XHOT, 7,
CURSOR_YHOT, 7,
NULL);

xv_set(window, WIN_CURSOR, cursor, NULL);

/* free the GC -- the cursor and the image must not be freed. */
XFreeGC(dpy, gc);

}

When the program is running, each time the panel button is pushed, it prints the cursor’s
position relative to the panel’s window and relative to the root window (absolute screen coor-
dinates). You can move the base frame around on the screen to see how the root window
coordinates change.

332 XView Programming Manual

The routine create_cursor() creates a bull’s eye cursor for the window passed as the
parameter to the routine. The cursor image must be a Server_image, so we first create a
server image, then get the Pixmap associated with it using the XV_XID, and lastly use Xlib
graphics to draw two circles in the pixmap.

We need a GC, so we create one based on the pixmap obtained from the server image. The
pixmap is one-bit deep, so the foreground and background colors are set to 0, 1 (to clear the
pixmap first), then to 1, 0 so as to draw the two circles. We then create the cursor using the
server image and setting the hotspots accordingly. We free the gc, but the Server_image
(which contains the pixmap) and the cursor must not be freed so the cursor can be main-
tained by the window.

If you would rather set the cursor for a window using raw Xlib calls such as XCreatePix-
mapCursor, XCreateGlyphCursor, or XCreateFontCursor, use the X window
associated with the Xv_Window parameter. To get it, use:

xv_get(window, XV_XID)

and assign an X Cursor object to that window.*

13.4 Color Cursors

You can define the foreground and background colors of a cursor independently of the win-
dow the cursor is assigned to. You may not have more than two colors per cursor because X
does not support color images as cursor glyphs. Thus, to create or modify an existing cursor
to have color, you need to specify foreground and background colors. Because of the use of
color, the header file <xview/cms.h> must be included. The colors are of type
Xv_singlecolor and should be initialized before use:

#include <xview/cms.h>
...
Xv_singlecolor fg, bg;

bg.red = 250, bg.green = 230, bg.blue = 30;
fg.red = 180, fg.green = 100, fg.blue = 20;

cursor = xv_create(NULL, CURSOR,
CURSOR_IMAGE, image,
CURSOR_FOREGROUND_COLOR, &fg,
CURSOR_BACKGROUND_COLOR, &bg,
NULL);

Note, by default, a cursor is created with a mask equal to the image; therefore, there is no
background color. To use a background color, set the cursor’s CURSOR_BACKGROUND_COLOR
and the CURSOR_IMAGE attributes, and then set the CURSOR_OP as follows:

xv_set(cursor,CURSOR_OP,PIX_SRC,NULL);

*See Volume One, Xlib Programming Manual.

Cursors

Cursors 333

13.5 Support for Text Drag and Drop

The Cursor package supports drag and drop cursors for text. There are attributes that change
the cursor to indicate that text is being dragged. When the currently selected item is over an
acceptable drop site, a preview cursor is displayed. There is also an attribute to support a
reject cursor as well, but it is an unsupported attribute.

The attribute CURSOR_DRAG_STATE indicates whether the cursor is over a neutral zone
(CURSOR_NEUTRAL), a valid drop zone (CURSOR_ACCEPT), or an invalid drop zone
(CURSOR_REJECT). The shape of the cursor varies depending on the state.*

CURSOR_DRAG_TYPE changes the cursor to indicate whether a move (CURSOR_MOVE) or copy
(CURSOR_DUPLICATE) operation is being performed. The duplicate version has a shadow.
When combined with CURSOR_STRING, you get either a text move or a text duplicate cursor.

CURSOR_STRING creates a drag and drop Cursor for text. The value of the attribute is the
string which is to be displayed inside the flying punch card. If the string exceeds 3 characters,
only the first 3 characters are displayed, and an arrow is shown within the cursor.
CURSOR_STRING is mutually exclusive of CURSOR_IMAGE, CURSOR_SRC_CHAR, and
CURSOR_MASK_CHAR. The string is not copied. Once the Drag and Drop operation is com-
plete, the objects used in the operation must be destroyed.

Example 13-3 shows how to use a drag and drop text cursor with a drag and drop object.

Example 13-3. Using drag and drop text cursors

if (drag and drop started) {
type = event_ctrl_is_down(event) ? CURSOR_DUPLICATE : CURSOR_MOVE;
neutral_drag_cursor = xv_create(window, CURSOR,

CURSOR_STRING, selected_string,
CURSOR_DRAG_TYPE, type,
CURSOR_DRAG_STATE, CURSOR_NEUTRAL,
NULL);

accept_drag_cursor = xv_create(window, CURSOR,
CURSOR_STRING, selected_string,
CURSOR_DRAG_TYPE, type,
CURSOR_DRAG_STATE, CURSOR_ACCEPT,
NULL);

xv_set(dnd_object,
DND_CURSOR, neutral_drag_cursor,
DND_ACCEPT_CURSOR, accept_cursor,
NULL);

}

*Note: The current drag and drop protocol does not support a reject cursor.

334 XView Programming Manual

13.6 Cursor Package Summary

Table 13-1 shows the CURSOR package procedure. Table 13-2 lists the attributes for the
CURSOR package. This information is described fully in the XView Reference Manual.

Table 13-1. Cursor Procedure

cursor_copy()

Table 13-2. Cursor Attributes

CURSOR_BACKGROUND_COLOR CURSOR_OP

CURSOR_DRAG_STATE CURSOR_SRC_CHAR

CURSOR_DRAG_TYPE CURSOR_STRING

CURSOR_FOREGROUND_COLOR CURSOR_XHOT

CURSOR_IMAGE CURSOR_YHOT

CURSOR_MASK_CHAR

XV_SHOW XV_XID

Cursors

Cursors 335

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

14
Icons

A user may close an application to save space on the display. The program is still running
and it may even be active, but it is not receiving input from the user. In order to represent the
application in its closed state, an icon is used. An icon is a small picture that represents the
application, as shown in Figure 14-1 from the OPEN LOOK GUI Specification Guide.

Figure 14-1. Three bordered default icons

The graphic image that icons use may be used for other purposes and, therefore, may be
shared among other objects in the application. But the icon image should be designed to eas-
ily identify the application while in a closed state. Icons may also have text associated with
them. Space is limited, so the text is usually the name of the application.

14.1 Creating and Destroying Icons

To use the ICON package, include the header file <xview/icon.h>. Figure 14-2 shows the
class hierarchy for the ICON package.

The form for creating an icon is:

Icon icon;

icon = (Icon)xv_create(owner, ICON, attributes, NULL);

The owner of an icon is a base frame, but it may be created with a NULL owner. Once an
icon is assigned to a frame, the owner of the icon is changed to that frame. This is another
example of delayed binding.

Icons

Icons 339

Generic
Object (Drawable) Window Icon

Figure 14-2. Icon package class hierarchy

When destroying an icon, the server image associated with the icon is not destroyed—it is
your responsibility to free the server image and the pixmap associated with the icon if
needed.

14.2 The Icon’s Image

The most important thing about the icon is its graphic representation, so you will also need to
be familiar with the SERVER_IMAGE package described in Chapter 15, Nonvisual Objects.
Once an image is created, you can create an icon and assign it to a frame. This chapter does
not discuss the creation of server images for icons, whether they originate from filenames or
from the actual data.

The program in Example 14-1 creates two server images—it uses open.icon as the image for
the panel button and closed.icon for the application’s icon.* Pressing the panel button causes
the application to close to its iconic state. You must use a window manager function to open
the application back up again.

Example 14-1. The icon_demo.c program

/*
* icon_demo.c -- demonstrate how an icon is used. Create a server
* image and create an icon object with the image as the ICON_IMAGE.
* Use the icon as the frame’s icon.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/svrimage.h>
#include <xview/icon.h>

short open_bits[] = {
#include "open.icon"
};

short closed_bits[] = {
#include "closed.icon"
};

main(argc, argv)

*The files open.icon and closed.icon are not included in this book due to their length and complexity. They are bit-
map files represented in ASCII hex notation. The files are included with the XView distribution.

340 XView Programming Manual

Example 14-1. The icon_demo.c program (continued)

int argc;
char *argv[];
{

Frame frame;
Panel panel;
Server_image open_image, closed_image;
Icon icon;
void close_frame();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);

open_image = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 64,
XV_HEIGHT, 64,
SERVER_IMAGE_BITS, open_bits,
NULL);

closed_image = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 64,
XV_HEIGHT, 64,
SERVER_IMAGE_BITS, closed_bits,
NULL);

(void) xv_create(panel, PANEL_MESSAGE,
PANEL_LABEL_IMAGE, open_image,
PANEL_NOTIFY_PROC, close_frame,
NULL);

icon = (Icon)xv_create(frame, ICON,
ICON_IMAGE, closed_image,
XV_X, 100,
XV_Y, 100,
NULL);

xv_set(frame, FRAME_ICON, icon, NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

void
close_frame(item, event)
Panel_item item;
Event *event;
{

Frame frame = (Frame)xv_get(xv_get(item,
PANEL_PARENT_PANEL), XV_OWNER);

xv_set(frame, FRAME_CLOSED, TRUE, NULL);
}

Icons

Icons 341

The callback routine for the panel button, close_frame(), makes a call to an XView rou-
tine which sends window manager requests from the client to the window manager. In this
case, we set the frame’s FRAME_CLOSED attribute to TRUE to request that the window man-
ager iconify the application associated with the frame parameter.*

The position of the image with respect to the icon is set using the attribute
ICON_IMAGE_RECT, which takes as its value a pointer to a Rect structure. The r_top and
r_left fields of the structure indicate the offset from the upperleft corner of the icon where
the image is placed. The r_width and r_height fields describe the size of the image. If
the icon is going to be a different size from the size of the icon’s image, or if there is going to
be text used with this icon, then the ICON_IMAGE_RECT attribute should be used. Section
14.2.1, “The Icon Text,” has an example.

14.2.0.1 Color icons

You can make color icons in several ways. You can create a color server image and use that
as the ICON_IMAGE. You can set the foreground and background colors for a monochrome
image (1-bit deep image) and change the colormap of the icon. For example:

Icon icon;
unsigned long foreground_index, background_index;
Server_image image; /* assume 1-bit deep monochrome image */
Cms cms;

icon = (Icon)xv_create(frame, ICON,
ICON_IMAGE, image,
WIN_CMS, cms,
WIN_FOREGROUND_COLOR, foreground_index,
WIN_BACKGROUND_COLOR, background_index,
NULL);

The icon created assumes that the colormap object, cms, has been created. The foreground
and background colors are indices into the colormap (see Chapter 21, Color, for more infor-
mation on colormap segments). Also see the program x_draw.c in Appendix F, Example Pro-
grams.

Example 14-2. Color cursors

#include <xview/xview.h>
#include <xview/svrimage.h>
#include <xview/cms.h>

/* Icon data */
static unsigned short icon_bits[] = {
#include "cardback.icon"
};

main(argc,argv)
int argc;
char *argv[];
{

*Window manager functions are discussed in Chapter 4, Frames.

342 XView Programming Manual

Example 14-2. Color cursors (continued)

Frame frame;

Icon icon;
unsigned long foreground_index, background_index;
Server_image image; /* assume 1-bit deep monochrome image */
Cms cms;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = xv_create(NULL,FRAME,NULL);

image = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 64,
XV_HEIGHT, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, icon_bits,
NULL);

foreground_index = 2;
background_index = 0;

cms = (Cms)xv_create(NULL,CMS,
CMS_SIZE, 3,
CMS_NAMED_COLORS, "green","red","blue",NULL,
NULL);

icon = (Icon)xv_create(frame, ICON,
ICON_IMAGE, image,
WIN_CMS, cms,
WIN_FOREGROUND_COLOR, foreground_index,
WIN_BACKGROUND_COLOR, background_index,
NULL);

xv_set(frame, FRAME_ICON, icon, NULL);

xv_main_loop(frame);
}

14.2.0.2 ICON_TRANSPARENT

If the ICON_TRANSPARENT attribute is set to TRUE (it’s FALSE by default), the icon’s back-
ground color is set to the background color of the root window. This may give the effect that
the icon is transparent in the case where the root window is a solid color. However, be care-
ful when the root window has a backing bitmap pattern or a different colormap from the icon.

Icons

Icons 343

14.2.0.3 ICON_MASK_IMAGE

The attribute ICON_MASK_IMAGE may be used to clip all drawing into the pixmap to the bits
set in the Pixmap or Server_image specified here. Therefore, this image should be a
1-bit deep bitmap. The image used as the icon mask is usually a “shadow” of the icon’s nor-
mal image. That is, it is the same image “filled in,” resulting in a totally black 1-bit deep
icon that has the same shape as the icon’s image.

Example 14-2 can be modified to use this attribute by adding the following code:

image_mask = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 64,
XV_HEIGHT, 64,
XV_DEPTH, 1,
SERVER_IMAGE_BITS, closed_image_mask_bits,
NULL);

icon = (Icon)xv_create(frame, ICON,
ICON_IMAGE, closed_image,
ICON_MASK_IMAGE, image_mask,
XV_X, 100,
XV_Y, 100,
NULL);

When used in conjunction with the ICON_TRANSPARENT attribute, it may be possible to cre-
ate an icon that appears to have a shape other than a square.

14.2.1 The Icon Text

Each icon can have text associated with it. This text is not part of the icon’s image; it is ren-
dered on top of the image after the image is rendered. To specify the text displayed in the
icon, use the generic attribute ICON_LABEL.* By default, the text is displayed at the bottom
of the icon area. This may overlap the icon’s image. You can change the position in which
the text is rendered by using the attribute ICON_LABEL_RECT. The value of the attribute
describes a rectangular region in which the text will overwrite anything underneath it. If the
text does not fit, it is clipped by this region. To keep the entire image on the icon and display
the text without writing over the image, define your icon to be large enough to include both
the image and the extents of the text without these regions overlapping. This might make
your icon a nonstandard size, however. (The size of an icon is typically 64x64 pixels.)

The code fragment in Example 14-3 implements added sizes to compensate for text while
preserving enough area to display the entire icon.

Example 14-3. Redefining an icon’s size to include its label

...
Rect image_rect, label_rect;
Server_image image;
Icon icon;
...

*ICON_LABEL is defined to be XV_LABEL in <xview/icon.h>.

344 XView Programming Manual

Example 14-3. Redefining an icon’s size to include its label (continued)

rect_construct(&image_rect, 0, 20, 64, 64);
rect_construct(&label_rect, 0, 0, 64, 20);
icon = xv_create(frame, ICON,

XV_WIDTH, 64,
XV_HEIGHT, 64 + 20,
XV_LABEL, "Sample",
ICON_LABEL_RECT, &label_rect,
ICON_IMAGE, image,
ICON_IMAGE_RECT, &image_rect,
NULL);

xv_set(frame, FRAME_ICON, icon, NULL);

The first thing we do is construct the image and label area by using the rect_

construct() macro found in <xview/rect.h>. The image is positioned at 0, 20 and is a
size of 64x64. The text is positioned at the upperleft corner (0, 0), extends to the width of
the icon and is 20 pixels high. The size of the icon is 64, and the height of the text is 20, so
when we create the icon, we set the height of the icon object using XV_HEIGHT at 64+20.

14.2.2 ICON_TRANSPARENT_LABEL

The ICON_TRANSPARENT_LABEL attribute specifies a string that is drawn into the icon using
the foreground color only. Pixels other than those in the font set are not affected.

Creating, setting, and getting ICON_TRANSPARENT_LABEL is equivalent to creating, setting,
and getting ICON_LABEL, except that the string is drawn in the foreground color only.

14.3 Icon Package Summary

There are no procedures or macros in the ICON package. Table 14-1 shows the attributes for
the ICON package. This information is described fully in the XView Reference Manual.

Table 14-1. Icon Attributes

ICON_FONT ICON_LABEL_RECT

ICON_HEIGHT ICON_MASK_IMAGE

ICON_IMAGE ICON_TRANSPARENT

ICON_IMAGE_RECT ICON_TRANSPARENT_LABEL

ICON_LABEL ICON_WIDTH

XV_LABEL

Icons

Icons 345

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

15
Nonvisual Objects

This chapter addresses nonvisual objects—objects that are not elements of the user interface.
Nonvisual objects include the screen, the display, the X11 server, and server images. The
FULLSCREEN package is used to grab the X server, and an instance of it is considered a non-
visual object. Nonvisual objects are not viewed on the screen, but they have a place in the
XView object hierarchy. Like all XView objects, they share many of the generic and com-
mon properties and can be manipulated using xv_create(), xv_set(), xv_get(), or
xv_find().

Nonvisual objects are typically used internally by XView and are seldom used directly in an
application. Therefore, this chapter contains advanced material that may not be essential to
all programmers. Figure 15-1 shows the class hierarchy for nonvisual objects.

Generic
Object

Server Screen (Drawable) Fullscreen

Server Image

Figure 15-1. Nonvisual objects class hierarchy

Nonvisual Objects

Nonvisual Objects 349

15.1 The Display

There is no XView Display object. If you need the Display data structure as defined by X,
you can get the value of the attribute XV_DISPLAY. This can be used on virtually any visible
XView object except for panel items. For example, to get the display associated with the
Frame, use:

Display *dpy;

dpy = (Display *)xv_get(frame, XV_DISPLAY);

The object does not have to be displayed or visible—just created. To do this, the header file
<X11/Xlib.h> must be included for the declaration of the Display data structure. This
structure contains a great deal of information that describes attributes of the workstation, the
server being used, and more. See Volume One, Xlib Programming Manual, and Volume
Two, Xlib Reference Manual, for more information.

15.2 The Screen Object

An Xv_Screen is associated with virtually all XView objects. To use the Xv_Screen
object, you must include the file <xview/screen.h>. To get a handle on the current screen, use
xv_get() on an object:

Xv_Screen xv_screen;

xv_screen = (Xv_Screen)xv_get(frame, XV_SCREEN);

The Xv_Screen object carries useful information such as the screen number of the root
window, all the visuals, the colormap, the server, and so on, that are associated with that
screen.

The Xv_Screen object differs from the Screen data structure defined by Xlib and, in fact,
has nothing to do with the X11 Screen data type (defined in <X11/Xlib.h>). That is, you
cannot use the following call to xv_get() to get a corresponding Screen pointer.

xv_get(xv_screen, XV_XID) /* Doesn’t work */

There is no associated XID for the SCREEN package.

Because the X Screen type provides information not available from the Xv_Screen
object, it may be useful to get the X Screen. Once the XView screen is obtained, the X
Screen type can be gotten by using the SCREEN_NUMBER of the screen and the Display
pointer associated with an arbitrary visual object. Example 15-1 demonstrates how to do this
for a frame.

350 XView Programming Manual

Example 15-1. Getting a pointer for a particular frame object (screen.c)

/*
* screen.c -- get some simple info about the current screen:
* width, height, depth.
*/
#include <xview/xview.h>
#include <xview/screen.h>

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Xv_Screen screen;
Display *dpy;
int screen_no;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);

dpy = (Display *)xv_get(frame, XV_DISPLAY);
printf("Server display = ’%s’0, dpy–>vendor);
screen = (Xv_Screen)xv_get(frame, XV_SCREEN);

screen_no = (int)xv_get(screen, SCREEN_NUMBER);
printf("Screen #%d: width: %d, height: %d, depth: %d0,

screen_no,
DisplayWidth(dpy, screen_no),
DisplayHeight(dpy, screen_no),
DefaultDepth(dpy, screen_no));

}

As shown in Example 15-1, you can use any of the macros defined in <X11/Xlib.h> to get
information about the default screen such as the width, height, depth, and so on. From this
information, you can get information about the physical frame buffer. These are Xlib-related
issues not covered in this book.

15.2.1 Multiple Screens

Each X11 server supports multiple screens. Each screen can have different attributes such as
colormaps, depth, size and so on. The screens can actually be different physical devices,
although they are connected to the same physical computer. Each screen has its own root
window as well, and since the root window is the parent for all base frames, XView can
allow windows to exist on any screen.

The way we take advantage of this capability is to first establish a connection to the X11
server and then to get the root window of each screen. With a handle to the root window, we
can use it as the parent to any frame we create.

Example 15-2 demonstrates how two frames can be created on two different screens attached
to a single server. Note that this code relies on the fact that the server supports more than one
screen.

Nonvisual Objects

Nonvisual Objects 351

Example 15-2. Display a base frame on two screens

/*
* multiscreen.c -- display a base frame on two different screens
* attached to the same X11 server. In order for this program to
* work, you must have two screens.
*/
#include <xview/xview.h>

main(argc,argv)
int argc;
char *argv[];
{

Xv_Server server;
Xv_Screen screen_0, screen_1;
Xv_Window root_0, root_1;
Frame frame_0, frame_1;

server = xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, 0);

screen_0 = (Xv_Screen) xv_get(server, SERVER_NTH_SCREEN, 0);
root_0 = (Xv_Window) xv_get(screen_0, XV_ROOT);

screen_1 = (Xv_Screen) xv_get(server, SERVER_NTH_SCREEN, 1);
root_1 = (Xv_Window) xv_get(screen_1, XV_ROOT);

frame_0 = (Frame) xv_create(root_0, FRAME,
FRAME_LABEL, "SCREEN 0",
NULL);

frame_1 = (Frame) xv_create(root_1, FRAME,
FRAME_LABEL, "SCREEN 1",
NULL);

xv_set(frame_1, XV_SHOW, TRUE, NULL);
xv_main_loop(frame_0);

}

The program implements the design discussed above: xv_init() opens a connection to the
server and returns a handle to the Xv_Server object (see the following section for details).
It also retrieves the Xv_Screen object as well as the root window for each screen. Next, a
base frame is created for each root window. However, since we are going to call
xv_main_loop() on frame_0, we need to insert frame_1 into the window tree. Other-
wise, it will never be mapped to its screen because xv_main_loop() only installs and
maps the window of the object passed to it.

352 XView Programming Manual

15.3 The SERVER Package

The SERVER package may be used to initialize the connection with the X server running on
any workstation on the network. Once the connection has been made, the package allows
you to query the server for information. xv_init(), the routine that initializes the XView
Toolkit, opens a connection to the server and returns a handle to an Xv_Server object.
While more than one server can be created, xv_init() only establishes a connection to
one server. The server object returned by xv_init() is also the server pointed to by the
external global variable, xv_default_server. Programs that do not save the
Xv_Server object returned by xv_init() can reference this global variable instead.

Subsequent connections to other X11 servers must be made using separate calls to xv_cre-
ate(). Note that using separate screens is not the same as establishing a connection to
other servers—the same server can support multiple screens. See the previous section for
ways to access multiple screens in a server.

15.3.1 Creating a Server (Establishing a Connection)

When making any reference to Xv_Server objects, applications should include
<xview/server.h>. You can open a connection to any server by using xv_create():

Xv_Server server;
extern char *server_name;

server = (Xv_Server)xv_create(NULL, SERVER,
XV_NAME, server_name,
NULL);

Because there is no owner for a server, the owner parameter is ignored and you may pass
NULL. The server described by server_name is assumed to have been initialized already.
It should be set to the standard format:

hostname:display.screen

For example:

zipcode:0.1

connects the second screen on the first display to the host named zipcode. If the connection
fails, NULL is returned.

Remember that the user can specify which display is the default by using the -display option:

% program_name –display zipcode:0

Remember that this command-line switch is parsed internally by XView when you call
xv_init() in the following way:

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

If xv_init() has not been called by the time the first call to xv_create() is called, the
call to xv_create() calls xv_init() internally. This means that if the program gets
around to calling xv_init() after it has made any calls to xv_create(), it is a no-op.

Nonvisual Objects

Nonvisual Objects 353

Likewise, xv_init() creates a server instance, so you cannot establish the initial server
after calling xv_init().

15.3.2 Connecting to Multiple Servers

You can establish connections to other servers as well as the server opened by xv_init()
by using xv_create() in the way shown above. The standard way for a user to specify a
connection to a server is the -display switch; to allow the user to specify a connection to
another server, you should provide an additional command-line option that you parse your-
self.

The following code segment allows the user to specify an additional server by using the com-
mand-line switch -display2:

Xv_Server server1, server2 = NULL;

server1 = xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

/* XView has parsed all the args it knows -- now look for ours */
while (*++argv) {

if (!strcmp(*argv, "-display2")) {
if (!*++argv) {

fputs("Missing server name.\n", stderr);
exit(1);

}
server2 = xv_create(NULL, SERVER, XV_NAME, *argv, NULL);

}
}

if (server2 == NULL) {
fputs("Must specify second server.\n", stderr);
exit(1);

}

If you do this, a connection will be established for both servers.

Applications that have connected to multiple servers will typically exit when one of the X
servers goes down, causing the windows displayed on the other server to go away. To avoid
having the application exit, application programmers should consider forking separate
processes for each server connection. Thus losing a server connection can be handled in a
reasonable manner.

15.3.3 Getting the Server

One way to get the server to which the application is connected is from the Xv_Screen
object described in the previous section:

server = (Server)xv_get(xv_get(frame, XV_SCREEN), SCREEN_SERVER);

354 XView Programming Manual

With the server object, you can tell the server to synchronize with your application by cal-
ling:

Xv_Server server;
...
xv_set(server, SERVER_SYNC, TRUE, NULL);

The SERVER_SYNC attribute flushes the request buffer and waits for all events and errors to be
processed by the server. When the argument is TRUE, as above, SERVER_SYNC discards all
events on the input queue.

SERVER_SYNC_AND_PROCESS_EVENTS has the same behavior as SERVER_SYNC, but this
processes any events that arrive as a result of the XSync().

Xv_Server server;

xv_set(server, SERVER_SYNC_AND_PROCESS_EVENTS, NULL);

Note that this attribute takes no value—you specify it and no other attributes. This attribute
makes sense only in xv_set().

The attributes SERVER_ATOM and SERVER_ATOM_NAME help manage atoms. SERVER_ATOM is
equivalent to XInternAtom() (with the only_if_exists flag set to false). It caches
the results on the server object so that subsequent requests for the same atom will not require
a round-trip to the X server. For example:

Atom atom;
atom = (Atom) xv_get(server_object, SERVER_ATOM, "TIMESTAMP");

SERVER_ATOM_NAME is equivalent to XGetAtomName(). It also caches the results on the
server object. The returned string is maintained by XView and should not be modified or
freed. XView will free up all strings associated with atoms on that server when the server
object is destroyed. For example:

char *atom_name;
atom_name (char *)xv_get(server_object, SERVER_ATOM_NAME, atom);

15.4 Server Images

A server image is a graphic image stored on the X server. Images on the client side can be
stored as XImages or as memory pixrects.* The XView Server_image object is not
equivalent to X Pixmaps, although pixmaps are part of the Server_image object. Even
though pixmaps are stored on the server, the XView object is a client-side object. Because it
is an XView object, you can query the dimensions of a Server_image by using XV_WIDTH
or XV_HEIGHT, which is something you cannot do with X11 Pixmaps. The server image
structure is defined in <xview/svrimage.h> as follows:

typedef struct {
Xv_drawable_struct parent_data;

*The term pixrect is a data type brought over from SunView.

Nonvisual Objects

Nonvisual Objects 355

Xv_opaque private_data;
Xv_embedding embedding_data;
Pixrect pixrect;

} Xv_server_image;

15.4.1 Creating Server Images

Applications that wish to use the SERVER_IMAGE package should include <xview/svrim-
age.h>. Server_image objects contain graphic data that is used in icons, cursors, panel
buttons—in fact, just about everything in XView that contains graphics. The
Server_image object is created using xv_create() in the following manner:

#include <xview/svrimage.h>
...
Server_image image;

image = (Server_image)xv_create(owner, SERVER_IMAGE,
attrs,
NULL);

The owner in the call to xv_create() is an Xv_Screen object. The server that owns this
screen owns the newly created image. If the owner is NULL, then the default screen is used.
The dimensions of Server_image objects are 16 by 16 by 1, unless the attributes
XV_WIDTH, XV_HEIGHT or SERVER_IMAGE_DEPTH are specified. The bitmap data for the
server image may be set using either SERVER_IMAGE_BITS or SERVER_IMAGE_X_BITS

depending on the format of the data. The data format choices are arrays of short or char
types. X11 bitmap data is represented as array of chars, while Sun’s pixrect library repre-
sents the data as an array of shorts.* The following code segment uses SERVER_IMAGE_BITS
to produce a one-bit deep image that looks like a trash can:

short image_bits[] = {
#include <images/trash.icon>
};

Server_image = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 32,
XV_HEIGHT, 30,
SERVER_IMAGE_BITS, image_bits,
NULL);

Here, the trash can icon was created with its bits stored in an array of shorts. A call to
xv_get() with the attribute SERVER_IMAGE_BITS returns the bits for the server image.
Manipulating this data does not change the appearance of the server image. A call to
xv_set() using SERVER_IMAGE_BITS to specify a new bitmap is required to change a
server image.

*Many of Sun’s existing applications should use SERVER_IMAGE_BITS when porting to XView. This attribute
must be used in order to load bitmap data created by iconedit.

356 XView Programming Manual

To load an image stored as an array of chars (the format used by X11), use
SERVER_IMAGE_ X_BITS:

#include <X11/bitmaps/xlogo32>

xlogo_image = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_HEIGHT, xlogo32_width,
XV_WIDTH, xlogo32_height,
SERVER_IMAGE_X_BITS, xlogo32_bits,
NULL);

In both of these cases, the file specified on the #include line must be accessible at the time
the program is compiled. Once compiled, the data for the image is stored in the program and
the file is no longer needed (e.g., the file may be deleted and the program still displays the
image).

Rather than including the file containing the image’s bitmap data, you could specify the
actual file:

char *file = "/usr/include/X11/bitmaps/xlogo32";

server_image = (Server_image)xv_create(NULL, SERVER_IMAGE,
SERVER_IMAGE_BITMAP_FILE, file,
NULL);

Be aware that this file must exist and be accessible by any person who runs this program at
run time. If for some reason the file is not accessible, then an error is generated. And
because the program may be run from any directory, a full pathname should be specified. As
shown, the file points to a static string, but file could have a value that is changed by
selecting from a list of bitmap filenames. In this case, the code fragment could use
xv_set() to set the filename and thus, the Server_image’s data. Whenever xv_set()
is used to change the data of the image like this, the values of XV_WIDTH and XV_HEIGHT are
automatically updated.

Many XView objects require Server_images as values (such as MENU_IMAGE_STRINGS
in the MENU package). If you have already created a pixmap and wish to attach it to a server
image, you can use:

image = (Server_image)xv_set(NULL, SERVER_IMAGE,
SERVER_IMAGE_PIXMAP, pixmap,
NULL);

The attribute SERVER_IMAGE_PIXMAP can also be used in xv_get() to return the XID of
the pixmap associated with the Server_image.

Normally, a Server_image destroys its pixmap when a new pixmap is created using
SERVER_IMAGE_BITS, SERVER_IMAGE_X_BITS, or SERVER_IMAGE_PIXMAP. This default
behavior can be turned off by setting the SERVER_IMAGE_SAVE_PIXMAP attribute to TRUE.
Be sure to maintain a handle to the pixmap if you specify this attribute and destroy the
Server_image.

If the depth of an image is unspecified, it defaults to 1. To create a color image, use
SERVER_IMAGE_DEPTH to specify an alternate depth that can support color. You can also
specify a colormap to use with this image by specifying SERVER_IMAGE_CMS. This is used
for multiplane color images and must be specified before the image bits are set. The
colormap specified is assumed to have been created already using the CMS package.

Nonvisual Objects

Nonvisual Objects 357

Example 15-3 demonstrates how to use a server image by creating a frame with a panel. On
the panel is a button that uses a server image as the PANEL_LABEL_IMAGE. The bits used are
the same as the trash.icon used above.

Example 15-3. The svrimage.c program

/*
* svrimage.c -- demonstrate how a server image can be created and
* used. The "bits" used to create the image are taken arbitrarily
* from <images/trash.icon>
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/svrimage.h>
#include <X11/Xlib.h>

short image_bits[] = {
0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000,
0x0007,0xE000, 0x0004,0x2000, 0x03FF,0xFFC0, 0x0200,0x0040,
0x02FF,0xFF40, 0x0080,0x0100, 0x00AA,0xAB00, 0x00AA,0xAB00,
0x00AA,0xAB00, 0x00AA,0xAB00, 0x00AA,0xAB00, 0x00AA,0xAB00,
0x00AA,0xAB00, 0x00AA,0xAB00, 0x00AA,0xAB00, 0x00AA,0xAB00,
0x00AA,0xAB00, 0x00AA,0xAB00, 0x00AA,0xAB00, 0x00AA,0xAB00,
0x00AA,0xAB00, 0x00AA,0xAB00, 0x00AA,0xAB00, 0x0091,0x1300,
0x00C0,0x0200, 0x003F,0xFC00

};

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Server_image image;
Panel panel;
void exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

image = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 32,
XV_HEIGHT, 30,
SERVER_IMAGE_BITS, image_bits,
NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_MESSAGE,

PANEL_LABEL_IMAGE, image,
PANEL_NOTIFY_PROC, exit,
NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

358 XView Programming Manual

15.5 The FULLSCREEN Package

The FULLSCREEN package allows XView clients to grab the server for keyboard and/or
pointer use either exclusively or nonexclusively with other applications. This package is
used primarily to prompt the user for immediate feedback on a question or to notify the user
of an error that needs attention. Typically, the user responds with a button press or a key-
board event. The NOTICE package uses the FULLSCREEN package extensively to implement
its functionality. In most cases, you need nothing more than the NOTICE package and should
rarely need to use the FULLSCREEN package. The need for this package arises if you choose
to implement your own notice or perhaps a user interface item that is not OPEN LOOK-
compliant. In either case, this is advanced usage and is beyond the scope of this book. Using
the FULLSCREEN package can be very dangerous because it uses the X server’s grabbing
functions in Xlib. It is possible to get into a state from which you cannot get out except by
killing the server remotely or rebooting your workstation. When using a debugger, be
extremely careful that you do not set breakpoints within code when the server is in the
middle of a grab of some kind. Whatever you do, do not step through code that creates a
FULLSCREEN instance. If this is unavoidable, you should prepare for it by making sure that
you have remote access to your workstation or by attaching a terminal to it so you can kill the
debugger to free the server.

The flow of control for client code using the FULLSCREEN package is to create a fullscreen
instance (grabbing the server), scan for a particular event and destroy the fullscreen instance
(freeing the server).

Creating a fullscreen object (grabbing the server) involves xv_create() as usual:

Fullscreen fs;

fs = xv_create(owner, FULLSCREEN, NULL);

The owner in this case may be a visible XView object that has a window associated with it*
and is currently displayed on the screen (e.g., XV_SHOW is TRUE). If owner is NULL, then the
root window of the default screen is used as the owner.

The attribute WIN_CURSOR can be used with a fullscreen object to set the mouse cursor
displayed while the fullscreen object is active. The default value for WIN_CURSOR is inherited
by the fullscreen object from its owner.

Example 15-4 uses the FULLSCREEN package. A simple panel with two panel buttons is
created. The Quit button quits the program, and the Fullscreen button calls the grab() rou-
tine that grabs the server using the FULLSCREEN package and waits for a button to be pressed.
Once this happens, the routine frees the fullscreen object, thus releasing the server. Event
masks can be specified when creating a FULLSCREEN object to set what kind of events the cli-
ent window will accept or detect. The event masks are specified using the regular WIN_*
attributes. A similar event mask is also needed for xv_input_readevent().†

*This does not include panel items.
†See Chapter 6, Handling Input, for more information about xv_input_readevent().

Nonvisual Objects

Nonvisual Objects 359

Example 15-4. The fullscreen.c program

/*
* fullscreen.c
* Demonstrate the fullscreen package. Create a panel button that
* creates a fullscreen instance, thus grabbing the X server. User
* presses a mouse button to release the server.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/fullscreen.h>

main(argc, argv)
char *argv[];
{

Frame frame;
Panel panel;
void exit(), grab();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Fullscreen",
PANEL_NOTIFY_PROC, grab,
NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

/*
* Notify procedure for when the "Fullscreen" button is pushed.
* Create a fullscreen instance, scan for a button event, then
* destroy it.
*/
void
grab(item, event)
Panel_item item;
Event *event;
{

Panel panel = (Panel)xv_get(item, PANEL_PARENT_PANEL);
Frame frame = (Frame)xv_get(panel, XV_OWNER);
Fullscreen fs;
Inputmask im;

/* set up an input mask for the call to xv_input_readevent(). */
win_setinputcodebit(&im, MS_LEFT);
win_setinputcodebit(&im, MS_MIDDLE);
win_setinputcodebit(&im, MS_RIGHT);
win_setinputcodebit(&im, LOC_MOVE);

360 XView Programming Manual

Example 15-4. The fullscreen.c program (continued)

/*
* Create a fullscreen object (initialize X server grab).
* Specify which events should be allowed to pass through.
* These events should match the input mask coded above.
*/
fs = xv_create(panel, FULLSCREEN,

WIN_CONSUME_EVENTS,
WIN_MOUSE_BUTTONS, LOC_MOVE, NULL,

NULL);

/* Loop till user generates a button event */
while (xv_input_readevent(panel, event, TRUE, TRUE, &im) != -1)

if (event_is_button(event))
break;

/* Destroy the fullscreen (release the X server grab) */
xv_destroy(fs);

/* Report which button was pushed. */
printf("event was button %d (%d, %d)0,

event_id(event) - BUT_FIRST+1,
event_x(event) + (int)xv_get(frame, XV_X),
event_y(event) + (int)xv_get(frame, XV_Y));

}

When this program is run and the user selects the Fullscreen panel item, the X server is
grabbed and the user must select one of the mouse buttons to release it. To users, it may
appear as though they can select another panel button. Although the panel window is the
owner of the fullscreen object, events that occur while the server is grabbed by the fullscreen
object are not propagated to XView objects under the pointer. In Example 15-4, if the user
presses the mouse button when the pointer is on top of any panel button a panel button while
in fullscreen, the button-down event will trigger the call to xv_input_readevent() and
break the loop. The corresponding button-up event is not read yet and will get read by nor-
mal event processing after the call to grab() returns. If the button-up event happened over
a panel button, then the panel button’s notify routine will be called.

The event masks set by the FULLSCREEN package and by the Inputmask do not interfere
with the event masks in any XView window.

15.5.0.1 Debugging and the FULLSCREEN package

There are four global variables in the FULLSCREEN package that can be used to help debug
XView programs that grab the server, keyboard or pointer. Note that these variables can only
be used via the FULLSCREEN package. Here are the variables with their default values:

int fullscreendebug = 0;
int fullscreengrabserver = 1;
int fullscreengrabpointer = 1;
int fullscreengrabkbd = 1;

When fullscreengrabserver is set to 0 (in source code or in debugger), the X server
will not be grabbed despite requests to grab it.

Nonvisual Objects

Nonvisual Objects 361

When fullscreengrabpointer is set to 0, the pointer will not be grabbed despite
requests to grab it.

When fullscreengrabkbd is set to 0, the keyboard will not be grabbed despite requests
to grab it.

When fullscreendebug is set to 1, no grabs of any kind are performed.

15.6 Nonvisual Package Summary

There are procedures or macros in the nonvisual packages. Table 15-1 lists the attributes in
the SCREEN package. Table 15-2 lists the attributes in the SERVER and SERVERIMAGE pack-
ages and Table 15-3 lists the attributes in the FULLSCREEN package. This information is
described fully in the XView Reference Manual.

Table 15-1. Screen Attributes

SCREEN_NUMBER

SCREEN_SERVER

XV_ROOT

Table 15-2. Server and Server Image Attributes

SERVER_ATOM SERVER_EXTERNAL_XEVENT_PROC

SERVER_ATOM_NAME SERVER_NTH_SCREEN

SERVER_EXTENSION_PROC SERVER_SYNC

SERVER_EXTERNAL_XEVENT_MASK SERVER_SYNC_AND_PROCESS_EVENTS

XV_DISPLAY XV_NAME

Table 15-3. Fullscreen Attributes

FULLSCREEN_ALLOW_EVENTS FULLSCREEN_KEYBOARD_GRAB_KBD_MODE

FULLSCREEN_ALLOW_SYNC_EVENT FULLSCREEN_KEYBOARD_GRAB_PTR_MODE

FULLSCREEN_COLORMAP_WINDOW FULLSCREEN_OWNER_EVENTS

FULLSCREEN_CURSOR_WINDOW FULLSCREEN_PAINT_WINDOW

FULLSCREEN_GRAB_KEYBOARD FULLSCREEN_POINTER_GRAB_KBD_MODE

FULLSCREEN_GRAB_POINTER FULLSCREEN_POINTER_GRAB_PTR_MODE

FULLSCREEN_GRAB_SERVER FULLSCREEN_RECT

FULLSCREEN_INPUT_WINDOW FULLSCREEN_SYNC

362 XView Programming Manual

Table 15-3. Fullscreen Attributes (continued)

WIN_CONSUME_EVENT WIN_IGNORE_EVENT

WIN_CONSUME_EVENTS WIN_IGNORE_EVENTS

WIN_CURSOR WIN_INPUT_MASK

Nonvisual Objects

Nonvisual Objects 363

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

16
Fonts

In X, a large number of fonts are provided on the server. Deciding which font to use and then
trying to specify fonts by name can be difficult since there are many different styles and sizes
of fonts. Most fonts are used to render text strings. The images, or glyphs, represent a char-
acter set defined mostly by the language used. However, a font may be built to support
glyphs that have nothing to do with a language. Fonts are stored on the server and are associ-
ated with the display of your workstation. The font ID is stored in the graphics context (GC),
which is used by Xlib functions like XDrawString(). Using fonts to render text is per-
haps the most common application. For example, the Courier font family displays the
classic typewriter or constant-width character set. This text is set in Times-Roman, a propor-
tionally spaced font. Often within a font family, there are different styles, such as bold or
italic, and different point sizes.* For example, lucidasans-bold-14 refers to the luci-
dasans font family, the style is bold, and the point size is 14.

Not all server fonts have a variety of styles and sizes. These special-purpose fonts are gener-
ally specified by name only—there are no corresponding styles or families for these fonts.

When accessing fonts, you typically want to specify a font either by name or by the family,
style, and size or scale of the font. In addition, XView provides an interface for determining
the dimensions (in pixels) of characters and strings rendered in a specified font.

OPEN LOOK uses predefined fonts for certain items such as panel buttons and other user
interface elements. These items cannot be changed, but you can assign text fonts to panel
choices, text subwindows and other types of windows. We will address these issues later in
this chapter.

*Note that point sizes on workstations are based on pixels, whereas point sizes for typesetters and printers are based
on inches.

Fonts

Fonts 367

16.1 Creating Fonts

Applications that use the FONT package must include the header file, <xview/font.h>. In
XView, when a font object is created, it loads the font from the X server. When we say, “cre-
ate a font,” we really mean, “load a font from the server and create an XView font object
associated with that font.” Figure 16-1 shows the class hierarchy for the font package.

Generic
Object Fonts

Figure 16-1. Font package class hierarchy

While fonts can be created using xv_create(), it may not be necessary to create a new
instance of a font. Fonts are typically cached on the server, and XView may already have a
handle to a particular font. Therefore, you should obtain a handle to the font if it already
exists, rather than create another instance of the same font. xv_find() can be used to
return the handle of an existing font. If the handle does not exist, xv_find() can create a
new instance of the font.

Both xv_find() and xv_create() will return an object of the type Xv_Font when
using the FONT package. The form of the call is:

Xv_Font font;
font = (Xv_Font) xv_create(owner, FONT, attrs, NULL);

or:

Xv_Font font;
font = (Xv_Font) xv_find(owner, FONT, attrs, NULL);

The owner of the font is usually the window in which the font is going to be used. The actual
X font is loaded from the server associated with the owner object. If the owner is NULL, the
default server is used. Fonts may be used on any window, memory pixmaps, or
Server_image, but these objects must have the same display associated with them as
the font, or you will get an X Protocol error. What this means is that a font can only be used
on the server on which it was created. This is only any issue if your XView application is
running on multiple servers at the same time. If the parent is NULL, the default server is used.
Otherwise, the server as determined from the parent object is used. This is only an issue if
your XView application is running on several servers at the same time.

Once a font object is created, it can be used to render text by assigning the font’s XV_XID to
the font field of a graphics context (GC) and then using any of the Xlib routines that use
fonts such as XDrawString(). Example 16-1 lists simple_font.c, a program that builds a
simple frame and canvas. The repaint routine for the canvas displays the string “Hello
World” at the upper-left corner of the window.

368 XView Programming Manual

Example 16-1. The simple_font.c program

/*
* simple_font.c -- very simple program showing how to render text
* using a font gotten from xv_find(). Hello World is printed in
* the upper-left corner of a canvas window.
*/
#include <stdio.h>
#include <X11/X.h>
#include <X11/Xlib.h> /* X.h and Xlib.h used for Xlib graphics */
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/font.h>
#include <xview/xv_xrect.h>

#define GC_KEY 10 /* any arbitrary number -- used for XV_KEY_DATA */

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Canvas canvas;
XGCValues gcvalues;
Xv_Font font;
void my_repaint_proc();
Display *dpy;
GC gc;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);

canvas = (Canvas)xv_create(frame, CANVAS,
XV_WIDTH, 400,
XV_HEIGHT, 200,
CANVAS_X_PAINT_WINDOW, TRUE,
CANVAS_REPAINT_PROC, my_repaint_proc,
NULL);

window_fit(frame);

dpy = (Display *)xv_get(frame, XV_DISPLAY);
font = (Xv_Font)xv_find(frame, FONT,

FONT_NAME, "lucidasans-12", NULL);
if (!font) {

fprintf(stderr, "%s: \
cannot use font: lucidasans-12\n", argv[0]);

font = (Xv_Font)xv_get(frame, XV_FONT);
}

/* Create a GC to use with Xlib graphics -- set the fg/bg colors
* and set the Font, which is the XV_XID of the XView font object.
*/
gcvalues.font = (Font)xv_get(font, XV_XID);
gcvalues.foreground = BlackPixel(dpy, DefaultScreen(dpy));
gcvalues.background = WhitePixel(dpy, DefaultScreen(dpy));
gcvalues.graphics_exposures = False;
gc = XCreateGC(dpy, RootWindow(dpy, DefaultScreen(dpy)),

Fonts

Fonts 369

Example 16-1. The simple_font.c program (continued)

GCForeground | GCBackground | GCFont | GCGraphicsExposures,
&gcvalues);

/* Assign the gc to the canvas object so we can use the same
* gc each time we draw into the canvas. Also avoids a global
* variable to store the GC.
*/
xv_set(canvas, XV_KEY_DATA, GC_KEY, gc, NULL);
xv_main_loop(frame);

}

/*
* Called every time the window needs repainting.
*/
void
my_repaint_proc(canvas, pw, dpy, xwin, xrects)
Canvas canvas;
Xv_Window pw;
Display *dpy;
Window xwin;
Xv_xrectlist *xrects;
{

GC gc = (GC)xv_get(canvas, XV_KEY_DATA, GC_KEY);

XDrawString(dpy, xwin, gc, 10, 20,
"Hello World", 11); /* 11 = strlen("Hello World") */

}

The program attempts to create the font named “lucidasans-12.” If the font is not found, the
frame’s font is used as a backup. This font must exist, so there is no need to check for a
failed return value.

Since the text is rendered using Xlib graphics, we need to use a GC that has the right attri-
butes set: the foreground and background colors and a font. Because this GC is specifically
used for the canvas window, we are going to attach the GC to the canvas by using the generic
attribute XV_KEY_DATA. Using a unique key, GC_KEY (which can be any integer since no
other keys have been assigned to the object yet), the GC is attached with the call:

xv_set(canvas, XV_KEY_DATA, GC_KEY, gc, NULL);

Later, in my_repaint_proc(), the GC is retrieved:

GC gc = (GC)xv_get(canvas, XV_KEY_DATA, GC_KEY);

This method of storing the GC by using XV_KEY_DATA avoids the need for a global variable.

When creating some fonts, it may take quite some time for the font to be found and com-
pletely loaded—especially large fonts, since they may be created at runtime. Loading the
font may result in the user having to wait longer than expected. It is recommended that the
application provide visual feedback if the user must wait for some time. Do this by setting
the FRAME_BUSY attribute to TRUE for the parent frame:

xv_set(frame, FRAME_BUSY, TRUE, NULL);
font = (Xv_Font) xv_find(frame, FONT,

FONT_NAME, "lucidasans-24",

370 XView Programming Manual

NULL);
xv_set(frame, FRAME_BUSY, FALSE, NULL);

This code fragment attempts to create a 24-point size font. Note that not all servers can do
so, either because of memory limitations or because the server cannot scale fonts at will. In
this case, the font returned may be NULL.

16.1.1 Font Families and Styles

One way to create fonts is to specify a font family, style, and size. The family of a font
describes its basic characteristics. Figure 16-2 shows the Courier family in different styles
and a range of point sizes.

Courier plain

10 12 14 16 18
Courier Bold

10 12 14 16 18
Courier italic

10 12 14 16 18

Figure 16-2. The Courier font in different styles and sizes

Some font families and styles known to XView are predefined in <xview/font.h>. To use a
font other than the ones listed, you may specify any font family and style known by your X
server. You may also specify fonts by name (see Section 16.1.4, “Fonts by Name”). The list
of XView font families include:

• FONT_FAMILY_DEFAULT

• FONT_FAMILY_DEFAULT_FIXEDWIDTH

• FONT_FAMILY_LUCIDA

• FONT_FAMILY_LUCIDA_FIXEDWIDTH

• FONT_FAMILY_ROMAN

• FONT_FAMILY_SERIF

• FONT_FAMILY_CMR

• FONT_FAMILY_GALLENT

• FONT_FAMILY_HELVETICA

• FONT_FAMILY_OLGLYPH*
• FONT_FAMILY_OLCURSOR*

*The families FONT_FAMILY_OLGLYPH and FONT_FAMILY_OLCURSOR are used internally by XView pack-
ages. They are not for general/public use.

Fonts

Fonts 371

The family FONT_FAMILY_DEFAULT is the default font for XView. The FONT_FAM-

ILY_DEFAULT_ FIXEDWIDTH font is the default fixed-width font.

All the characters in fixed-width fonts occupy the same amount of space. Other fonts are
proportionally spaced; that is, each character may occupy a different amount of space.

The available styles are:

• FONT_STYLE_DEFAULT

• FONT_STYLE_NORMAL

• FONT_STYLE_BOLD

• FONT_STYLE_ITALIC

• FONT_STYLE_OBLIQUE

• FONT_STYLE_BOLD_ITALIC

• FONT_STYLE_BOLD_OBLIQUE

The default style indicates the default font’s type for XView.

The call to xv_find() in simple_font.c could have been written to specify the family and
style of the font rather than the name of the font:

font = (Xv_Font)xv_find(frame, FONT,
FONT_FAMILY, FONT_FAMILY_LUCIDA,
FONT_STYLE, FONT_STYLE_NORMAL,
NULL);

Since normal is the default style of the font, this example renders the same font as in the ear-
lier example. However, we could specify a different style:

font = (Xv_Font)xv_find(frame, FONT,
FONT_FAMILY, FONT_FAMILY_LUCIDA,
FONT_STYLE, FONT_STYLE_BOLD,
NULL);

This call returns a bold style of the lucidasans font. For most font families, you can specify a
font family with any style, although some families may not support an italic or bold style of
the font. Therefore, you should be prepared to handle a NULL return from the call to
xv_create() or xv_find():

if (!(font = (Xv_Font)xv_find(canvas, FONT,
FONT_FAMILY, FONT_FAMILY_COUR,
FONT_STYLE, FONT_STYLE_ITALIC,
NULL))) {
/* Handle the case where the font fails. */
font = (Xv_Font)xv_get(canvas, XV_FONT);

}

372 XView Programming Manual

16.1.2 Font Sizes

Fonts can be specified in any size from one point on up, as long as the bitmapped font of that
size exists on the server. If the server supports scalable fonts, it can scale the font to the
specified size, depending on the amount of available memory on the server. When a size is
specified, provided the font is not already loaded, a new font is created at run time according
to the family and style in the size specified, as below:

Xv_Font font;

font = (Xv_Font)xv_find(canvas, FONT,
FONT_FAMILY, FONT_FAMILY_ROMAN,
FONT_STYLE, FONT_STYLE_BOLD,
FONT_SIZE, 36,
NULL);

This code fragment attempts to find or create a font from the Times-Roman font family in
bold and in 36-point. The font may already exist in the server, or the font’s family may exist
but not the size. In the latter case, the server must attempt to scale the font to the specified
size. If the font cannot be created because of memory limitations, the call to xv_find()
will return NULL. Because a 36-point font takes a lot of memory, it might take a while to load
this font.

16.1.3 Scaling Fonts

Bitmapped fonts are not scalable, but they are provided in so many sizes that they appear to
be scalable to any size. On the other hand, some fonts are scalable because they are not
stored as static bitmaps. However, in order to scale even these fonts, the server must support
font scaling. Sun’s xnews server is an example of such a server.

You can request a relative scale of a font with respect to other fonts within the same family.
The relative scales are small, medium, large and extra large. These scales are represented by
the attributes WIN_SCALE_SMALL, WIN_SCALE_MEDIUM, WIN_SCALE_LARGE, and
WIN_SCALE_EXTRALARGE.

These attributes are members of the enumerated type Window_rescale_state. They
are WINDOW attributes because fonts can be scaled in proportion to their windows. For
example, if your application is resized to a larger or smaller size, you may wish to reset the
fonts for some windows according to different scaling sizes. By default, the sizes of the fonts
corresponding to the scale as shown in Table 16-1.

Fonts

Fonts 373

Table 16-1. Default Font Sizes

Attribute Font Size

WIN_SCALE_SMALL 10
WIN_SCALE_MEDIUM 12
WIN_SCALE_LARGE 14
WIN_SCALE_EXTRALARGE 19

If FONT_SIZE is not specified when a font is requested, the size will correspond to the
medium scale size. Specifying the font size overrides the request for a scaling factor. The
code fragment below requests a font from the Lucida family with an italic style in large
scale:

Xv_Font font;

font = (Xv_Font)xv_find(canvas, FONT,
FONT_FAMILY, FONT_FAMILY_LUCIDA,
FONT_STYLE, FONT_STYLE_ITALIC,
FONT_SCALE, WIN_SCALE_LARGE,
NULL);

If you have already created a font and wish to get it in a different scale, the attribute
FONT_RESCALE_OF is specified with with two arguments: a font and a Win-
dow_rescale_state.

Xv_Font font, small_font;

font = (Xv_Font)xv_find(canvas, FONT,
FONT_FAMILY, FONT_FAMILY_LUCIDA,
FONT_STYLE, FONT_STYLE_BOLD,
NULL);

...

small_font = (Xv_Font)xv_find(canvas, FONT,
FONT_RESCALE_OF, font, WIN_SCALE_SMALL,
NULL);

You can reset the sizes of a fonts’ scale factors by using the attribute FONT_SIZES_

FOR_SCALE. This attribute takes four values that correspond to each scaling factor:

font = (Xv_Font)xv_find(canvas, FONT,
FONT_FAMILY, FONT_LUCIDA,
FONT_STYLE, FONT_STYLE_NORMAL,
FONT_SIZES_FOR_SCALE, 12, 14, 16, 22,
NULL);

In this example, the Lucida font is created so that the small, medium, large, and extra-large
scaling sizes are 12, 14, 16, and 22, respectively. The font size returned is 14-point.

374 XView Programming Manual

16.1.4 Fonts by Name

When specifying a font by name, the entire name of the font is given as it appears in the out-
put of a program such as xlsfonts or by the Xlib call XListFonts().* These programs
provide a complete list of all the fonts available on the server.

In Example 16-1 above, the program simple_font.c showed how to load a font using a given
name:

font = (Xv_Font) xv_find(canvas,
FONT, FONT_NAME, "lucidasans-12", NULL);

When specifying fonts by name, other attributes normally used to specify family, style, and
size or scale are ignored in favor of the font name. However, it is possible to determine the
family, style, and scale of a font by looking at its name. For example, with names such as
those shown below, this is easy.

lucidasans-12
lucidasans-bold-12

The X Logical Font Description (XLFD) Conventions, which defines a standard way of nam-
ing a font, is a X Consortium standard. The font names are constructed using this convention
are unique, and descriptive (the name contains most of the information about the font.) For
details on these conventions, refer to Volume Zero, X Protocol Reference Manual. Below are
some sample XLFD font names:

-adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-1
-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1

When attributes other than FONT_NAME are used, XView will try to construct a font name
using the XLFD Conventions based on the information passed (family, style, size) and depen-
dent on the fonts available on the server. The constructed name will be returned when
xv_get() is used with FONT_NAME.

Likewise, if FONT_NAME is used, XView will load that font, and will try to decrypt the infor-
mation as stored in the name to fill in information for FONT_FAMILY, FONT_STYE, and so on.

16.2 Font Dimensions

Once a font is created, it can be used in applications using Xlib routines, as demonstrated in
simple_font.c earlier in this chapter. In the program, text is rendered using the Xlib routine
XDrawString(). This routine uses the font ID from the GC parameter. This ID is
extracted from the font using xv_get() and XV_XID. You can also get a pointer to the
font’s XFontStruct structure by specifying the attribute FONT_INFO to xv_get(). This
data structure is what describes the characteristics of the font such as width and height for
each character. See Volume One, Xlib Programming Manual, for more information.

*See Volume Two, Xlib Reference Manual, for a description of XListFonts().

Fonts

Fonts 375

You can get information about the sizes of individual characters or the dimensions of entire
strings of characters in a particular font using several methods. You can use the information
in the XFontStruct data structure obtained from the font, or you can use Xlib routines
such as XTextWidth() or XTextExtents(), or you can use xv_get() along with
XView attributes such as FONT_CHAR_WIDTH, FONT_CHAR_HEIGHT, FONT_DEFAULT_

CHAR_HEIGHT, FONT_DEFAULT_CHAR_WIDTH, and FONT_STRING_DIMS.

The usage is as follows:

Xv_Font font;
int width, height;

The following code shows how to get the dimensions of a particular character in a font:

width = (int)xv_get(font, FONT_CHAR_WIDTH, ’m’);
height = (int)xv_get(font, FONT_CHAR_HEIGHT, ’m’);

The calls to xv_get() return the width and height of the characters in pixels for that partic-
ular font. If you are using a fixed-width font, then each character will be the same width, so
you can specify the default character width and height of the font. The following code shows
how to get the dimensions of characters for a fixed-width font:

Xv_Font font;
int width, height;

width = (int)xv_get(font, FONT_DEFAULT_CHAR_WIDTH);
height = (int)xv_get(font, FONT_DEFAULT_CHAR_HEIGHT);

If you use FONT_DEFAULT_CHAR_WIDTH (or height) on a variable-width font, you will get the
average width of a character in that font.

To get the width and height dimensions of a complete string of text in a given font, use the
FONT_STRING_DIMS attribute:

extern Xv_Font font;
Font_string_dims dims;

(void) xv_get(font, FONT_STRING_DIMS, "Hello World", &dims);

In this case, the call to xv_get() returns a pointer to the dims structure passed as the last
argument. The return value may be ignored since the dims parameter will have the value
filled in upon return of xv_get(). The Font_string_dims data structure is as follows:

typedef struct {
int width;
int height;

} Font_string_dims;

Thus, xv_get() returns the dimensions of the string for the font specified. This would be
equivalent to calling XTextExtents() in the manner below:

Font_string_dims dims;
extern char *str;
int len = strlen(str);
extern Xv_Font font;
XFontStruct *font_info = (XFontStruct *)xv_get(font, FONT_INFO);
int direction, ascent, descent;
XCharStruct overall_return;

(void) XTextExtents(font_info, str, len,

376 XView Programming Manual

&direction, &ascent, &descent, &overall_return);

dims.width = overall_return.width;
dims.height = ascent + descent;

16.3 Font Package Summary

There are no procedures or macros in the FONT package. The font attributes are shown in
Table 16-2. They are described fully in the XView Reference Manual.

Table 16-2. Font Attributes

FONT_CHAR_HEIGHT FONT_RESCALE_OF

FONT_CHAR_WIDTH FONT_SCALE

FONT_DEFAULT_CHAR_HEIGHT FONT_SIZE

FONT_DEFAULT_CHAR_WIDTH FONT_SIZES_FOR_SCALE

FONT_INFO FONT_STRING_DIMS

FONT_FAMILY FONT_STYLE

FONT_NAME

XV_XID

Fonts

Fonts 377

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

17
Resources

In the X Window System, the user can configure the interface according to options available
in specific applications. The user accomplishes this through a resource database that resides
in the X server. The X Protocol provides many ways to access the resource database, as well
as many functions to aid in this task. You should consult Chapter 11, Managing User Prefer-
ences, in Volume One, Xlib Programming Manual, for a complete, in-depth discussion of X
resource specification and management. Related programs include xrdb, and related func-
tions can be found in Volume Two, Xlib Reference Manual.

XView provides many functions that allow the programmer to interact with the server to get
or set resources specified by the user. Robust applications should account for user-definable
defaults. That is, your programs should always consider the user’s wishes for changing attri-
bute values for things like fonts, colors and maybe even window sizes, as long as the values
do not interfere with the normal running of the program. You should also provide the user
with a list of resources that can be set, and you should test for them in your application.

17.1 Predefined Defaults

All of the packages in XView look for predefined defaults that the user can set in his/her
resource environment. Table 17-1 outlines these defaults, their types and legal values. Refer
to Section 6, Command-line Arguments and XView Resources, in the XView Reference Man-
ual for a description of each of the XView resources. Note that the term maxint refers to the
maximum value for an integer on your particular machine. These values tend to be rather
large with respect to the intended values used by these resources. It is up to the user to use
“reasonable” values.

NOTE

Table 17-1 does not include the mouseless model resources. Refer to Section 6,
Command-line Arguments and XView Resources, in the XView Reference Man-
ual for a list of the mouseless resources.

Resources

Resources 381

Table 17-1. Resources and Default Values Understood by XView

Name Type Default Legal Values

alarm.audible boolean True True, False
alarm.visible boolean True True, False
cmdtool.checkpointFrequency integer 0 0, <maxint>
cmdtool.maxLogFileSize integer <maxint> 0, <maxint>
font.name string NULL fontname-size
icon.font.name string NULL fontname-size
icon.pixmap string NULL pixmap filename
icon.footer string NULL footer string
icon.x integer 0 —
icon.y integer 0 —
keyboard.arrowKeys string Yes Yes, No
keyboard.leftHanded string No Yes, No
mouse.multiclick.space integer

notice.PopupJumpCursor boolean True True, False
notice.beepCount integer 1 —
openWindows.DragRightDistance integer 100 0, <maxint>
openWindows.3DLook.color boolean True True, False
openWindows.3DLook.monochrome boolean True True, False
openWindows.multiClickTimeout integer 4 1 through 10 (in sec/10)
openWindows.dragRightDistance integer 5 —
openWindows.scrollbarPlacement string right Left, Right
OpenWindows.MonospaceFont string NULL fontname-size
OpenWindows.RegularFont string NULL fontname-size
OpenWindows.BoldFont string NULL fontname-size
OpenWindows.Scale string NULL Small, Medium, Large, Extra-Large
scrollbar.repeatDelay integer 100 0, 999 (msec delay interval)
scrollbar.pageInterval integer 100 0, 999 (msec delay interval)
scrollbar.lineInterval integer 1 0, 999 (msec delay interval)
server.name string getenv(DISPLAY) hostnamedisplay
term.boldStyle string Invert xview.ICCCMCompli-

ant@boolean@True@True, False
None, OFFSET_X, OFFSET_Y,
OFFSET_X_AND_Y,
OFFSET_X_AND_XY,
OFFSET_Y_AND_XY,
OFFSET_X_AND_Y_AND_XY,
OFFSET_XY, INVERT

term.enableEdit boolean True True, False
term.inverseStyle string Enable ENABLED, DISABLED,

SAME_AS_BOLD

term.underlineStyle string Enable ENABLED, DISABLED,
SAME_AS_BOLD

text.againLimit integer 1 0, 500
text.autoIndent boolean False True, False
text.autoScrollBy integer 1 0, 100

382 XView Programming Manual

Table 17-1. Resources and Default Values Understood by XView (continued)

Name Type Default Legal Values

text.blinkcaret boolean True True, False
text.checkpointFrequency integer 0 0, <maxint>
text.confirmOverwrite boolean True True, False
text.displayControlChars boolean False True, False
text.enableScrollbar boolean True True, False
text.extrasMenuFilename string .text_extra_menu filename

(in /usr/lib)
text.insertMakesCaretVisible string If_auto_scroll If_auto_scroll, Always
text.lineBreak string Wrap_word Clip, Wrap_char, Wrap_word
text.margin.bottom integer 0 –1, 50
text.margin.left integer 8 0, 2000
text.margin.right integer 0 0, 2000
text.margin.top integer 2 –1, 50
text.maxDocumentSize integer 20000 0, 0x80000000
text.retained boolean False True, False
text.storeChangesFile boolean True True, False
text.tabWidth integer 8 0, 50
text.undoLimit integer 50 0, 500
window.color.foreground string "0 0 0" 3 RGB values, 0-255
window.color.background string "255 255 255" 3 RGB values, 0-255
window.columns integer 80 —
window.height integer 34 rows Greater than 0
window.header string NULL header string
window.iconic boolean False True, False
window.inheritcolor integer 1
window.mono.disableRetained boolean False True, False
window.rows integer 34 —
window.scale string Medium Small, Medium, Large,

Extra_Large
window.width integer 80 columns Greater than 0
window.x integer 0 —
window.y integer 0 —

Note: In XView 3.2 and later, the resource Font.Name will still be read by any XView
application, however, if OpenWindows.MonospaceFont, OpenWindows.Regular-
Font or OpenWindows.BoldFont exist in the X Resource Database, they will take pre-
cedence.

XView 3.2 and later uses the new resource OpenWindows.Scale. In earlier releases of
XView, “scale” was determined by reading the resource “Window.Scale.” The new resource
is synonymous with the old resource name and XView will continue to look at the old
resource “Window.Scale” if the new resource, OpenWindows.Scale, does not exist.
XView provides many functions to get resource values from the database. Basically, values

Resources

Resources 383

come in several types: int, character (strings), boolean (which can be specified using
a number of string values; see below), and enumerated values.

Example 17-1 lists a simple application that introduces the use of one of the functions pro-
vided by the defaults package. The program default_text.c creates a frame with a text
subwindow whose font is specified by the user’s resource textsw.font.

Example 17-1. The default_text.c program

/*
* default_text.c -- use the defaults package to get a font name from
* the resource database to set the textsw’s font.
*/
#include <xview/xview.h>
#include <xview/font.h>
#include <xview/defaults.h>
#include <xview/textsw.h>

main(argc, argv)
char *argv[];
{

Frame frame;
Xv_Font font;
char *name;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);

name = defaults_get_string("textsw.font","Textsw.Font", "fixed"),
font = xv_find(frame, FONT,

FONT_NAME, name,
NULL);

xv_create(frame, TEXTSW,
XV_FONT, font,
WIN_COLUMNS, 80,
WIN_ROWS, 10,
NULL);

window_fit(frame);
xv_main_loop(frame);

}

default_text.c shows how an XView program queries the resource database for a string value
associated with a name-class pair. defaults_get_string() gets the string value asso-
ciated with Textsw.Font. If the resource database has this attribute, then the value is
returned. If not, the default (fixed) is returned.

384 XView Programming Manual

17.2 XView Resource Database Functions

The functions that XView provides are defined in <xview/defaults.h>. The following func-
tions are provided by XView for setting and getting resource values to and from the database.
Note that when setting resources to the database, the database on the server is updated—not
the user’s defaults database. Resources not updated to the user’s defaults database are not
retained for the next time the X server is started.

void
defaults_init_db()

This function is called automatically by xv_init(), so it need not be called by your appli-
cation. defaults_init_db() calls XrmInitialize().

void
defaults_load_db(filename)

char *filename;

defaults_load_db() loads the database residing in the specified filename or the server
database if filename is NULL. The database found in filename is loaded via XrmGet-
FileDatabase() and is merged into the existing resource database via XrmMergeDa-
tabases().

void
defaults_store_db(filename)

char *filename;

This function writes the database to the specified file via XrmPutFileDatabase(). This
must be done in order to ensure that the database is accessible the next time the server is
started.

Bool
defaults_exists(name, class)

char *name;
char *class;

This function returns TRUE if the resource exists in the database via XrmGetResource().

For more information, refer to Volume One, Chapter 11, Managing User Preferences.

17.2.1 Boolean Resources

Bool
defaults_get_boolean(name, class, default_value)

char *name, *class;
int default_value;

void
defaults_set_boolean(resource, value)

char *resource;
Bool value;

Resources

Resources 385

defaults_get_boolean() looks up the name-class pair in the resource database and
returns TRUE if the value is one of the following:

• True

• Yes

• On

• Enabled

• Set

• Activated

• 1

It returns FALSE if the value is one of the following:

• False

• No

• Off

• Disabled

• Reset

• Cleared

• Deactivated

• 0

If the value is none of the above, a warning message will be displayed and the default value
will be returned. If the resource is not found, no error message is printed but the default
value is still returned.

defaults_set_boolean() sets the resource to the value specified.

17.2.2 Integer Resources

int
defaults_get_integer(name, class, default_value)

char *name;
char *class;
int default_value;

int
defaults_get_integer_check(name, class, default_value,

minimum, maximum)
char *name;
char *class;
int default_value;
int minimum;
int maximum;

386 XView Programming Manual

void
defaults_set_integer(resource, value)

char *resource;
int value;

defaults_get_integer() looks up the name-class pair in the resource database and
returns the resulting integer value. If the database does not contain the resource, the default
value is returned.

defaults_get_integer_check() looks up the name-class pair in the resource data-
base and returns the resulting integer value. If the value in the database is not between the
values minimum and maximum (inclusive), an error message is printed and the default value
is returned. If the resource is not found, no error message is printed but the default value is
returned.

defaults_set_integer() sets the resource to the value specified.

17.2.3 Character Resources

char
defaults_get_character(name, class, default_char)

char *name;
char *class;
char default_char;

void
defaults_set_character(resource, character)

char *resource;
char character;

defaults_get_character() looks up the name-class pair in the resource database and
returns the resulting character value. If the resource is not found, then the default character
value is returned.

defaults_set_character() sets the resource to the character value.

17.2.4 String Resources

char *
defaults_get_string(name, class, default_str)

char *name;
char *class;
char *default_str;

void
defaults_set_string(resource, string)

char *resource;
char *string;

defaults_get_string() returns the string value associated with the specified name-
class pair in the resource database. If the resource is not found, the default string value is
returned. The procedure defauts_get_string() returns a pointer into a static buffer
maintained by the defaults package. The application should not attempt to free this pointer.

Resources

Resources 387

This buffer will be overwritten by the next call to the defaults package, so the application
should maintain a copy if necessary.

defaults_set_string() sets the resource to the specified string.

17.2.5 Enumerated Resources

Enumerated resources are those whose values are string values, but the legal values for the
resource are restricted to a predefined list. For example, say you want to allow the user to
specify the font scale for the font lucidasans. The legal scale values are: small,
medium, large, and extra large. You could use defaults_get_string() and deter-
mine, using strcmp(), whether the value returned is one of the legal scale values. Or you
could use defaults_get_enum() and pass in a table describing the legal values. The
table is an array of elements of the type:

typedef struct _default_pairs {
char *name; /* Name of pair */
int value; /* Value of pair */

} Defaults_pairs;

The name is a string, and the value is the returned value associated with the name. This value
may be your own value and need not be sequential, but it must be an int.

int
defaults_get_enum(name, class, pairs)

char *name;
char *class;
Defaults_pairs *pairs;

defaults_get_enum() looks up the value associated with name and class and scans the
pairs table and returns the associated value. If no match is found, an error is generated and
the value associated with the last entry is returned. defaults_get_enum() calls
defaults_get_string() and determines the value returned by calling
defaults_lookup() (below), passing the returned string as the name parameter.

int
defaults_lookup(name, pairs)

char *name;
Defaults_pairs *pairs;

defaults_lookup() linearly scans the pairs array looking for name. The value asso-
ciated with name is returned. The pairs array must contain a last element with a NULL

name and a legal value associated with it. This value is returned if name does not match
the name field of any of the elements in the pairs parameter.

Example 17-2 shows a program that implements the idea discussed earlier for allowing the
user to specify a scale for a font.

Example 17-2. The default_size.c program

/*
* default_scale.c -- demonstrate the use of defaults_get_enum().
* Specify a table of font scales and query the resource database

388 XView Programming Manual

Example 17-2. The default_size.c program (continued)

* for legal values. For example, you may have the following in
* your .Xdefaults (which must be loaded into the resource database):
* font.scale: large
*/
#include <xview/xview.h>
#include <xview/font.h>
#include <xview/defaults.h>
#include <xview/textsw.h>

Defaults_pairs size_pairs[] = {
"small", WIN_SCALE_SMALL,
"medium", WIN_SCALE_MEDIUM,
"large", WIN_SCALE_LARGE,
"extralarge", WIN_SCALE_EXTRALARGE,
/* the NULL entry is the default if Resource not found */
NULL, WIN_SCALE_MEDIUM,

};

main(argc, argv)
char *argv[];
{

Frame frame;
Xv_Font font;
int scale;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);

scale = defaults_get_enum("font.scale", "Font.Scale", size_pairs);
/* get the default font for the frame, scaled to resource */
font = xv_find(frame, FONT,

FONT_RESCALE_OF, xv_find(frame, FONT, NULL), scale,
NULL);

xv_create(frame, TEXTSW,
XV_FONT, font,
WIN_COLUMNS, 80,
WIN_ROWS, 10,
NULL);

window_fit(frame);
xv_main_loop(frame);

}

In default_size.c, the pairs table describes an association between string constants and
scaling factors. The resource database may specify the resource font.scale that
describes a scaling factor. If the value in the resource is not one of the legal values included
in the table, an error message is printed to inform the user that s/he has specified the resource
incorrectly. In this case, or in the case where the resource is not specified, the default
resource (associated with the NULL entry) is returned, namely, WIN_SCALE_MEDIUM.

Resources

Resources 389

NOTE

The value field in the Defaults_pair data structure is an int, so do not
attempt to assign pointers, functions or attributes to this field. You can assign
enumerated types since they are interpreted as int.

17.3 Creating Resource Instances

The attribute XV_INSTANCE_NAME is used to associate an instance name with an XView
object. The instance name is used to construct the resource name used by the Resource Man-
ager to perform lookups. The resource name is constructed by concatenating the instance
names of all objects in the current object’s lineage, starting with the name of the application
or whatever was passed in with the –name command-line option, ending with the XView
attribute name. The XView attribute name remains in lowercase. XV_INSTANCE_NAME is nor-
mally used with XV_USE_DB. Assume the name of an application is app:

Frame frame;
Panel panel;

frame = (Frame)xv_create(NULL, FRAME,
XV_INSTANCE_NAME, "base_frame",
NULL);

panel = (Panel)xv_create(frame, PANEL,
XV_INSTANCE_NAME, "panel",
XV_USE_DB,

XV_WIDTH, 100,
XV_HEIGHT, 200,
NULL,

NULL);

For this code fragment, assuming the name of the application is “app,” the resource names
constructed for lookup of the width and height of the panel are:

app.base_frame.panel.xv_width
app.base_frame.panel.xv_height

Entries in the Resource Manager could look like:

app.base_frame.panel.xv_width:400
app.base_frame.panel.xv_height:500

If these entries were not present in the Resource Manager, the width and height of the panel
would take the default values of 100 and 200 respectively.

The attribute XV_USE_DB specifies a set of attributes that are to be searched in the X11
Resource Manager database. XV_USE_DB takes a NULL-terminated list of attribute value pairs
as its values. During program execution, each attribute in this NULL-terminated list of attri-
butes is looked up in the X11 Resource manager database. If the attribute is not found in the
database, then the value specified in the attribute-value pair is used as the default value.

The list of customizable attributes can be found in the XView Reference Manual.

390 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

18
Selections

The X Window System provides several methods for separate applications to exchange infor-
mation with one another. One of these methods is the use of selections. A selection transfers
arbitrary information between two clients. An in-depth discussion of the selection mecha-
nism that X provides is available in the Xlib Programming Manual. This chapter describes
XView’s new selection package. Previous revisions of XView provided a selection mecha-
nism that did not use objects.

The selection mechanism for previous versions of XView used special functions and struc-
tures to implement selections. The older selection mechanism is still supported and it is
described in Appendix A, The Selection Service. The new package implements selections as
objects. The application programmer interface for the new selection package conforms to the
standard XView model, using xv_create(), xv_set(), and xv_get().

XView selections are used to exchange data between different applications or for commu-
nications within a single application. Many, but not all selections use text; a section of text is
selected, then the selected text is cut or copied, and pasted to another area. The selection
mechanism is not limited to text. For example, selections can be used to transfer filenames,
sound data, a file’s timestamp, or other information. Selections require only that the sender
and the recipient have knowledge of the format of the data being transferred. Therefore,
selections can be used to transfer graphics between applications that can understand a com-
mon format for communicating graphics. XView selections conform to the conventions in
the ICCCM (Interclient Communications Conventions Manual). For a description of the
ICCCM conventions, refer to Volume Zero, X Protocol Reference Manual.

In OPEN LOOK, you select objects in basically the same way that you select windows or icons
—using the SELECT and ADJUST mouse buttons. Figure 18-1, from the OPEN LOOK GUI
Specification Guide, shows one way to select text. OPEN LOOK describes three functions that
operate on selected objects: CUT, COPY, and PASTE. These are core functions that are
accessed from the keyboard.* Table 18-1 summarizes text selection for the OPEN LOOK GUI.

*The function keys that are bound to these functions vary from keyboard to keyboard depending on the make and
model of the computer.

Selections

Selections 393

Figure 18-1. Dragging the pointer to select text

Table 18-1. Selecting Text

Action Off Selection On Selection

Click
SELECT

Insert point is set at the pointer loca-
tion.

When SELECT is released, insert point
is set at pointer location and selection
is cleared.

Drag
SELECT

Text is highlighted as pointer is
dragged (wipe-through selection).

Text move pointer is displayed.
When you release SELECT, text is
moved to pointer location if that loca-
tion is outside the highlighted area.

Click
ADJUST

Extends the highlighting to the
pointer location extending either the
beginning or the end of the current
selection.

Moves the end of the highlighting to
the pointer location. Beginning of
selection is preserved.

Drag
ADJUST

Adjusts an existing selection as the
pointer is dragged (wipe-through).
Beginning of selection is anchored at
insert point.

Adjusts an existing selection as
pointer is dragged (wipe-through).
Beginning of selection is anchored at
insert point.

If an application uses objects such as TEXTSW or PANEL_TEXT_ITEM, the CUT, COPY, and
PASTE command keys are internally implemented. These selection functions are built-in for
these objects.

Note that although OPEN LOOK specifies the selection of graphic objects, no XView objects
currently support selection of graphical objects. A possible implementation is to have a can-
vas object, which has graphic objects displayed in it, set selections based on the event

394 XView Programming Manual

sequences outlined in Table 18-1. A draw application might consider a drawn geometric
shape as a graphic object, whereas a paint application might consider the pixels in an arbi-
trary area as the graphical object.

18.1 The XView Selection Model

The XView selection model is based upon the requestor/owner model of peer-to-peer com-
munications. Selections communicate data between an owner client and a requestor client.
An owner client has the selection data and the requestor client wants that data. XView uses
an object instantiated from the SELECTION_OWNER package to handle the selection owner,
and an object instantiated from the SELECTION_REQUESTOR package to handle the selection
requestor. Besides the owner and requestor objects, there is an XView hidden class,
SELECTION, that handles information common to both a requestor and an owner. XView also
provides an optional selection-item object, instantiated from the SELECTION_ITEM package,
that can simplify the owner side of selections (to simplify this discussion, we do not cover the
selection item until later in this chapter).

For XView to implement selections, XView tracks all X events that are generated from
selections. These events are: SEL_CLEAR, SEL_NOTIFY, and SEL_REQUEST (X selection
events are mapped to these XView events). Your application should ignore these events if
you are using the selection package. If you want to implement selections with Xlib routines,
then you can use these events; however, mixing is not allowed. That is, do not try to use both
these events and use the XView the selection package.

The selection package allows you to select the rank of your selection. The rank is an atom
representing a name on the server. The default rank is called the primary rank (XA_PRI-
MARY). For selections involving text, the primary rank is normally indicated on the screen by
inverting (highlighting) its contents. Selections made while a function key is held down are
considered secondary selections* (for text selections this is usually indicated with an under-
score under the selection).

Other ranks are also available; OPEN LOOK uses the CLIPBOARD rank to hold data that has
been cut or copied, using the cut or copy operations (with the CUT or COPY keys). This
selection is inserted into an application with the paste operation (using the PASTE key).
Atoms take up server resources, therefore the primary, secondary, and clipboard ranks are
commonly used for selections; they are used over and over unless more than three selections
need to be created. Other selections are used when the primary selection must be left undis-
turbed.

When a user interface element, such as a text subwindow wants to allow the user to make a
selection, internally, it creates a selection-owner object. Through this selection-owner
object, the text subwindow can acquire a selection rank (primary, secondary, etc) and provide
it with data. An application can have many such selection owners, but there is typically one
selection owner per XView object. Normally a selection rank is associated with an owner—a

*Which function key depends on your particular computer. By default the L6 function key should work for Sun
Workstations or the F6 key for other computers.

Selections

Selections 395

separate owner need not be created just to utilize other selection ranks. However, only one
owner can acquire a particular selection rank at any one time. If one application acquires a
selection, and then another application acquires the same selection, the first application loses
the selection ownership. The application that becomes the new selection owner may change
the data associated with the selection.

Since the selection package conforms to the conventions of the ICCCM, selections between
non-XView applications should be seamless.

18.2 How Selection Works (Without a Selection Item)

Here is a brief overview of the steps that take place during a single transfer of data from one
XView application to another. We’ll assume we have two applications, application A and
application B, either of which can operate as the owner or the requestor.

Initially, both applications are in exactly the same state, neither has acquired any selections,
and neither is the owner or the requestor. We’ll also assume that selections are implemented
using actions tied to mouse buttons or the CUT and PASTE function keys.

1. The user selects an item in application A and the application highlights the item. At this
time, application A would acquire the primary selection.

2. In the XView Selection Owner package, nothing further happens until an ACTION_COPY

event is delivered. At this time, application A acquires the selection and the primary
selection is copied to the clipboard.

3. The user pastes the selected data into application B, causing an ACTION_PASTE to be sent
to application B.

4. The ACTION_PASTE event may cause the selection requestor to request to receive the
selected data into application B.

5. The selection data request invokes an application-defined conversion procedure which is
associated with the Selection Owner in application A. It is the responsibility of the
Selection Owner to convert the data into a format specified by application B or to reject
the request.

6. Once the data conversion is finished, successfully or unsuccessfully, an application-
defined reply procedure is invoked in application B. This procedure is associated with the
selection requestor and either displays the data in application B, if the data conversion
was successful, or indicates that the kind of data selected in application A cannot be
pasted in application B, or that the kind of data requested by B cannot be supplied by A.

7. Once the selection data transfer is completed, a application-defined done procedure may
be called by the selection owner. The done procedure may be used to free the memory
associated with the selection, or perform other cleanup that is required.

8. If another application acquires the selection, application A’s “lose” procedure is called.
This procedure is used to tell the selection owner (application A) that it has lost

396 XView Programming Manual

ownership of the selection. For example, the lose procedure might unhighlight text that
was previously selected and highlighted.

18.2.1 Highlighting the Selection (Selection Owner)

The first task for the application that is to become the selection owner is to mark the
selection. For example, in a selection transfer involving text, when the pointer is placed over
the text, an ACTION_SELECT should highlight the selection. While LOC_DRAG occurs, the
highlight would be extended over the selection. If you are creating your own selections and
you want your application to be OPEN LOOK compliant, you need to handle events and high-
lighting as specified in the OPEN LOOK GUI Functional Specification . Some XView pack-
ages, such as TEXTSW and PANEL_TEXT_ITEM, provide this functionality internally.

18.2.2 Making the Selection (Selection Owner)

After the user selects an item and it is highlighted, the application waits to receive an event
of interest. For example, in a text subwindow the act of highlighting an item causes the pri-
mary selection to be acquired. At this time the XView application creates a selection owner
object, if one was not previously created. For the text subwindow example, an ACTION_COPY
event causes the CLIPBOARD selection to be acquired (note that in this case two selections
are acquired since the COPY operation in OPEN LOOK uses the CLIPBOARD).

Applications perform three steps to become the selection owner:

1. A Selection_owner object is created using xv_create() (assuming a previously
created selection owner is not being reused).

2. A mechanism for replying to the selection request should be set. This may be accom-
plished either by setting a conversion procedure or by creating a selection item (see Sec-
tion 18.3.1, “The Selection Item”). The conversion procedure, or the selection item,
allows the selection data to be associated with the selection owner and converted to the
type a requestor expects.

3. The selection must be acquired.

A selection-owner object is created using xv_create():

Selection_owner sel_owner;
sel_owner = xv_create(window, SELECTION_OWNER,

NULL);

A selection-owner object’s owner is a window or a window based object. The
SELECTION_OWNER package is defined in the header file <xview/sel_pkg.h> . Programs that
use a selection owner must include this file. Figure 18-2 shows the class hierarchy for the
selection-owner object.

Selections

Selections 397

Generic
Object

Selection
Owner(Selection)

Figure 18-2. Selection owner class hierarchy

If a selection uses a conversion procedure to convert the selection, then the attribute
SEL_CONVERT_PROC specifies the name of the conversion procedure. Section 18.2.4, “Con-
verting the Selection,” describes the conversion procedure. The selection is acquired by set-
ting SEL_OWN to TRUE.

xv_set(sel_owner, SEL_CONVERT_PROC, convert_proc,
SEL_OWN, TRUE,
NULL);

By default, the selection is associated with the primary rank (XA_PRIMARY). If your selection
needs to use another rank, use either SEL_RANK or SEL_RANK_NAME to specify the rank.

xv_set(sel_owner, SEL_CONVERT_PROC, convert_proc,
SEL_RANK_NAME, "SECONDARY",
SEL_OWN, TRUE,
NULL);

SEL_RANK takes an atom as an argument. SEL_RANK_NAME takes a string as an argument and
creates an atom from the string; if the atom already exists, it is re-used. In X terms, this is
called interning an atom. (See the description for XInternAtom in the Xlib Reference
Manual.)

After an application makes a request and a selection owner responds to that request, the
selection owner waits for notification that the requestor received the data. The maximum
time that the selection owner will wait for an acknowledgement from the selection requestor
is set with SEL_TIMEOUT_VALUE. This value is specified in seconds. If this value is
exceeded, the selection is invalid. This value does not limit how long a selection owner may
hold a selection. A selection owner may hold a selection for any length of time, unless
another owner acquires the same selection, in which case the owner loses the selection own-
ership.

Note that the attributes SEL_RANK, SEL_RANK_NAME, and SEL_TIMEOUT_VALUE are
SELECTION attributes. They apply to both the selection owner and to the selection requestor.

When and if a selection owner receives a selection request, the selection data needs to be
converted. To convert a selection an application can create a selection-item object, or it can
define a selection conversion procedure. We cover these possibilities in later sections.

398 XView Programming Manual

18.2.3 Requesting the Selection (Selection Requestor)

When the user pastes the selection into an application, the ACTION_PASTE event should be
used to trigger the application to become the selection requestor. A selection requestor
requests to receive the selected data. The selection requestor allows an application to obtain
selection data in a specified form. XView permits the selection requestor to receive a
selection in one of two ways:

• A blocking request. The application is blocked until the transfer completes, either suc-
cessfully or unsuccessfully.

• A non-blocking request. The application is not blocked during the selection data transfer.

This section covers both blocking and non-blocking requests.

An application requests a selection from a selection owner by performing two steps: first, the
application creates a selection requestor object and sets its attributes. Second, the request is
“posted.” Posting the request sends a request to the selection owner.

Create a selection requestor from the SELECTION_REQUESTOR package:

Selection_requestor sel_requestor;
sel_requestor = xv_create(window, SELECTION_REQUESTOR,

NULL);

The SELECTION_REQUESTOR package is defined in the header file <xview/sel_pkg.h> . The
owner of a selection requestor object is a window-based object. The class hierarchy for a
selection requestor is shown in Figure 18-3.

Generic
Object

Selection
Requestor(Selection)

Figure 18-3. Selection requestor class hierarchy

The primary rank is the default rank used in a selection request. To use a rank other than the
primary, use either SEL_RANK or SEL_RANK_NAME to specify the desired rank.

The time of the event that triggered selection request, the ACTION_PASTE event, should be
set using the attribute SEL_TIME. If you do not set this attribute, the selection package does
its best to set the SEL_TIME internally; however, this requires additional processing that is
not required if the application sets SEL_TIME.*

*SEL_TIME fixes certain race conditions that would occur if the time of the events associated with selection the
were not known.

Selections

Selections 399

18.2.3.1 Specifying the target type (selection requestor)

By default, a selection requestor uses the primary rank with the target set to string, which
asks the selection owner to convert string data. When the requestor wants the owner to send
data, it informs the owner of the type of information it expects using a selection target. The
target may represent the type of the selection data; however, the selection transfer may not
actually involve the selection data. A selection requestor may simply request a timestamp
from the selection owner, or some other characteristic of the selection data, such as its length.
The selection requestor can also request that the selection owner send a list of the types it can
convert. When the requestor specifies the target named TARGETS, the owner should return a
list of the types that it is able to convert to.

The attribute SEL_TYPE specifies the atom name for the requested target. The default value
is XA_STRING. This may be set to XA_INTEGER, or to another atom. SEL_TYPE_NAME uses a
string argument for the type, such as “INTEGER,” internally, the package converts this string
to an atom.

A single selection request may be used to request more than one target. For example, the
selection requestor may desire a list of the possible types the owner can convert as well as
selection data. This type of a request, where more than one target is requested at a time, is a
MULTIPLE request. To initiate a multiple request, use the attribute SEL_TYPES with a NULL-
terminated list of atoms to specify the targets requested, or use SEL_TYPE_NAMES with a
NULL-terminated list of strings.

Two additional attributes allow the requestor to make a multiple request.
SEL_APPEND_TYPES appends a NULL-terminated list of target types on to the existing list.
SEL_APPEND_TYPE_NAMES appends a NULL-terminated list of names on to the current list.
By default, a selection requestor selects a string, so the following request adds TARGETS to
the request list, thus creating a multiple request:

xv_set(sel, SEL_APPEND_TYPE_NAMES, "TARGETS", NULL, NULL);

18.2.3.2 SEL_REPLY_PROC (selection requestor)

The selection requestor uses SEL_REPLY_PROC to specify the reply procedure. This attribute
takes a function pointer as an argument. The reply procedure is used as a communication
mechanism between the selection owner and the selection requestor. The reply procedure is
invoked by the selection package after the conversion, when the response from the selection
owner arrives.

If the request is a multiple request, the reply procedure is called once for each target
requested:

Selection_requestor sel_requestor;

sel_requestor = xv_create(window, SELECTION_REQUESTOR,
SEL_REPLY_PROC, ReplyProc,
NULL);

The reply procedure is described in Section 18.2.5, “Handling the Response.”

400 XView Programming Manual

18.2.3.3 Timeout for a selection response

The attribute SEL_TIMEOUT_VALUE specifies the maximum time that the selection requestor
expects the particular request conversion to take. This should be set to the time selection
owner will take to convert the selection and return data to the selection requestor.

18.2.3.4 Requesting the CLIPBOARD selection—blocking

To make a blocking request, the selection requestor uses the SEL_DATA attribute to initiate
the request. Note that a blocking request puts the entire application on hold during the
selection transfer. This type of selection transfer is not recommended for large selections,
since the application may be put on hold for a significant amount of time. SEL_DATA takes
two arguments, a pointer to an unsigned long which is set to the number of elements
returned in the selection buffer, and a pointer to an integer which is set to the data format.
Using xv_get() with the selection requestor and SEL_DATA, with the specified arguments
returns the selection data. Example 18-1 shows how the selection requestor requests the clip-
board selection using a blocking request.

Example 18-1. Requesting the CLIPBOARD selection--blocking

Selection_requestor sel_requestor;

main()
{

.

.

.
sel_requestor = xv_create(window, SELECTION_REQUESTOR,

SEL_RANK_NAME "CLIPBOARD", NULL);
.
.
.

}

window_event_handler(..., event, ...)

Event *event;

{
char *data;
int format; /* size of data element: 8,16, 32 bits.*/
unsigned long length; /* number of data elements */

switch (event_action(event) {
case ACTION_PASTE:

/* Initiate a blocking request, and get the data */
data = (char *) xv_get(sel_requestor,

SEL_DATA, &length, &format);
/* returns with length set to SEL_ERROR */
/* if the if request fails. */
break;

}
}

Selections

Selections 401

Above, the attribute SEL_DATA with xv_get() sends the selection request to the selection
owner. The returned data is placed in data. If the conversion was successful, the application
needs to free the returned data, data when it is finished using it.

18.2.3.5 Requesting the CLIPBOARD selection—non-blocking

If a selection requestor wants to make a non-blocking request, it calls the procedure
sel_post_req() which is defined by the selection package. This procedure sends a non-
blocking request to the selection owner.

The procedure sel_post_req() has the following format:

int
sel_post_req(sel_req)

Selection_requestor sel_req;

The procedure sel_post_req() returns XV_OK or XV_ERROR. If no reply procedure is
defined, XV_ERROR is returned. Example 18-2 shows how the selection requestor requests the
clipboard selection using a non-blocking request.

Example 18-2. Non-blocking selection request

long *file_buffer; /* contents of selected file */
long file_buffer_size; /* # of longs in file_buffer */
Selection_requestor sel_requestor;

main()
{

.

.

.
sel_requestor = xv_create(window, SELECTION_REQUESTOR,

SEL_REPLY_PROC, ReplyProc,
SEL_RANK_NAME, "CLIPBOARD",
NULL);

}
window_event_handler(..., event, ...)

Event *event;

{

switch (event_action(event) {
case ACTION_PASTE:

/* initiate non-blocking request */
sel_post_req(sel_requestor);
break;

}
}

402 XView Programming Manual

18.2.4 Converting the Selection (Selection Owner)

When the selection requestor posts a request, the request is sent via the X server to the client
which currently owns the selection.* If the request is sent to an XView-based application,
the toolkit will determine the appropriate selection-owner object to forward the request to. If
the selection-owner object has a conversion procedure registered (see SEL_CONVERT_PROC),
it will be called with information about the request. If the selection-owner object does not
have a conversion procedure defined, but does have selection items registered on behalf of
the selection owner, the toolkit will determine if the request matches any of the selection
items. If a match is made, the toolkit will respond to the request with the selection item’s
data. If a match is not made, the toolkit will reject the request.

If a selection-owner object uses selection items for all targets for which it is willing to
respond to, then there is no need to register a conversion procedure. If the selection-owner
object uses selection items for some responses and converts other responses in a conversion
procedure, then the default selection conversion procedure (sel_convert_proc()) must
be called from within the selection-owner object’s conversion procedure. This is where the
selection-owner object’s selection items are handled.

It is the responsibility of the selection owner to either convert the data into the type specified
by the requestor or reject the request. The conversion of data typically happens in the
selection-owner object’s conversion procedure (see SEL_CONVERT_PROC). The conversion
procedure should convert the selection it holds to the requested type. The conversion proce-
dure’s return value is set to TRUE if the owner successfully converts the selection to the target
type and to FALSE if it rejects the selection request.

The form of the conversion procedure is:

int
convert_proc(sel, replyType, replyBuff, length, format)

Selection_owner sel;
Atom *replyType;
Xv_opaque *replyBuff;
unsigned long *length;
int *format;

The argument sel specifies the selection owner. When the conversion routine is called, reply-
Type is set to the target requested. On return, it should indicate the type the selection was
converted to. For example, the selection requestor may be requesting the target LENGTH so
replyType would have the value LENGTH when the conversion routine is called. Before the
conversion routine returns, replyType would be set to INTEGER, representing the type of the
value returned. As another example, if the requestor is requesting the target FILE_NAME, the
conversion procedure needs to explicitly set replyType to the atom which describes the con-
verted type, in this case, TEXT.

The replyBuff is a pointer to a buffer address which contains the converted data. Do not
return automatic storage in replyBuff. If your selection data uses more data than a long

*For performance reasons, local selection transfers using sel_post_req() do not go through the server, and the
data is transfered within the application itself.

Selections

Selections 403

int, be sure to malloc the storage for the converted data. This storage can later be freed in a
SEL_DONE_PROC.

The conversion procedure is called with length set to the server’s maximum allowed buffer
size. Before the conversion procedure returns, length should be assigned the number of ele-
ments in replyBuff.

format specifies a pointer to the element size of the data. format should be set to the element
size used in replyBuff. Valid values are 8, 16, or 32 for 8-bit, 16-bit, or 32-bit, quantities,
respectively.

All applications supporting selections are required by the ICCCM to convert the TARGETS

type. This type returns a list of types the conversion procedure understands and supports.
The conversion procedure should include the code necessary to convert this target (see
ICCCM for more details).

For selections that are larger than the maximum size allowed by the server, the selection
package sends the data in increments. The selection package handles this “large” selection
case automatically. That is, if the conversion procedure returns a replyBuff larger than the
maximum size allowed by the server, the selection package will divide the buffer into reason-
able sizes and send the data in increments using the INCR target described by the ICCCM. If
you want to specify that a selection should be transferred incrementally, you may specify an
incremental transfer. An incremental transfer is specified by constructing an increment mes-
sage. The increment message and incremental transfer are covered in Section 18.4, “How to
Send Data Incrementally.”

18.2.4.1 The default conversion procedure

The selection owner has a default conversion procedure called sel_convert_proc().
This conversion procedure is predefined to convert TARGETS for several targets whose con-
version is supported by the selection package. This procedure also handles conversions
where selection items are used (see Section 18.3.1, “The Selection Item”).

Normally, an application-defined procedure should call sel_convert_proc() before
returning. This assures that the selection-owner object will handle conversions involving a
selection-item object. If you are sure that your conversion procedure handles all the targets
that your application will support, then you do not need to call sel_convert_proc()
from your conversion procedure.

18.2.4.2 Sample selection owner with conversion procedure

Example 18-3 shows a selection-owner object and defines the conversion procedure, con-
vert_proc(). When an ACTION_COPY event is detected, sel_owner acquires the
selection by setting the attribute SEL_OWN to TRUE. At this time you should also set
SEL_TIME to the time on to the time of the ACTION_COPY event. If you do not set the
selection time using SEL_TIME, the selection owner package sets the time, but this requires
the package to perform additional processing.

404 XView Programming Manual

The sample procedure convert_proc() is invoked when a selection requestor posts a
request (not shown here). In this routine, the selection rank is stored in selection and the
response data, “Primary Selection content . . . ” is is stored in str. Lastly, format, length, type,
and replyBuff are assigned the appropriate values to convert the data (str) to the requested
type (XA_INTEGER or XA_STRING).

Example 18-3. Selection owner program

static int convert_proc();
Selection_owner sel_owner;

main()
{

:
sel_owner = xv_create(window, SELECTION_OWNER,

SEL_CONVERT_PROC, convert_proc,
NULL);

:
}

window_event_handler(..., event, ...)
:

Event *event;
:

{
:
switch (event_action(event) {
case ACTION_COPY:

xv_set(sel_owner, SEL_OWN, TRUE, NULL);
break;
}

:
}

int
convert_proc(sel_owner, type, replyBuff, length, format)

Selection_owner sel_owner;
Atom *type;
Xv_opaque *replyBuff;
unsigned long *length;
int *format;

{
int len;
Atom selection;
char str[50];

selection = (Atom) xv_get(sel_owner, SEL_RANK);
strcpy(str,"Primary selection content...\n");

if (*type == TARGETS) {
/* Support target conversion here */
return(TRUE);

}

if ((selection == XA_PRIMARY) && (*type == XA_STRING)) {
*format = 8;
*length = strlen(*str) + 1 ;

Selections

Selections 405

Example 18-3. Selection owner program (continued)

*type = type;
*replyBuff = (Xv_opaque) strcpy(str);
return(TRUE);

}

if ((selection == XA_PRIMARY) && (*type == XA_INTEGER)) {
len = strlen(str);
*format = 32;
*length = 1;
*replyBuff = (Xv_opaque)&len;
return(TRUE);

}
/* call sel_convert_proc(sel_owner, type,

replyBuff, length, format); */
/* return, or call the default conversion procedure */

}

18.2.5 Handling the Response (Selection Requestor)

Once the selection owner has responded to the request, the selection-requestor object is noti-
fied. If the selection-requestor object used a blocking request, then the blocked xv_get() will
return with the response. If the requestor had made a non-blocking request then the response
would be sent to the requestor’s callback procedure. This callback procedure is called a
reply procedure and can be registered on the requestor object using the SEL_REPLY_PROC
attribute.

Information passed into the reply procedure will indicate whether the selection request was
completed successfully. If it was successful, the requestor is free to use the response as
appropriate. Typically, it will display the data in a window. The format for the application-
defined reply procedure is:

void
reply_proc(sel_req, target, type, replyValue, length, format)

Selection_requestor sel_req;
Atom target;
Atom type;
Xv_opaque replyValue;
unsigned long length;
int format;

The argument sel_req is the selection requestor. The name of the request/response is sup-
plied in target. For example, TARGETS, STRING, or LENGTH. The argument type specifies the
type of the target returned, values corresponding to the three mentioned, would be TARGETS,
STRING and INTEGER. replyValue specifies the data content returned. length specifies the
length of the data. format specifies the format of the data. Example 18-4 shows a sample
reply procedure.

The data for reply_Value is malloced. The application is responsible for freeing this data
once it is finished using it.

406 XView Programming Manual

If the response was returned in increments, then the reply procedure will be called back more
than once with individual buffers representing part of the response. The reply procedure
must be able to handle incremental responses. See Section 18.4, “How to Send Data Incre-
mentally,” for more information on how to do this.

In the case where multiple targets are requested, the selection’s reply procedure is called
more than once.

Example 18-4. Sample reply procedure – SelectionReplyProc

void
SelectionReplyProc(sel, target, type, value, length, format)

Selection_requestor sel;
Atom target;
Atom type;
Xv_opaque value;
unsigned long length;
int format;

{
if (length == SEL_ERROR) {

SelectionError(sel, target, *(int *)value);
return;

}

if (target == ATOM(server, "TARGETS")) {
textsw_insert(textsw,

"Holder will convert the following targets:\n", 43);
/* 43 is the size of the string */

do {
Atom *targets = (Atom *)value;
char *target_name;

if (targets[--length]) {
target_name = (char *)xv_get(server, SERVER_ATOM_NAME,

targets[length]);

textsw_insert(textsw, "\t", 1);
textsw_insert(textsw, target_name, strlen(target_name));
textsw_insert(textsw, "\n", 1);

}
} while(length);

}
else
if (target == ATOM(server, "TIMESTAMP")) {

char buf[10];

textsw_insert(textsw, "TIMESTAMP of acquisition: ", 26);
sprintf(buf, "%U\n", *(unsigned long *)value);
textsw_insert(textsw, buf, strlen(buf));

}
else
if (target == ATOM(server, "LENGTH")) {

char buf[10];

textsw_insert(textsw, "Length of selection: ", 21);
sprintf(buf, "%d\n", *(int *)value);
textsw_insert(textsw, buf, strlen(buf));

}
else

Selections

Selections 407

Example 18-4. Sample reply procedure – SelectionReplyProc (continued)

if (target == ATOM(server, "STRING")) {
static int incr = False;

if (type == ATOM(server, "INCR")) {
textsw_insert(textsw, "Contents of the selection:\n", 27);
incr = True;

}
else
if (length) {

if (!incr)
textsw_insert(textsw, "Contents of the selection:\n", 27);

textsw_insert(textsw, (char *)value, length);
textsw_insert(textsw, "\n", 1);

}
else

incr = False;
}
else
if (target == ATOM(server, "DELETE")) {

textsw_insert(textsw, "The Selection has been deleted\n", 31);
}

textsw_insert(textsw, LINE, strlen(LINE));
}

18.2.5.1 Handling selection reply procedure errors

If the selection conversion fails, and you are using a non-blocking request, the reply proce-
dure is called with replyValue set to an error code and length set to SEL_ERROR. The reply
procedure error codes are defined in sel_pkg.h and shown in Table 18-2.

If the selection conversion fails, and you are using a blocking request without a reply proce-
dure defined, the xv_get() returns with the length argument set to SEL_ERROR, format set
to 0, and a NULL value is returned. If a reply procedure is defined, its replyValue argument is
set to one of the error codes shown in Table 18-2.

Table 18-2. Error Codes

Code Description

SEL_BAD_CONVERSION If the conversion is refused by the selection holder or there
is no holder of the selection, this value is returned. This
may mean that there is no owner for the selection, that the
owner does not support the conversion implied by target, or
that the server did not have sufficient space.

SEL_BAD_TIME The SelectionNotify time does not match the package time
value.

SEL_BAD_WIN_ID The SelectionNotify requestor ID does not match the pack-
age requestor ID.

408 XView Programming Manual

Table 18-2. Error Codes (continued)

Code Description

SEL_BAD_PROPERTY Obsolete.
SEL_BAD_PROPERTY_EVENT Obsolete.
SEL_PROPERTY_DELETED Obsolete.
SEL_TIMEDOUT Selection timed out.

A sample application-defined errror routine, for a non-blocking error handler, is shown in
Example 18-5. Code similar to this should be invoked to handle errors in your selection
application.

Example 18-5. Sample selection reply error handler

SelectionError(sel, target, errorCode)
Selection_requestor sel;
Atom target;
int errorCode;

{
Atom rank;
char *rank_string;
char *target_string = (char *)xv_get(server,

SERVER_ATOM_NAME, target);
char msg[100];

rank = (Atom)xv_get(sel, SEL_RANK);
rank_string = (char *)xv_get(server, SERVER_ATOM_NAME, rank);

sprintf(msg, "Selection failed for rank ‘‘%s’’ on target ‘‘%s’’: ",
rank_string, target_string);

textsw_insert(textsw, msg, strlen(msg));

switch(errorCode) {
case SEL_BAD_CONVERSION :
textsw_insert(textsw, "Conversion Rejected",
strlen("Conversion Rejected"));
break;

case SEL_BAD_TIME:
textsw_insert(textsw, "Bad Time Match",

strlen("Bad Time Match"));
break;

case SEL_BAD_WIN_ID:
textsw_insert(textsw, "Bad Window Match",

strlen("Bad Window Match"));
break;

case SEL_TIMEDOUT:
textsw_insert(textsw, "Timeout", strlen("Timeout"));
break;

}
}

Selections

Selections 409

18.2.6 If the Selection is Lost (Selection Owner)

If the owner loses the selection, because someone else acquired the same rank selection, the
lose procedure is called. The selection-owner object attribute SEL_LOSE_PROC specifies the
selection owner’s lose procedure. This procedure is called by the toolkit, to inform the
selection owner that it has lost the ownership of the given selection. The form of the lose
procedure is shown below:

void
lose_proc(sel)

Selection_owner sel;

sel specifies the selection-owner object.

One example of lose_proc() usage is for unhighlighting the highlighted text in a
textsw. The code fragment below shows a selection lose procedure that simply informs the
user that the selection was lost.

void
SelectionLoseProc(sel)

Selection_owner sel;
{

xv_set(frame, FRAME_LEFT_FOOTER, "Lost Selection...", NULL);
}

18.2.7 Cleanup – When the Selection Completes (Selection Owner)

The attribute SEL_DONE_PROC specifies the application-defined done procedure that is called
by the toolkit when a selection request has successfully completed. It is called once follow-
ing each successful transfer of data to the requestor. Thus, if the selection request is a multi-
ple, or results in an incremental reply, the done procedure is called more than once. This pro-
cedure can be used to deallocate any selection replies allocated in the conversion procedure.

void
done_proc(sel, replyBuff, target)

Selection_owner sel;
Xv_opaque replyBuff;
Atom target;

The argument sel specifies the selection-owner object. replyBuff specifies the address which
contains the converted data. target specifies the target type returned by the conversion pro-
cedure.

410 XView Programming Manual

Example 18-6 shows a sample done procedure.

Example 18-6. Sample done procedure – SelectionDoneProc

void
SelectionDoneProc(sel, data, target)

Selection_owner sel;
Xv_opaque data;
Atom target;

{
if (target == ATOM(server, "STRING"))

free((char *)data);
}

18.3 How Selection Works (With a Selection Item)

This section describes using a selection item that can eliminate the selection owner’s need for
a conversion procedure. This may simplify the programmer’s job of implementing a
selection transfer.

Selection items are good to use for conversions that involve static data—data that will not
change over the lifetime of the selection. Do not use a selection item for selections where the
data associated with the selection is not known until the selection request is received (using a
selection conversion procedure is best for this case). Also, do not use a selection item for any
selection conversion that has side effects (for example, a delete request).

Below is a brief overview of the steps that take place during a single transfer of data from
one XView application to another using a selection item. We’ll assume we have two applica-
tions, application A and application B, either of which can operate as the owner or the reques-
tor.

1. (Owner side.) The user makes a selection in application A and the application highlights
the selection.

2. (Owner side.) The user may pre-register a conversion for a particular target by creating a
selection-item object and setting its attributes.

3. (Owner side.) In the XView Selection package, nothing further happens until an event of
interest is detected, for example, an ACTION_COPY event. At this time, a selection item
may claim ownership of the current selection in application A. Also at this time,
selection data may be attached to the selection-item object.

4. (Requestor side.) The user pastes the selected data into application B, causing an
ACTION_PASTE event to occur.

5. (Requestor side.) The ACTION_PASTE event may cause the Selection Requestor to make
a non-blocking request to receive the selected data into application B.

Selections

Selections 411

6. (Owner side.) When there is a match between a selection-item object’s target type, and a
requested target, the selection package converts and sends the selection data to the
selection requestor. XView internally handles the data conversion by calling the pack-
age’s default conversion procedure sel_convert_proc().

7. (Requestor side.) Once the data conversion has completed (either successfully or unsuc-
cessfully), the application-defined reply procedure is invoked. The data may displayed in
application B (if the conversion routine was successful) or the user may simply be given
some indication that data was received. Other possibilities include: the kind of data
selected in application A cannot be pasted in application B, or that the kind of data
requested by B cannot be supplied by A.

8. (Owner side.) Once the selection transfer is complete, an application-defined “done” pro-
cedure may be called by the selection owner. The done procedure may be used to free the
memory associated with the selection, or to perform other cleanup that is required.

9. (Owner side.) If another application acquires the selection, application A’s “lose” proce-
dure is called. This procedure is used to handle notification of loosing selection owner-
ship. It tells the selection owner (application A) that it has lost ownership of the
selection. For example, the lose procedure might unhighlight text that was previously
selected and highlighted.

18.3.1 The Selection Item

The first task for the application that is to become the selection owner, using a selection-item
object, is to pre-register a conversion or several conversions. Below, we describe this step in
detail. Also, the selection needs to be marked. For example, when the pointer is placed over
text in a canvas, an ACTION_SELECT should highlight the selection. While LOC_DRAG occurs,
the highlight would be extended over the selection.

After the user makes a selection and it is marked, the application waits to receive an event of
interest. For example, in a text subwindow, the act of selecting an item causes the primary
rank to be acquired. For the text subwindow example, an ACTION_COPY event causes the
CLIPBOARD selection to be acquired (note that in this case two selections are acquired since
the COPY operation in OPEN LOOK uses the clipboard).

With a selection item, applications perform three steps to become the selection owner:

1. A Selection_owner object must be created using xv_create() (assuming a previ-
ously created selection-owner object is not being re-used.) A selection-item object is
created and its attributes are set.

2. The selection must be acquired.

3. The selection data is associated with the selection item.

412 XView Programming Manual

A selection-owner object is created using xv_create():

Selection_owner sel_owner;
sel_owner = xv_create(window, SELECTION_OWNER,

NULL);

To pre-register a selection item for a string conversion, use the following code:

Selection_item sel_item;
sel_item = xv_create(sel_owner,

SELECTION_ITEM,
SEL_TYPE_NAME, "STRING",
SEL_FORMAT, 8, /* bits per unit (char)*/
NULL);

Pre-register a conversion by setting several selection-item object attributes. SEL_TYPE_NAME

specifies the type, using a string for the atom type of the selection. SEL_FORMAT specifies the
format for the data. Valid values are 8, 16, or 32 for 8-bit, 16-bit, or 32-bit quantities, respec-
tively. SEL_TYPE specifies the type of the conversion that the item supports. To support
more than one type, you need to use additional selection items, one for each type. Since a
string conversion is the default for a selection item, the following code registers the same
conversion at that shown above:

Selection_item sel_item;
sel_item = xv_create(sel_owner, SELECTION_ITEM,

NULL);

The owner of a selection-item object is an object of type Selection_owner. The owner
of a selection item defines the rank to which the item belongs. Figure 18-4 shows the class
hierarchy for a selection-item object.

Generic
Object

Selection
Item

Figure 18-4. Selection item class hierarchy

A selection is acquired by setting SEL_OWN to TRUE on the selection-owner. By default, the
selection is associated with the primary rank (XA_PRIMARY). If your selection needs to use
another rank, use either SEL_RANK or SEL_RANK_NAME to specify the rank as shown below:

xv_set(sel_owner, SEL_OWN, TRUE,
SEL_RANK_NAME "CLIPBOARD",
NULL);

Selections

Selections 413

After the selection-owner object and the selection-item object are created, and the selection
is acquired, data needs to be associated with the selection item (if the selection item is
defined, its data can be set at any time). If the selection is a string transfer using the primary
selection, this step is easy:

char *sel_string;

sel_string="Sample selection data.";

xv_set(sel_item,
SEL_DATA, sel_string, /*pointer to highlighted data*/
SEL_LENGTH, strlen(sel_string),
NULL);

The attribute SEL_DATA associates the selection data with the selection-item object.
SEL_LENGTH specifies the number of data elements in the selection item. Another selection
item attribute, SEL_COPY indicates whether the selection item package should copy and
maintain the selection-item object’s data. If this is set to FALSE, it is up to the application to
maintain the data. To pre-register a selection item for the targets type that returns a list of
five atoms, use the following code:

Selection_item sel_item;
Atom targets[5];
/* initialize the targets array */
targets[0] = (Atom)xv_get(server, SERVER_ATOM, "TARGETS");
targets[1] = (Atom)xv_get(server, SERVER_ATOM, "TIMESTAMP");
targets[2] = (Atom)xv_get(server, SERVER_ATOM, "LENGTH");
targets[3] = (Atom)xv_get(server, SERVER_ATOM, "STRING");
targets[4] = (Atom)xv_get(server, SERVER_ATOM, "DELETE");

sel_item = xv_create(sel, SELECTION_ITEM,
SEL_TYPE_NAME, "TARGETS",
SEL_FORMAT, 32,
SEL_LENGTH, 5,
SEL_DATA, targets,
NULL);

Once a selection-item object is created, and the selection data is associated with the selection
item, the selection item’s owner waits to receive a request. When and if the item’s owner
receives a selection request, the selection data is converted, according to the specifications
set using the selection item attributes. Data is supplied through the SEL_DATA attribute.
Note that the default conversion procedure sel_convert_proc() needs to be called in
order to convert a selection using a selection item.

The owner of a selection-item object, is a selection-owner object. A selection-owner object
can access its selection items using the attributes SEL_FIRST_ITEM and SEL_NEXT_ITEM.

414 XView Programming Manual

18.4 How to Send Data Incrementally (Selection Owner)

Selections whose data is larger than the server’s maximum request size require special hand-
ling. The selection package checks these limits and handles these large cases internally,
using incremental selections. The selection owner’s conversion procedure may also specify,
for any reason, that the data is to be sent in increments.

An incremental transfer is specified by constructing an increment message as follows:

1. Set replyType to an atom named INCR.

2. Set replyBuff to an integer representing a lower bound on the number of bytes of data in
the selection.

3. Set length to 1.

4. Set format to 32.

The conversion routine should then return TRUE. The selection package sends the INCR mes-
sage to the requestor and then calls the conversion routine repeatedly, for each buffer making
up the response, until length is set to zero by the application. This indicates the end of the
data transfer.

A selection owner can determine if a selection is larger than the maximum allowed by the
server by comparing the value of the length variable. The conversion routine is called with
length set to the server’s maximum request size. If the owner has chosen to send the selection
data in increments, the size of each increment should be less than or equal to length. If the
size is larger, the selection package sends the data as a series of incremental transfers.
Example 18-7 shows a conversion procedure that sends data incrementally.

Example 18-7. An incremental conversion procedure

static int
ConvertProc(selOwner, type, data, length, format)
Selection_owner sel_owner;

Atom *type;
Xv_opaque *data;
long *length;
int *format;

{
static char *tmp=(char *) NULL;
static int firstTime=1;
static int numBytes=0;

fileSize = TERM_CAP_SIZE;

if (*type == XA_STRING) {
/*
* Send INCR message to the requestor.
*/
if (firstTime) {

static long fSize;

fSize = TERM_CAP_SIZE;
*type = xv_get(server, SERVER_ATOM, "INCR");

Selections

Selections 415

Example 18-7. An incremental conversion procedure (continued)

*data = (Xv_opaque) &fSize;
*format = 32;
*length = 1;
firstTime = 0;
return TRUE;

}

if (tmp != NULL)
free(tmp);

tmp = (char *) malloc(BUFSIZE);

if((numBytes = read(fd, tmp, BUFFSIZE)) == -1) {
fprintf(stderr,"errno = %d \n", errno);
numBytes=0;

}
if((numBytes == 0) {

free(tmp)
tmp=null

}
*format = 8;
*length = numBytes;
*type = XA_STRING;
*data = (Xv_opaque) tmp;
return TRUE;

}
return FALSE;

}

18.4.1 How to Handle Incremental Replies (Selection Requestor)

The selection package starts an incremental reply by sending the INCR type to the reply pro-
cedure. replyValue is set to a lower bound on the number of bytes of data in the selection.
The reply procedure needs to be able to build up the data as it is called repeatedly until all the
selection data has been transferred.

The conversion procedure informs the reply procedure when the incremental transfer is com-
plete by sending a message. The conversion procedure sets length to zero and replyValue to
NULL, indicating the end of incremental data transfer. Clients need to free the reply Value.
Example 18-8 shows how the reply procedure handles incremental replies.

Example 18-8. Incremental reply – IncrReply.c

static void
ReplyProc(selReq, target, type, replyBuf, len, format)

Selection_requestor selReq;
Atom target;
Atom type;
Xv_opaque replyBuf;
unsigned long len;
int format;

{

416 XView Programming Manual

Example 18-8. Incremental reply – IncrReply.c (continued)

if (len == SEL_ERROR) {
int errCode;

bcopy((char *) replyBuf, (char *) &errCode, sizeof(int));
switch(errCode) {

case SEL_BAD_CONVERSION :
printf("ReplyProc: Conversion failed!\n");
break;

case SEL_BAD_TIME:
printf("ReplyProc: Bad time!\n");
break;

case SEL_BAD_WIN_ID:
printf("ReplyProc: Bad window id!\n");
break;

case SEL_TIMEDOUT:
printf("ReplyProc: Timed out!\n");
break;

}
}

if (len == 0) {
printf("End of incremental data transfer.\n");
return;

}

if (type == xv_get(server, SERVER_ATOM, "INCR")) {
long size;

bcopy((char *) replyBuf, (char *) &size, sizeof(long));
printf("Get ready for INCR of size %d\n", size);

}

if ((type == XA_STRING) && len)
printf("%.*s\n", len, (char *) replyBuf);

}

18.5 Requesting and Converting Multiple Targets

A selection request may involve more than one target. This type of request is called a MUL-
TIPLE request. Normally on both the selection owner side, and on the selection requestor
side, a MULTIPLE request is handled by the packages, without any interaction by the applica-
tion programmer. This section outlines how the selection-requestor package and the
selection-owner package handle MULTIPLE requests.

The selection requestor package detects that more than one target has been requested when
the following attributes are used to request more than a single target:

SEL_APPEND_TYPE
SEL_APPEND_TYPES
SEL_TYPES
SEL_TYPE_NAMES

Selections

Selections 417

The selection requestor then requests that the selection owner convert a list of targets.

On the selection owner side, a MULTIPLE request is treated as a stream of single requests.
The package calls the conversion procedure as many times as required to convert all of the
targets requested.

In the special case where a multiple request also involves an incremental target (INCR), the
selection owner calls the application-defined conversion procedure with format set
SEL_MULTIPLE to indicate that the selection request is a incremental request that is part of a
multiple request.

18.6 Additional Transfer Mechanisms (Selection Requestor)

A selection requestor may associate data with the window property being used in the
selection transaction. This property may be used by the selection owner for certain types of
selection transfers. The selection-requestor object attributes: SEL_PROP_DATA, and
SEL_TYPE_INDEX support bi-directional data transfer for a property associated with a
selection. In addition, the attributes SEL_PROP_FORMAT, SEL_PROP_LENGTH,
SEL_PROP_TYPE, and SEL_PROP_TYPE_NAME, also support this type of selection transfer. A
selection requestor may associate a property with the selection that the requestor is request-
ing. For example, this associated property may be used to support an INSERT_SELECTION or
a INSERT_PROPERTY target. Or properties may be used by the owner for other reasons. A
selection-requestor object may associate data with the property that the selection is request-
ing. This information may be of interest to a selection owner for certain types of selection
transfers.

18.7 Additional Transfer Mechanisms (Selection Owner)

If the selection requestor is sending data to the selection owner, using additional properties,
the attribute SEL_PROP_INFO allows the selection owner to access this property data.

18.8 Sample Selection Owner Program with a Selection Item

Example 18-9 shows a simple panel with two text items and two buttons inside a frame. This
example uses a selection item to return the TARGETS type and a conversion procedure to
return the remaining supported types. The “Selection:” field allows the user to enter the
desired selection rank. The “Contents:” field allows the user to enter a string, the selection
data to be operated on. The “Own Selection” button causes the application to own the
selection. The “Lose Selection” button causes the selection to be lost.

418 XView Programming Manual

Example 18-9. Sample program – sel_hold.c

/*
* sel_hold.c: Example of how to acquire and hold a selection.
*
*/
#include <stdio.h>
#include <X11/Xlib.h>
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>
#include <xview/textsw.h>
#include <xview/font.h>
#include <xview/sel_pkg.h>

Frame frame;
Xv_Server server;
Panel panel;
Panel_item p_selection,

p_contents,
p_own,
p_lose;

Selection_owner sel;
Selection_item sel_targets;

#define ATOM(server, name) (Atom)xv_get(server, SERVER_ATOM, name)

main(argc, argv)
int argc;
char **argv;

{
Panel_setting NotifyProc();
int SelectionConvertProc();
void SelectionDoneProc(),

SelectionLoseProc();
Xv_Font font;
Atom targets[5];

server = xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = xv_create((Window)NULL, FRAME,
XV_X, 520,
XV_Y, 655,
XV_LABEL, "Selection Holder Example",
FRAME_SHOW_FOOTER, True,
NULL);

panel = xv_create(frame, PANEL, NULL);

p_selection = xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Selection:",
PANEL_VALUE_DISPLAY_LENGTH, 40,
PANEL_NOTIFY_PROC, NotifyProc,
PANEL_ITEM_X, xv_col(panel,0),
PANEL_ITEM_Y, xv_row(panel,0),
NULL);

Selections

Selections 419

Example 18-9. Sample program – sel_hold.c (continued)

p_contents = xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Contents:",
PANEL_VALUE_DISPLAY_LENGTH, 40,
PANEL_ITEM_X, xv_col(panel,0),
PANEL_ITEM_Y, xv_row(panel,1),
NULL);

p_own = xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Own Selection",
PANEL_NOTIFY_PROC, NotifyProc,
PANEL_ITEM_X, xv_col(panel,5),
PANEL_ITEM_Y, xv_row(panel,2),
NULL);

p_lose = xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Lose Selection",
PANEL_NOTIFY_PROC, NotifyProc,
PANEL_ITEM_X, xv_col(panel,30),
PANEL_ITEM_Y, xv_row(panel,2),
NULL);

/* Create a selection owner object */
sel = xv_create(panel, SELECTION_OWNER,

SEL_CONVERT_PROC, SelectionConvertProc,
SEL_DONE_PROC, SelectionDoneProc,
SEL_LOSE_PROC, SelectionLoseProc,
NULL);

targets[0] = (Atom)xv_get(server, SERVER_ATOM, "TARGETS");
targets[1] = (Atom)xv_get(server, SERVER_ATOM, "TIMESTAMP");
targets[2] = (Atom)xv_get(server, SERVER_ATOM, "LENGTH");
targets[3] = (Atom)xv_get(server, SERVER_ATOM, "STRING");
targets[4] = (Atom)xv_get(server, SERVER_ATOM, "DELETE");

/* Create a selection item, owned by the selection owner we just
* created. This pre-registers a conversion, in this case a
* conversion for ‘‘TARGETS’’.
*/

sel_targets = xv_create(sel, SELECTION_ITEM,
SEL_TYPE_NAME, "TARGETS",
SEL_FORMAT, 32,
SEL_LENGTH, 5,
SEL_DATA, (Xv_opaque)targets,
NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);
exit(0);

}

The selection-owner object sel specifies the conversion procedure, the done procedure, and
the lose procedure. Next, the targets array is filled with supported atoms. These are the
names for the supported conversions. The selection-item object’s conversion is specified

420 XView Programming Manual

using the attributes: SEL_TYPE_NAME, SEL_FORMAT, and SEL_LENGTH. The attribute
SEL_DATA associates the selection data with the selection item.

18.8.0.1 The notify procedure

Example 18-10 shows how the NotifyProc() routine is used to handle the selection rank
entry, owning the selection, and losing the selection. If a selection rank has been entered, it is
read from the panel text item and then assigned to sel, the selection-owner object. If the
“own” button is pressed, the current selection is acquired by setting SEL_OWN to TRUE and
SEL_TIME to the time of the event. If the “lose” button is pressed, the current selection is
released by setting SEL_OWN to FALSE and SEL_TIME to the time of the event.

Example 18-10. The notify procedure – NotifyProc()

Panel_setting
NotifyProc(item, event)

Panel_item item;
Event *event;

{
if (item == p_selection) {

char *rank;

/* Get the rank of the selection */
/* the user would like to use. */
rank = (char *)xv_get(item, PANEL_VALUE);

/* Set the rank to our selection owner object. */
xv_set(sel, SEL_RANK_NAME, rank, NULL);

return(PANEL_NEXT);

} else if (item == p_own) {

/* The user pressed the ‘‘own’’ button, so we */
/* acquire the selection. */
xv_set(sel, SEL_OWN, True,

SEL_TIME, event_time(event),
NULL);

xv_set(frame,
FRAME_LEFT_FOOTER, "Acquired Selection...", NULL);

} else if (item == p_lose) {

/* The user pressed the ‘‘lose’’ button, so we lose ownership
* of the selection.
*/
xv_set(sel, SEL_OWN, False,

SEL_TIME, event_time(event),
NULL);

xv_set(frame, FRAME_LEFT_FOOTER, "Lost Selection...", NULL);
}

return(PANEL_DONE);
}

Selections

Selections 421

18.8.0.2 The conversion procedure

The conversion procedure is specified by the SEL_CONVERT_PROC attribute. This conversion
procedure, SelectionConvertProc, is called whenever an application makes a request
to the selection owned by this application. This procedure is shown in Example 18-11. The
selection owner responds to the requesting application by converting the acquired selection
to the target type requested. A well behaved routine provides for the case of a TARGETS

request by returning a list of valid target types to the requestor. In this case, the selection
owner returns the length of the string selected for LENGTH, a copy of the contents of the string
selected for STRING, and sets the string to NULL and returns NULL for the DELETE target.

Example 18-11. Sample conversion procedure – SelectionConvertProc

int
SelectionConvertProc(sel, target, data, length, format)

Selection_owner sel;
Atom *target; /* Input/Output */
Xv_opaque *data; /* Output */
unsigned long *length; /* Output */
int *format; /* Output */

{

/* Request for the length of the selection. */
if (*target == ATOM(server, "LENGTH")) {

static unsigned long len;
char *contents;

contents = (char *)xv_get(p_contents, PANEL_VALUE);
len = strlen(contents);

*target = ATOM(server, "INTEGER");
*format = 32;
*length = 1;
*data = (Xv_opaque)&len;
return(True);

}
/* Request for the string contents of the selection. */
else if (*target == ATOM(server, "STRING")) {

char *contents;

contents = (char *)xv_get(p_contents, PANEL_VALUE);

*target = ATOM(server, "STRING");
*format = 8;
*length = strlen(contents);
*data = (Xv_opaque)strdup(contents);
return(True);

}
/* Request to delete the selection. */
else if (*target == ATOM(server, "DELETE")) {

xv_set(p_contents, PANEL_VALUE, "", NULL);
*target = ATOM(server, "NULL");
*format = 32;
*length = 0;
*data = (Xv_opaque)NULL;
return(True);

422 XView Programming Manual

Example 18-11. Sample conversion procedure – SelectionConvertProc (continued)

} else
/* Call the default selection conversion procedure.
* It handles requests for any pre-registered
* conversions, including TARGETS.
*/
return(sel_convert_proc(sel, target, data, length, format));

}

18.8.1 The Done Procedure

The selection done procedure is called after each conversion has happened. This gives the
application a chance to free up memory.

void
SelectionDoneProc(sel, data, target)

Selection_owner sel;
Xv_opaque data;
Atom target;

{
if (target == ATOM(server, "STRING"))
free((char *)data);

}

Note, in this example, we only alloc data for string requests so we only free it for string data.

18.8.2 The Lose Procedure

The lose procedure lets the selection package lose ownership a selection gracefully. For
example, the user can can be informed that the selection was lost, as in the following
example.

void
SelectionLoseProc(sel)

Selection_owner sel;
{

xv_set(frame, FRAME_LEFT_FOOTER, "Lost Selection...", NULL);
}

Selections

Selections 423

18.9 Sample Selection Requestor Program

Example 18-12 shows three panel items that are created to handle the selection rank, the tar-
get(s) request, and initiating the request. Below them is a textsw that displays the response
to the request.

Example 18-12. Sample selection requestor program – sel_req.c

/*
* sel_req.c: Example of how to make requests to a selection owner for
* the selection contents.
*/
#include <stdio.h>
#include <X11/Xlib.h>
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>
#include <xview/textsw.h>
#include <xview/font.h>
#include <xview/sel_pkg.h>

Frame frame;
Textsw textsw;
Xv_Server server;
Panel panel;
Panel_item p_selection,

p_target,
p_request;

Selection_requestor sel;

#define TARGETS 1<<0
#define TIMESTAMP 1<<1
#define LENGTH 1<<2
#define STRING 1<<3
#define DELETE 1<<4
#define LINE "--"

#define ATOM(server, name) (Atom)xv_get(server, SERVER_ATOM, name)

main(argc, argv)
int argc;
char **argv;

{
void MakeRequest(),

SelectionReplyProc(),
RequestChoice();

Xv_Font font;

server = xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = xv_create((Window)NULL, FRAME,
XV_X, 10,
XV_Y, 10,
XV_LABEL, "Selection Requestor Example",
NULL);

424 XView Programming Manual

Example 18-12. Sample selection requestor program – sel_req.c (continued)

panel = xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

p_selection = xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Selection:",
PANEL_VALUE_DISPLAY_LENGTH, 40,
PANEL_NOTIFY_PROC, MakeRequest,
NULL);

p_target = xv_create(panel, PANEL_TOGGLE,
PANEL_LABEL_STRING, "Request:",
PANEL_NOTIFY_PROC, RequestChoice,
PANEL_CHOICE_STRINGS, "TARGETS",

"TIMESTAMP",
"LENGTH",
"STRING",
"DELETE",
NULL,

NULL);
p_request = xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Make Request",
PANEL_NOTIFY_PROC, MakeRequest,
PANEL_ITEM_X, xv_cols(panel, 20),
NULL);

window_fit(panel);

textsw = xv_create(frame, TEXTSW,
XV_X, 0,
XV_FONT, font,
WIN_BELOW, panel,
NULL);

/* Create a selection requestor object. */
sel = xv_create(panel, SELECTION_REQUESTOR,

SEL_REPLY_PROC, SelectionReplyProc,
NULL);

window_fit(frame);
xv_main_loop(frame);
exit(0);

}

In the requestor application, a PANEL_TEXT item is created where the selection rank can be
entered by the user. Next, a set of nonexclusive toggle buttons are created to allow the user to
choose the target type for the conversion by the selection owner. A “Make Request” button
is created that will send a request to the selection owner every time it is pressed. A TEXTSW is
created to display the output of the request and lastly, a selection-requestor object, sel, is
created.

Selections

Selections 425

Example 18-13 shows the notify procedure associated for the selection requestor example
sel_req.c. It sets and/or appends selection types to the selection requestor based on the
choices selected by the user.

Example 18-13. Sample requestor notify procedure

void
RequestChoice(item, value, event)

Panel_item item;
unsigned int value;
Event *event;

{
int set = False;

/* Build the request based on the toggle items the user has selected. */

if (value & TARGETS) {
if (set)

xv_set(sel, SEL_APPEND_TYPE_NAMES, "TARGETS", NULL, NULL);
else

xv_set(sel, SEL_TYPE_NAME, "TARGETS", NULL);
set = True;

}

if (value & TIMESTAMP) {
if (set)

xv_set(sel, SEL_APPEND_TYPE_NAMES, "TIMESTAMP", NULL, NULL);
else

xv_set(sel, SEL_TYPE_NAME, "TIMESTAMP", NULL);
set = True;

}

if (value & LENGTH) {
if (set)

xv_set(sel, SEL_APPEND_TYPE_NAMES, "LENGTH", NULL, NULL);
else

xv_set(sel, SEL_TYPE_NAME, "LENGTH", NULL);
set = True;

}

if (value & STRING) {
if (set)

xv_set(sel, SEL_APPEND_TYPE_NAMES, "STRING", NULL, NULL);
else

xv_set(sel, SEL_TYPE_NAME, "STRING", NULL);
set = True;

}

if (value & DELETE) {
if (set)

xv_set(sel, SEL_APPEND_TYPE_NAMES, "DELETE", NULL, NULL);
else

xv_set(sel, SEL_TYPE_NAME, "DELETE", NULL);
set = True;

}
}

426 XView Programming Manual

The notify procedure, shown in Example 18-14, is associated with the “Make Request” but-
ton. It initiates the request by doing three things:

• Getting the selection rank.

• Setting the selection rank.

• Posting a selection request.

Example 18-14. Sample make request notify procedure

void
MakeRequest(item, event)

Panel_item item;
Event *event;

{
if (item == p_selection) {

char *rank = NULL;

/* Set the rank of the selection we are */
/* going to make requests to. */
rank = (char *)xv_get(item, PANEL_VALUE);
xv_set(sel, SEL_RANK_NAME, rank,

NULL);
}
else {

/* Post a non-blocking request to the selection owner. */
sel_post_req(sel);
textsw_erase(textsw, 0, TEXTSW_INFINITY);

}
}

18.9.0.1 Sample reply procedure

Example 18-15 shows the reply procedure for sel_req.c.

Example 18-15. Selection reply procedure

void
SelectionReplyProc(sel, target, type, value, length, format)

Selection_requestor sel;
Atom target;
Atom type;
Xv_opaque value;
unsigned long length;
int format;

{
if (length == SEL_ERROR) {

SelectionError(sel, target, *(int *)value);
return;

}

if (target == ATOM(server, "TARGETS")) {
textsw_insert(textsw,

"Holder will convert the following targets:\n", 43);
/* 43 is the size of the string */

Selections

Selections 427

Example 18-15. Selection reply procedure (continued)

do {
Atom *targets = (Atom *)value;
char *target_name;

if (targets[--length]) {
target_name = (char *)xv_get(server, SERVER_ATOM_NAME,

targets[length]);

textsw_insert(textsw, "\t", 1);
textsw_insert(textsw, target_name, strlen(target_name));
textsw_insert(textsw, "\n", 1);

}
} while(length);

}
else
if (target == ATOM(server, "TIMESTAMP")) {

char buf[10];

textsw_insert(textsw, "TIMESTAMP of acquisition: ", 26);
sprintf(buf, "%U\n", *(unsigned long *)value);
textsw_insert(textsw, buf, strlen(buf));

}
else
if (target == ATOM(server, "LENGTH")) {

char buf[10];

textsw_insert(textsw, "Length of selection: ", 21);
sprintf(buf, "%d\n", *(int *)value);
textsw_insert(textsw, buf, strlen(buf));

}
else
if (target == ATOM(server, "STRING")) {

static int incr = False;

if (type == ATOM(server, "INCR")) {
textsw_insert(textsw, "Contents of the selection:\n", 27);
incr = True;

}
else
if (length) {

if (!incr)
textsw_insert(textsw, "Contents of the selection:\n", 27);

textsw_insert(textsw, (char *)value, length);
textsw_insert(textsw, "\n", 1);

}
else

incr = False;
}
else
if (target == ATOM(server, "DELETE")) {

textsw_insert(textsw, "The Selection has been deleted\n", 31);
}

textsw_insert(textsw, LINE, strlen(LINE));
}

428 XView Programming Manual

18.9.0.2 Sample error procedure

The error procedure for this example is shown in Example 18-16.

Example 18-16. Sample error procedure – SelectionError.c

SelectionError(sel, target, errorCode)
Selection_requestor sel;
Atom target;
int errorCode;

{
Atom rank;
char *rank_string;
char *target_string = (char *)xv_get(server,

SERVER_ATOM_NAME, target);
char msg[100];

rank = (Atom)xv_get(sel, SEL_RANK);
rank_string = (char *)xv_get(server, SERVER_ATOM_NAME, rank);

sprintf(msg, "Selection failed for rank ‘‘%s’’ on target ‘‘%s’’: ",
rank_string, target_string);

textsw_insert(textsw, msg, strlen(msg));

switch(errorCode) {
case SEL_BAD_CONVERSION :
textsw_insert(textsw, "Conversion Rejected",
strlen("Conversion Rejected"));
break;

case SEL_BAD_TIME:
textsw_insert(textsw, "Bad Time Match",

strlen("Bad Time Match"));
break;

case SEL_BAD_WIN_ID:
textsw_insert(textsw, "Bad Window Match",

strlen("Bad Window Match"));
break;

case SEL_TIMEDOUT:
textsw_insert(textsw, "Timeout", strlen("Timeout"));
break;

}
}

Selections

Selections 429

18.10 Selection Package Summary

Table 18-3 lists the selection procedures. Table 18-4 lists the selection attributes, including
all the attributes for the SELECTION package, as well as the SELECTION_OWNER,
SELECTION_REQUESTOR, and the SELECTION_ITEM attributes. These attributes and proce-
dures are described fully in the XView Reference Manual.

Table 18-3. Selection Procedures

Procedure Package

sel_convert_proc() Selection Owner
sel_post_req() Selection Requestor

Table 18-4. Selection Attributes

SEL_APPEND_TYPE_NAMES SEL_PROP_FORMAT

SEL_APPEND_TYPES SEL_PROP_INFO

SEL_COPY SEL_PROP_LENGTH

SEL_CONVERT_PROC SEL_RANK

SEL_DATA SEL_RANK_NAME

SEL_DONE_PROC SEL_REPLY_PROC

SEL_FIRST_ITEM SEL_TIME

SEL_FORMAT SEL_TIMEOUT_VALUE

SEL_LENGTH SEL_TYPE

SEL_LOSE_PROC SEL_TYPE_INDEX

SEL_NEXT_ITEM SEL_TYPE_NAME

SEL_OWN SEL_TYPE_NAMES

SEL_PROP_DATA SEL_TYPES

XV_XID

430 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

19
Drag and Drop

This chapter describes the XView packages that support drag and drop. Drag and drop
allows data to be moved within an application or between applications. Using drag and drop,
objects are selected, then moved or copied to a new location. The selected object is the drag
and drop source. Selecting the source is referred to as sourcing the drag. An area within the
source application or within another application receives the drop in a pre-registered drop-
site.

This chapter describes packages that are new for XView Version 3. The function
xv_decode_drop() that supports dragging and dropping is now obsolete. Note that
xv_decode_drop() will not work correctly once an application is compiled for V3. The
function is still provided for backwards compatibility for XView Version 2 programs.

Many OPEN LOOK applications use drag and drop operations. For example, an application
may allow text in a text subwindow to be sourced and copied or moved to a new location
within the text subwindow. Similarly, a File Manager’s file icon can be selected and dragged
to the Print Tool icon for printing. OPEN LOOK defines many uses for drag and drop, includ-
ing loading files into an application. Figure 19-1 shows a file being dragged into an editor
and Figure 19-2 shows the application loading the file (receiving the drop).

Drag and drop supports drop previewing where the drop-site image changes to show that it is
a valid drop-site. It also supports drag feedback where the pointer image changes to indicate
that an item is being dragged. The data transfer for an XView drag and drop operation is nor-
mally implemented using selections. You need to be familiar with the selection package to
use drag and drop. The selection package is described in Chapter 18, Selections. Note that
the operation of drag and drop using OPEN LOOK differs from selections in the following
ways:

• Drag and drop is a single gesture rather than a series of separate actions.

• Drag and drop operates on complete pre-registered data objects. Using drag and drop, the
application decides which areas may be selected, and then the user may select and drag
the area. Drag and Drop

Drag and Drop 433

File Manager

File Edit Goto:

/ home

Chapters

Balloons.rs

Cat.rs

romance.doc

chapter1.doc chapter2.doc jester.rs

Edit

File View Edit

Figure 19-1. Dragging a file onto an application

File Manager

File Edit Goto:

/ home

Chapters

Balloons.rs

Cat.rs

romance.doc

chapter1.doc chapter2.doc jester.rs

Edit

It was a dark and stormy night. All
of the beagles were safely in their
kennels. The bats flew around the
tower squeaking frantically.

Dosalina stood at the open window
wistfully gazing out over the moors.

File View Edit

Figure 19-2. Loading a file by dropping

434 XView Programming Manual

19.1 Drag and Drop Objects

Drag and drop is facilitated using two objects: DRAGDROP and DROP_SITE_ITEM; a
DRAGDROP object represents the source of the drag. A DROP_SITE_ITEM object indicates a
destination that is a valid drop-site. All applications need to include the file
<xview/dragdrop.h> to use these packages. All DRAGDROP attributes are prefixed by DND and
all DROP_SITE_ITEM attributes are prefixed by DROP_SITE. Both Figure 19-3 and Figure
19-4 show the class hierarchy for these objects.

Generic
Object (Selection) Selection

Owner DRAGDROP

Figure 19-3. DRAGDROP class hierarchy

Generic
Object Drop Site

Figure 19-4. DROP_SITE_ITEM class hierarchy

Drag and drop operations involve three steps which the following sections describe:

• The application that is to receive the drop must register a region or several regions as
valid drop-sites. This lets the application inform other applications that it is interested in
receiving drops.

• The application containing the source for the drag and drop determines the point at which
to initiate the drag operation. For example, a drag operation could be initiated when text
or a file icon is selected and dragged. A DRAGDROP object is created by the source appli-
cation. The drag begins when the application calls the procedure dnd_send_drop().

• An application that has registered a drop-site must be prepared to receive a drop.

Drag and Drop

Drag and Drop 435

19.2 Registering Drop-sites

An application that is to receive a drop must register a region or several regions as valid
drop-sites. This allows drag sources to determine the validity of potential drop-sites and
enables the application to receive the events for previewing and dropping. For example, a
graphic icon or any other window may be registered as a drop-site. The drop-sites may con-
sist of one region or of several regions described by one or more rectangles within the appli-
cation. If an application does not register an area as a drop-site, it cannot receive or preview
drops.

An object instantiated from the DROP_SITE_ITEM package describes a drop-site. A drop-site
item is subclassed from the GENERIC package and is not a visible object. The following
example demonstrates how to make the rectangle representing an entire window a drop-site:

drop_site = (Xv_drop_site)xv_create(window, DROP_SITE_ITEM,
DROP_SITE_ID, 1234,
DROP_SITE_REGION, xv_get(window, WIN_RECT),
DROP_SITE_EVENT_MASK, DND_ENTERLEAVE | DND_MOTION,
DROP_SITE_DEFAULT, TRUE,
NULL);

Instances of DROP_SITE_ITEM are owned by window-based objects. The attribute
DROP_SITE_ID is an uninterpreted ID that may be used by the application to distinguish one
drop-site from the next. This attribute is useful when more than one drop-site is set on an
object (see Section 19.2.2, “Handling Events,” for details on using this attribute). Section
19.2.1, “Adding and Deleting Regions,” describes regions and the attribute
DROP_SITE_REGION. The attribute DROP_SITE_EVENT_MASK is a mask set on the drop-site
item. It is used to specify if the region(s) within the drop-site should receive preview events
(see Section 19.2.2, “Handling Events,” for more details).

DROP_SITE_DEFAULT establishes a default drop-site for drops forwarded from the window
manager. Such drops include drops on icons and window manager decorations. Only one
drop-site default should be specified per base frame; specifying more than one will have
unpredictable results. Setting this attribute provides only a hint to the window manager. The
drop-site default is used most often as a way to have drops forwarded from iconified applica-
tions.

19.2.1 Adding and Deleting Regions

Individual drop-site regions should correspond to those objects within the window that may
receive drops. For example, if there is a 64x64 icon at (10,10) within a canvas that is an
acceptable drop-site, then a drop-site item should be created. The drop-site item’s region
should be set to a rectangle with coordinates at (10,10) and a size of 64x64. If the position of
the objects within the window change or the objects are clipped by other objects, it is the
responsibility of the application to update the drop-site item to correspond to the new posi-
tion of these items. For example, if an object is deleted, its region should be removed. If an
object is being clipped by its containing window border, or a sibling window border, and is
no longer viewable, its region should be removed or updated to reflect the viewable portion
of the drop-site. If an object moves, relative to the base frame, the drop-site item region

436 XView Programming Manual

needs to be updated by deleting the old region and adding the new, updated region. Drop-
sites obscured by other application windows need not be updated. When the window that
owns a drop-site is unmapped, the drop-sites it owns are also unmapped (made “invisible”) to
drop sources. They are returned when the window is mapped again.

If an application does not keep the region information up-to-date, users may be given false
indication that old drop-site areas can receive drops.

If a drop-site item’s owner is destroyed with xv_destroy(), any drop-site regions atta-
ched to it are also destroyed.

The attribute DROP_SITE_REGION associates a region to a drop-site item.
DROP_SITE_REGION appends regions to any existing regions within the drop-site item. The
coordinates in the rect should be relative to the drop-site item’s owner’s window. An
xv_get() of a region returns a pointer to an allocated Rect * structure. This should be
freed using xv_free() once the application has finished using it.

The attribute DROP_SITE_REGION_PTR is similar to DROP_SITE_REGION except that it
accepts a NULL-terminated array of regions. It appends to any existing regions within the
drop-site item. A NULL rect is defined to be one with width or height equal to 0.

The DROP_SITE_DELETE_REGION attribute removes a region from the drop-site item. When
a NULL is passed as a value for this attribute, all regions in the drop-site are removed.

The DROP_SITE_DELETE_REGION_PTR attribute removes a list of regions from the drop-site
item. Passing a NULL as an argument removes all regions in the drop-site. Typically, when a
region needs to be updated, xv_set() should be called with two attributes:
DROP_SITE_DELETE_REGION_PTR with a NULL value, followed by DROP_SITE

_REGION_PTR. Note that the order of these two attributes is important.

19.2.2 Handling Events

The drop-site item’s owner is a window. The event procedure for the owner window receives
the drag and drop action events and handles them accordingly. Drag and drop semantic
events are shown in Table 19-1.

Table 19-1. Drag and Drop Semantic Events

Event Purpose

ACTION_DRAG_PREVIEW Preview event.
ACTION_DRAG_MOVE Move the source data to the drop-site window.
ACTION_DRAG_COPY Copy the source data to the drop-site window.

Drag and Drop

Drag and Drop 437

19.2.2.1 Preview events

The attribute DROP_SITE_EVENT_MASK sets a mask on the drop-site item to specify if the
region(s) within the drop-site should receive preview events. Preview events indicate the
state of the mouse relative to the drop-site. Preview events are indicated when
event_action() returns ACTION_DRAG_PREVIEW (in this case, event_id() returns
either LOC_WINENTER or LOC_WINEXIT). These events cue the drop-site when the mouse
enters or leaves a drop-site region. Drop-sites can also select for LOC_DRAG events that are
sent as the mouse moves across a region. These events are delivered to the event procedure of
the drop-site item’s owner, (the pointer coordinates are contained within the event). The
coordinates are in the drop-site owner’s coordinate space.

DROP_SITE_EVENT_MASK is only a hint since there is no guarantee the source of the drag will
send previewing events. When preview events arrive, an application may invert the image of
the drop-site. This or some other change that indicates the area is an acceptable drop-site.

An uninterpreted ID specified with the attribute DROP_SITE_ID may be used by the applica-
tion program to distinguish one drop-site from the next. This attribute is useful when more
than one drop-site has been set on an object. This ID is sent along with the
ACTION_DRAG_PREVIEW, ACTION_DRAG_MOVE, and ACTION_DRAG_COPY events. If no
DROP_SITE_ID is set, the package creates a unique ID for each drop-site region.

19.2.2.2 Event forwarding

The procedure dnd_is_forwarded() lets an application determine if a drop or preview
event is forwarded from some other site. This may happen when the user drops on the win-
dow manager’s decoration window, or on a icon when the application is iconified (only if
DROP_SITE_DEFAULT is set). The corresponding drop or preview event will have its
DND_FORWARDED flag set.

In general, if an application handles previewing, it should check to see if the preview event
was forwarded. If the event was forwarded, it should not invert or highlight the drop-site.

19.2.2.3 Handling drop and preview events

A preview event is sent to the drop-site owner when the user is dragging over a registered
drop-site. A drop event is sent to the drop-site owner when the user is dragging over a regis-
tered drop-site and releases the mouse buttons. There are two ways that the drop-site owner
can handle such events in order to preview or to receive the drop:

• The window can set a WIN_EVENT_PROC and define a callback procedure to handle the
drop.

• The window can use a notification interposing routine.

If your application uses an interposing routine, two types of interposition procedures must be
registered for receiving both drop and previewing events. Both a safe, NOTIFY_SAFE, and an
immediate, NOTIFY_IMMEDIATE, interposer needs to be registered. If both safe and immedi-

438 XView Programming Manual

ate interposers are not registered, there are cases when events may be delayed in arriving at
the drop-site and may not arrive “on time.”

19.3 Sourcing the Drag

The application containing the source for the drag and drop determines the point to initiate
the drag operation. For example, a drag operation could be initiated when text or a file icon is
selected and dragged. What events determine the initiation point are entirely up to the appli-
cation programmer.

Sometime before, or when an application initiates a drag and drop operation it needs to create
a drag and drop object and set its attributes. An instance of a DRAGDROP object is created
using xv_create():

dnd_object = xv_create(owner, DRAGDROP,
<attribute-value list>,
NULL)

A DRAGDROP object’s owner is an Xv_window and the <attribute-value list> may contain
drag and drop attributes (DND prefix) or since the DND package is subclassed from selection
owner package, any of the SELECTION_OWNER attributes. For example, the drag and drop
object dnd below uses a selection attribute:

dnd = (Xv_drag_drop)xv_create(window, DRAGDROP,
DND_TYPE, DND_COPY
DND_X_CURSOR, arrow_cursor,
DND_ACCEPT_CURSOR, drop_here_cursor,
SEL_CONVERT_PROC, SelectionConvert,
NULL);

The owner of the drag and drop object should be the window in which the drag operation is
initiated from. Since the DRAGDROP object is used as part of the selection transaction that
implements the drag and drop operation, the selection transaction must also be completed
before the DRAGDROP object can be reused.

NOTE

A drag and drop object can only be used in one drag and drop operation at a
time.

The attribute DND_TYPE defines whether the drag and drop operation will be a copy or a
move. This is just a hint to the destination. If the type is a DND_MOVE operation and if the des-
tination honors the hint, the destination asks the source to convert the DELETE target. The
DND_ACCEPT_CURSOR attribute, and other cursor related attributes are described in the Sec-
tion 19.3.3, “Defining the Drag/Accept Cursor.”

Once the DRAGDROP object is created, it can be used to initiate a drag and drop operation by
calling dnd_send_drop().

Drag and Drop

Drag and Drop 439

19.3.1 Initiating the Drop Operation

To initiate a drag operation, after the drag and drop object is created, an application calls
dnd_send_drop(). This procedure is defined by XView and is responsible for changing
the root cursor, sending previewing events to appropriate drop-sites and sending a trigger
message, an event of type ACTION_DRAG_COPY or ACTION_DRAG_MOVE, to the drop-site that
is to receive the drop. In sequence, dnd_send_drop() does the following:

• Creates a unique selection if this is required.

• Grabs the pointer and changes the cursor.

• Sends preview events to possible drop-sites.

• Sends the kicker message to the drop-site to initiate the transfer.

• Insures that the recipient acknowledges the drop.

• Returns a status.

For example, an application such as filemgr calls this routine when the user drags the
mouse for a number of pixels over a selected file icon.

The form for dnd_send_drop() is:

int
dnd_send_drop(object)

Dnd object;

Dnd is a drag and drop object: dnd_send_drop() does not return until the user releases
all of the mouse buttons, drops the object, or hits the STOP key. The procedure
dnd_send_drop() returns one of the values shown in Table 19-2.

Table 19-2. dnd_send_drop() Return Values

Return Value Description

DND_ILLEGAL_TARGET The user dropped on an object that has not registered interest in
drag and drop.

DND_ROOT The user dropped on the root window.
DND_SELECTION A unique selection could not be obtained.
DND_TIMEOUT The destination did not respond to the kicker message (the

drop).
DND_ABORTED The user aborted the drag operation by hitting the STOP key.
XV_OK The drag and drop operation has begun.
XV_ERROR An unexpected error occurred.

440 XView Programming Manual

19.3.2 Interaction with the Selection Package

Using drag and drop, data is transferred through selections. Since the DRAGDROP package is
subclassed from the SELECTION_OWNER package, it fully supports selections. A selection is
associated with the drag and drop object which allows the drop-site item’s owner to obtain
the data through selection transactions. The selection is normally a transient selection that
persists only for the duration of the drag and drop operation. A transient selection should be
used even if the dragged object is already associated with a selection such as the primary
selection (PRIMARY). If the primary selection were used, and another application acquired
the primary selection during the drag and drop transfer, the drag and drop operation would
fail.

The application can use the SEL_RANK attribute to associate a selection with the drag and
drop object. If the application does not own a selection (SEL_OWN) at the time
dnd_send_drop() is called, XView creates a transient selection and associates it with the
drag and drop object. This selection can be obtained by using xv_get() on the drag and
drop object with the SEL_RANK attribute. It is the responsibility of the application to disown a
selection associated with the drag and drop object when it has completed the operation. This
is regardless of whether the application or the toolkit initially established ownership of the
selection.

If XView created a transient selection and dnd_send_drop() failed (did not return
XV_OK), the toolkit will disown the selection.

Since the source will be required to reply to requests from the destination for data conver-
sion, the source should have either a conversion procedure or selection items set on the drag
and drop object before it calls dnd_send_drop().

19.3.3 Defining the Drag/Accept Cursor

The cursor changes when an object is being dragged. The cursor used to indicate dragging an
object is set with DND_CURSOR. This attribute changes the pointer used during the drag por-
tion of the drag and drop operation. The default drag cursor is the predefined OPEN LOOK
drag cursor. DND_X_CURSOR is an alternative to DND_CURSOR; it accepts an XID of a cursor
instead of an Xv_object.

The attribute DND_ACCEPT_CURSOR defines the special “accept” cursor that is used when the
mouse is over an acceptable drop-site. The default value for this attribute is a predefined
OPEN LOOK drag and drop cursor. DND_ACCEPT_X_CURSOR is an alternative way to set the
accept cursor. This attribute accepts an XID of a cursor instead of an Xv_cursor.*

The cursor package also provides special support for drag and drop cursors for text. Refer to
Chapter 13, Cursors, for information on these special drag and drop cursors.

*Future implementations of this package will also support a DND_REJECT_CURSOR that may be used when drop-
sites are currently unreceptive to drops.

Drag and Drop

Drag and Drop 441

19.3.4 Timeout Value

The attribute DND_TIMEOUT_VALUE defines the amount of time to wait for an acknowledg-
ment from the drop destination after the kicker message has been sent to the source
(ACTION_DRAG_COPY or ACTION_DRAG_MOVE).

19.4 Receiving a Drop

An application that has registered a drop-site may receive a drop. A window or object that
owns the drop-site item may receive one of two events when a valid drop-site is dropped on.
An ACTION_DRAG_COPY indicates a copy and an ACTION_DRAG_MOVE indicates a move.
These events are the trigger message that indicate that a drop has happened.

Upon receiving a drop event, the application should call dnd_decode_drop() and pass in
as a parameter the ACTION_DRAG_MOVE or ACTION_DRAG_COPY event that it received along
with an instantiated SELECTION_REQUESTOR object. The SELECTION_REQUESTOR object is
used since drag and drop data transfers use the selection package to facilitate the transfer.

The dnd_decode_drop() function initiates a data transfer using the selection mecha-
nism. It decodes the drop event as follows:

• It associates the selection rank defined within the drop event with the selection object that
was passed into dnd_decode_drop().

• It sends an acknowledgment to the source of the drag and drop, informing it that the
transaction has begun.

• It returns the drop-site item that was dropped on if dnd_decode_drop() could begin
the drag and drop transaction or returns XV_ERROR if it fails to initiate the drag and drop
transaction. This may happen when the selection defined within the drop event does not
exist.

The form of the procedure dnd_decode_drop() is:

Xv_drop_site
dnd_decode_drop(sel_object, drop_event)

Selection_requestor sel_object;
Event *drop_event;

If dnd_decode_drop() returns a drop-site item, it is the responsibility of the application
to continue the drag and drop transaction. This occurs by making selection requests on the
selection object passed into dnd_decode_drop(). See Chapter 18, Selections, for details
on selection transfers.

The data transfer mechanism for sending and receiving drop data is not limited to using
selections. Any mechanism could be used for the transfer, including: the file system, sockets,
or one of the other Alternate Transport Mechanisms. Typically, such an alternate transfer
mechanism would be initiated after the initial selection request.

442 XView Programming Manual

The macro dnd_is_local(drop_event) returns TRUE if the source and destination of
the drag and drop are the same application. This macro is available so that local (occurring
within a single client) drag and drops can be optimized.

19.4.0.1 The move operation

If the application receives an ACTION_DRAG_MOVE, it should simulate a move by performing
a copy followed by a delete. The delete is initiated by the requestor asking the holder to
convert the DELETE target. For example, a blocking selection transfer uses the following
code:

xv_set(sel_object, SEL_TYPE_NAME, "DELETE", NULL);
(void)xv_get(sel_object, SEL_DATA, &length, &format);

A non-blocking selection transfer would be initiated as follows:

xv_set(sel_object, SEL_TYPE_NAME, "DELETE", NULL);
sel_post_request(sel_object);

The application should only ask the owner to delete the selection if the drop event indicates a
move operation and the application determines it is appropriate to do so. This will typically
happen after the application has successfully transferred the data. To avoid data loss, it is very
important to assure that the data was successfully transferred to the destination application
before the data is deleted from the application that is the source of the drag.

19.4.0.2 The done procedure

At the end of the drag and drop operation, after the data has been transferred, the application
received the drop must inform XView that the drag and drop operation has been completed.
It does so by calling dnd_done():

dnd_done(sel_object);
Selection_requestor sel_object;

Drag and Drop

Drag and Drop 443

19.5 Sample Program—Sourcing a Drag

Example 19-1 shows a program that sources a drag. This program and Example 19-2 show
how to implement a drop-site item and receive a drop.

Example 19-1. Sourcing a drag

/*
* source1.c - Example of how to source a drag and drop operation.
*
*/

#include <stdio.h>
#include <sys/types.h>
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/canvas.h>
#include <xview/cursor.h>
#include <xview/dragdrop.h>
#include <xview/sel_pkg.h>
#include <xview/xv_xrect.h>
#include <xview/svrimage.h>
#include <X11/Xlib.h>
#include <X11/Xatom.h>

short drop_icon[] = {
#include "./drop.icon"
};

#define POINT_IN_RECT(px, py, rx, ry, rw, rh) \
((px) >= rx && (py) >= ry && \
(px) < rx+rw && (py) < ry+rh)

#define STRING_MSG "chromosome: DNA-containing body of the nucleus."

#define HOST 0
#define STRING 1
#define LENGTH 2

Frame frame;
Canvas canvas;
Dnd dnd;
Cursor arrow_cursor;
Server_image arrow_image;
Server_image arrow_image_mask;
Server_image box_image;
Server_image drop_here_image;
Cursor drop_here_cursor;
Selection_owner sel;
Selection_item selItem[5];
Atom selAtom[5];

int SelectionConvert();
extern int sel_convert_proc();

static XColor fg = {0L, 65535, 65535, 65535};

444 XView Programming Manual

Example 19-1. Sourcing a drag (continued)

static XColor bg = {0L, 0, 0, 0};

typedef struct _DragObject {
Server_image image;
int x, y;
unsigned int w, h;
int inverted;

} DragObject;

DragObject dO;

main(argc, argv)
int argc;
char **argv;

{
void EventProc(),

SelectionLose(),
PaintCanvas();

Xv_Server server;
Cursor arror_cursor;

server = xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, 0);

frame = xv_create((Window)NULL, FRAME,
XV_LABEL, "Drag & Drop Source",
XV_X, 10,
XV_Y, 10,
FRAME_SHOW_FOOTER, True,
0);

canvas = xv_create(frame, CANVAS,
XV_HEIGHT, 100,
XV_WIDTH, 300,
CANVAS_REPAINT_PROC, PaintCanvas,
CANVAS_X_PAINT_WINDOW, TRUE,
0);

xv_set(canvas_paint_window(canvas),
WIN_BIT_GRAVITY, ForgetGravity,

WIN_CONSUME_EVENTS,
WIN_MOUSE_BUTTONS,
LOC_DRAG,

WIN_RESIZE,
0,

WIN_EVENT_PROC, EventProc,
0);

/* Create the drag cursor images */
arrow_image = xv_create(NULL, SERVER_IMAGE,

SERVER_IMAGE_BITMAP_FILE, "arrow.bm", NULL);
arrow_image_mask = xv_create(NULL, SERVER_IMAGE,

SERVER_IMAGE_BITMAP_FILE, "arrow_mask.bm", NULL);
/* Create a cursor to use in dnd ops. */

arrow_cursor = XCreatePixmapCursor(XV_DISPLAY_FROM_WINDOW(canvas),
(XID)xv_get(arrow_image, XV_XID),
(XID)xv_get(arrow_image_mask, XV_XID),
&fg, &bg, 61, 3);

Drag and Drop

Drag and Drop 445

Example 19-1. Sourcing a drag (continued)

drop_here_image = xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 64,
XV_HEIGHT, 64,
SERVER_IMAGE_BITS, drop_icon,
0);

drop_here_cursor = XCreatePixmapCursor(
XV_DISPLAY_FROM_WINDOW(canvas),

(XID)xv_get(drop_here_image, XV_XID),
(XID)xv_get(drop_here_image, XV_XID),
&fg, &bg, 32, 32);

dO.image = xv_create(NULL, SERVER_IMAGE,
SERVER_IMAGE_BITMAP_FILE, "arrowb.bm", NULL);

dO.w = xv_get(dO.image, XV_WIDTH);
dO.h = xv_get(dO.image, XV_HEIGHT);
dO.inverted = False;

CreateSelection(server, canvas_paint_window(canvas));

window_fit(frame);

xv_main_loop(frame);
exit(0);

}
CreateSelection(server, window)

Xv_Server server;
{

char name[15];
int len;

/* Primary selection, acquired whenever the arrow
* bitmap is selected by the user.
* This is not a requirement for dnd to work.
*/

sel = xv_create(window, SELECTION_OWNER,
SEL_RANK, XA_PRIMARY,
SEL_LOSE_PROC, SelectionLose,
0);

/* Create the drag and drop object. */
dnd = xv_create(window, DRAGDROP,

DND_TYPE, DND_COPY,
DND_X_CURSOR, arrow_cursor,
DND_ACCEPT_X_CURSOR, drop_here_cursor,
SEL_CONVERT_PROC, SelectionConvert,
0);

/* Associate some selection items with the dnd object.*/
(void) gethostname(name, 15);
selAtom[HOST] = (Atom)xv_get(server, SERVER_ATOM, "HOST_NAME");
selItem[HOST] = xv_create(dnd, SELECTION_ITEM,

SEL_TYPE, selAtom[HOST],
SEL_DATA, (Xv_opaque)name,

446 XView Programming Manual

Example 19-1. Sourcing a drag (continued)

0);

selAtom[STRING] = (Atom)XA_STRING;
selItem[STRING] = xv_create(dnd, SELECTION_ITEM,

SEL_TYPE, selAtom[STRING],
SEL_DATA, (Xv_opaque)STRING_MSG,
0);

len = strlen(STRING_MSG);
selAtom[LENGTH] = (Atom)xv_get(server, SERVER_ATOM, "LENGTH");
selItem[LENGTH] = xv_create(dnd, SELECTION_ITEM,

SEL_TYPE, selAtom[LENGTH],
SEL_FORMAT, sizeof(int)*NBBY,
SEL_LENGTH, 1,
SEL_DATA, (Xv_opaque)&len,
0);

}

void
EventProc(window, event)
Xv_Window window;
Event *event;
{

static int drag_pixels = 0;
static int dragging = False;

switch (event_action(event)) {
case ACTION_SELECT:
if (event_is_down(event)) {

dragging = False;
/* If the user selected our dnd object, highlight
* the box and acquire the primary selection.
*/

if (POINT_IN_RECT(event_x(event), event_y(event),
dO.x, dO.y, dO.w, dO.h)) {

xv_set(sel, SEL_OWN, True, 0);
dO.inverted = True;
PaintObject(dO, xv_get(window, XV_XID),

XV_DISPLAY_FROM_WINDOW(window));
} else
/* If the user selected outside of the dnd object,
* de-highlight the object. And release the primary
* selection.
*/
xv_set(sel, SEL_OWN, False, 0);

} else
drag_pixels = 0;

break;
case LOC_DRAG:

/* If the user dragged at least five pixel over our
* dnd object, begin the dnd operation.
*/

if (event_left_is_down(event)) {
if (POINT_IN_RECT(event_x(event),

event_y(event),dO.x,dO.y,dO.w,dO.h))
dragging = True;

Drag and Drop

Drag and Drop 447

Example 19-1. Sourcing a drag (continued)

if (dragging && drag_pixels++ == 5) {
xv_set(frame, FRAME_LEFT_FOOTER, "Drag and Drop:", 0);
switch (dnd_send_drop(dnd)) {
case XV_OK:

xv_set(frame, FRAME_LEFT_FOOTER,
"Drag and Drop: Began", 0);

break;
case DND_TIMEOUT:
xv_set(frame, FRAME_LEFT_FOOTER,

"Drag and Drop: Timed Out",0);
break;

case DND_ILLEGAL_TARGET:
xv_set(frame, FRAME_LEFT_FOOTER,

"Drag and Drop: Illegal Target",0);
break;

case DND_SELECTION:
xv_set(frame, FRAME_LEFT_FOOTER,

"Drag and Drop: Bad Selection",0);
break;

case DND_ROOT:
xv_set(frame, FRAME_LEFT_FOOTER,

"Drag and Drop: Root Window",0);
break;

case XV_ERROR:
xv_set(frame, FRAME_LEFT_FOOTER,

"Drag and Drop: Failed",0);
break;

}
drag_pixels = 0;
}

}
break;

}
}

PaintObject(object, win, dpy)
DragObject object;
Window win;
Display *dpy;

{
static GC gc;
static int gcCreated = False;

if (!gcCreated) {
XGCValues gcv;
gcv.stipple = (Pixmap) xv_get(object.image, XV_XID);
gcv.fill_style = FillStippled;
gc = XCreateGC(dpy, win, GCStipple|GCForeground|GCBackground|

GCFillStyle, &gcv);
XSetForeground(dpy, gc, BlackPixel(dpy, XDefaultScreen(dpy)));
XSetBackground(dpy, gc, WhitePixel(dpy, XDefaultScreen(dpy)));

}

if (object.inverted) {
XSetFillStyle(dpy, gc, FillSolid);

448 XView Programming Manual

Example 19-1. Sourcing a drag (continued)

XDrawRectangle(dpy, win, gc, object.x-1, object.y-1, 66, 66);
XSetFillStyle(dpy, gc, FillStippled);

} else
XClearWindow(dpy, win);

XSetTSOrigin(dpy, gc, object.x, object.y);
XFillRectangle(dpy, win, gc, object.x, object.y, 65, 65);

}

void
PaintCanvas(canvas, paint_window, dpy, xwin, xrects)

Canvas canvas; /* unused */
Xv_Window paint_window; /* unused */
Display *dpy;
Window xwin;
Xv_xrectlist *xrects; /* unused */

{
unsigned width, height;
int x, y;

width = xv_get(paint_window, XV_WIDTH);
height = xv_get(paint_window, XV_HEIGHT);

x = (width/2)-(dO.w/2);
y = (height/2)-(dO.h/2);

dO.x = x;
dO.y = y;

PaintObject(dO, xwin, dpy);
}
/* The convert proc is called whenever someone makes a request
* to the dnd selection. Two cases we handle within the convert
* proc: DELETE and _SUN_SELECTION_END. Everything else we pass
* on to the default convert proc which knows about our selection
* items.
*/
int
SelectionConvert(seln, type, data, length, format)

Selection_owner seln;
Atom *type;
Xv_opaque *data;
long *length;
int *format;

{
Xv_Server server = XV_SERVER_FROM_WINDOW(xv_get(seln,

XV_OWNER));

if (*type == (Atom)xv_get(server,
SERVER_ATOM, "_SUN_SELECTION_END")) {

/* Destination has told us it has completed the drag
* and drop transaction. We should respond with a
* zero-length NULL reply.
*/

xv_set(dnd, SEL_OWN, False, 0);
xv_set(frame, FRAME_LEFT_FOOTER, "Drag and Drop: Completed",0);

Drag and Drop

Drag and Drop 449

Example 19-1. Sourcing a drag (continued)

*format = 32;
*length = 0;
*data = NULL;
*type = (Atom)xv_get(server, SERVER_ATOM, "NULL");
return(True);

} else if (*type == (Atom)xv_get(server,
SERVER_ATOM, "DELETE")) {

/* Destination asked us to delete the selection.
* If it is appropriate to do so, we should.
*/

*format = 32;
*length = 0;
*data = NULL;
*type = (Atom)xv_get(server, SERVER_ATOM, "NULL");
return(True);

} else
/* Let the default convert procedure deal with the
* request.
*/

return(sel_convert_proc(seln, type, data, length, format));
}

/* When we lose the primary selection, this procedure is called.
* We dehigh-light our selection.
*/
void
SelectionLose(seln)

Selection_owner seln;
{

Xv_Window owner = xv_get(seln, XV_OWNER);

if (xv_get(seln, SEL_RANK) == XA_PRIMARY) {
dO.inverted = False;
PaintObject(dO, xv_get(owner,

XV_XID), XV_DISPLAY_FROM_WINDOW(owner));
}

}

19.6 Sample Program—Drop Site Item and Destination

Example 19-2 provides a example of a program that creates a drop-site item and sets up to
receive a drop.

Example 19-2. A drop-site item example

/*
* dest.c - Example of how to register interest in receiving
* drag and drop events and how to complete a drag
* and drop operation.
*
*/
#include <stdio.h>

450 XView Programming Manual

Example 19-2. A drop-site item example (continued)

#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/canvas.h>
#include <xview/panel.h>
#include <xview/font.h>
#include <xview/dragdrop.h>
#include <xview/xv_xrect.h>
#include <X11/Xlib.h>

#define DROP_WIDTH 65
#define DROP_HEIGHT 65

#define BULLSEYE_SITE 1

Frame frame;
Canvas canvas;
Panel panel;
Xv_drop_site drop_site;
Server_image drop_image;
Server_image drop_image_inv;
Panel_item p_string,

p_length,
p_host;

Selection_requestor sel;

int inverted;

main(argc, argv)
int argc;
char **argv;

{
void EventProc(),

PaintCanvas(),
ResizeCanvas();

Xv_Font font;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = xv_create((Window)NULL, FRAME,
XV_X, 330,
XV_Y, 10,
XV_WIDTH, 10,
XV_LABEL, "Drag & Drop Destination",
NULL);

panel = xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

p_string = xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Dropped Text:",
PANEL_VALUE_DISPLAY_LENGTH, 50,
NULL);

p_host = xv_create(panel, PANEL_TEXT,

Drag and Drop

Drag and Drop 451

Example 19-2. A drop-site item example (continued)

PANEL_LABEL_STRING, "From host:",
PANEL_VALUE_DISPLAY_LENGTH, 15,
NULL);

p_length = xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Length:",
PANEL_VALUE_DISPLAY_LENGTH, 6,
NULL);

window_fit(panel);

canvas = xv_create(frame, CANVAS,
XV_HEIGHT, 100,
XV_WIDTH, WIN_EXTEND_TO_EDGE,
XV_X, 0,

WIN_BELOW, panel,
CANVAS_REPAINT_PROC, PaintCanvas,
CANVAS_RESIZE_PROC, ResizeCanvas,
CANVAS_X_PAINT_WINDOW, TRUE,
NULL);

xv_set(canvas_paint_window(canvas),
WIN_BIT_GRAVITY, ForgetGravity,
WIN_CONSUME_EVENTS,

WIN_RESIZE,
NULL,

WIN_EVENT_PROC, EventProc,
NULL);

drop_image = xv_create(NULL, SERVER_IMAGE,
SERVER_IMAGE_BITMAP_FILE, "./bullseye.bm",
NULL);

drop_image_inv = xv_create(NULL, SERVER_IMAGE,
SERVER_IMAGE_BITMAP_FILE, "./bullseyeI.bm",
NULL);

/* Selection requestor object that will be
* passed into dnd_decode_drop() and later used
* to make requests to the source of the
* drop.
*/

sel = xv_create(canvas, SELECTION_REQUESTOR, NULL);

/* This application has one drop site with
* site id BULLSEYE_SITE and whose shape will
* be described by a rectangle. If
* animation is supported, it would like to
* receive LOC_DRAG, LOC_WINENTER and
* LOC_WINEXIT events.
*/

drop_site = xv_create(canvas_paint_window(canvas), DROP_SITE_ITEM,
DROP_SITE_ID, BULLSEYE_SITE,
DROP_SITE_EVENT_MASK, DND_ENTERLEAVE,
NULL);

inverted = False;

452 XView Programming Manual

Example 19-2. A drop-site item example (continued)

window_fit(frame);
xv_main_loop(frame);
exit(0);

}

void
EventProc(window, event)

Xv_Window window;
Event *event;

{
switch (event_action(event)) {

/* When drop previewing is available, if
* the drop site has selected for previewing
* events (DROP_SITE_EVENT_MASK) then it will
* receive ACTION_DRAG_PREVIEW events from
* the source as requested.
*/

case ACTION_DRAG_PREVIEW:
switch(event_id(event)) {
case LOC_WINENTER:
inverted = True;
break;

case LOC_WINEXIT:
inverted = False;
break;

case LOC_DRAG:
break;

}
PaintCanvas(NULL, window, XV_DISPLAY_FROM_WINDOW(window),

xv_get(window, XV_XID), NULL);
break;
case ACTION_DRAG_COPY:
case ACTION_DRAG_MOVE: {
Xv_drop_site ds;
Xv_Server server = XV_SERVER_FROM_WINDOW(event_window(event));

/* If the user dropped over an acceptable
* drop site, the owner of the drop site will
* be sent an ACTION_DROP_{COPY, MOVE} event.
*/
/* To acknowledge the drop and to associate the
* rank of the source’s selection to our
* requestor selection object, we call
* dnd_decode_drop().
*/

if ((ds = dnd_decode_drop(sel, event)) != XV_ERROR) {

if (xv_get(ds, DROP_SITE_ID) == BULLSEYE_SITE)
UpdatePanel(server, sel);

/* If this is a move operation, we must ask
* the source to delete the selection object.
* We should only do this if the transfer of
* data was successful.
*/

Drag and Drop

Drag and Drop 453

Example 19-2. A drop-site item example (continued)

if (event_action(event) == ACTION_DRAG_MOVE) {
int length, format;

xv_set(sel, SEL_TYPE_NAME, "DELETE", NULL);
(void)xv_get(sel, SEL_DATA, &length, &format);

}

/* To complete the drag and drop operation,
* we tell the source that we are all done.
*/
dnd_done(sel);
inverted = False;
PaintCanvas(NULL, window, XV_DISPLAY_FROM_WINDOW(window),

xv_get(window, XV_XID), NULL);

} else
printf ("drop error\n");

break;
}
default:
break;

}
}

UpdatePanel(server, sel)
Xv_Server server;
Selection_requestor sel;

{
int length,

format,
*string_length;

char buf[7],
*string,
*hostname;

xv_set(sel, SEL_TYPE, XA_STRING, NULL);
string = (char *)xv_get(sel, SEL_DATA, &length, &format);
if (length != SEL_ERROR) {

xv_set(p_string, PANEL_VALUE, string, NULL);
free (string);

}

xv_set(sel,
SEL_TYPE, xv_get(server, SERVER_ATOM, "LENGTH"), NULL);

string_length = (int *)xv_get(sel, SEL_DATA, &length, &format);
if (length != SEL_ERROR) {

sprintf(buf, "%d", *string_length);
xv_set(p_length, PANEL_VALUE, buf, NULL);
free ((char *)string_length);

}

xv_set(sel, SEL_TYPE, xv_get(server, SERVER_ATOM, "HOST_NAME"), NULL);
hostname = (char *)xv_get(sel, SEL_DATA, &length, &format);
if (length != SEL_ERROR) {

xv_set(p_host, PANEL_VALUE, hostname, NULL);

454 XView Programming Manual

Example 19-2. A drop-site item example (continued)

free (hostname);
}
xv_set(sel, SEL_TYPE_NAME, "_SUN_SELECTION_END", NULL);
(void)xv_get(sel, SEL_DATA, &length, &format);

}

void
PaintCanvas(canvas, paint_window, dpy, xwin, xrects)

Canvas canvas; /* unused */
Xv_Window paint_window; /* unused */
Display *dpy;
Window xwin;
Xv_xrectlist *xrects; /* unused */

{
static GC gc;
static int gcCreated = False;
static int lastMode = False;
int width, height;
int x, y;
Rect *r;

if (!gcCreated) {
XGCValues gcv;
gcv.stipple = (Pixmap) xv_get(drop_image, XV_XID);
gcv.foreground = BlackPixel(dpy, XDefaultScreen(dpy));
gcv.background = WhitePixel(dpy, XDefaultScreen(dpy));
gcv.fill_style = FillStippled;
gc = XCreateGC(dpy, xwin, GCStipple|GCForeground|GCBackground|

GCFillStyle, &gcv);
}

if (lastMode != inverted) {
if (!inverted)

XSetStipple(dpy, gc, (Pixmap) xv_get(drop_image, XV_XID));
else

XSetStipple(dpy, gc, (Pixmap) xv_get(drop_image_inv,
XV_XID));

lastMode = inverted;
}

width = xv_get(paint_window, XV_WIDTH);
height = xv_get(paint_window, XV_HEIGHT);

x = (width/2)-(DROP_WIDTH/2);
y = (height/2)-(DROP_HEIGHT/2);

XClearArea(dpy, xwin, x, y, DROP_WIDTH, DROP_HEIGHT, False);
XSetTSOrigin(dpy, gc, x, y);
XFillRectangle(dpy, xwin, gc, x, y, DROP_WIDTH, DROP_HEIGHT);

}

void
ResizeCanvas(canvas, width, height)

Canvas canvas;
int width;
int height;

Drag and Drop

Drag and Drop 455

Example 19-2. A drop-site item example (continued)

{
int x, y;
Rect rect;

x = (width/2)-(DROP_WIDTH/2);
y = (height/2)-(DROP_HEIGHT/2);

rect.r_left = x;
rect.r_top = y;
rect.r_width = DROP_WIDTH;
rect.r_height = DROP_HEIGHT;

/* Update the drop site information. */
xv_set(drop_site, DROP_SITE_DELETE_REGION_PTR, NULL,

DROP_SITE_REGION, &rect,
NULL);

}

19.7 Drag and Drop Package Summary

Table 19-3 lists the procedures and macros used for dragging and dropping. Table 19-4 lists
the DROP_SITE_ITEM and DRAGDROP package attributes. These attributes, procedures, and
macros are described fully in the XView Reference Manual.

Table 19-3. DROP_SITE_ITEM and DRAGDROP Procedures and Macros

dnd_decode_drop()
dnd_done()
dnd_is_forwarded()
dnd_is_local()
dnd_send_drop()

Table 19-4. DROP_SITE_ITEM and DRAGDROP Attributes

DROP_SITE_ITEM Attributes DRAGDROP Attributes

DROP_SITE_DEFAULT DND_ACCEPT_CURSOR

DROP_SITE_DELETE_REGION DND_ACCEPT_X_CURSOR

DROP_SITE_DELETE_REGION_PTR DND_CURSOR

DROP_SITE_EVENT_MASK DND_TIMEOUT_VALUE

DROP_SITE_ID DND_TYPE

DROP_SITE_REGION DND_X_CURSOR

DROP_SITE_REGION_PTR

456 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

20
The Notifier

In this chapter, we look at the Notifier in greater detail, discussing its role in processing
events for an XView application. This chapter serves as an introduction to the Notifier and
covers its use for most applications. You should be familiar with the topics covered in Chap-
ter 6, Handling Input, before you read this chapter.

20.1 Basic Concepts

The Notifier maintains the flow of control in an application. To understand the basic con-
cepts of the Notifier, we must distinguish between two different styles of input handling,
mainline and event-driven input, and consider how they affect where the flow of control
resides within a program.

20.1.1 Mainline Input Handling

The traditional type of input handling of most text-based applications is mainline-based and
input-driven. The flow of control resides in the main routine and the program blocks when it
expects input. That is to say, no other portion of the program may be executed while the pro-
gram is waiting for input. For example, in a mainline-driven application, a C programmer
will use fgets() or getchar() to wait for characters that the user types. Based on the
user’s input, the program chooses an action to take. Sometimes, that action requires more
input, so the application calls getchar() again. The program does not return to the main
routine until the processing for the current input is done.

The tight control represented by this form of input handling is the easiest to program since
you have control at all times over what to expect from the user and you can control the direc-
tion that the application takes. There is only one source of input—the keyboard—and the
user can only respond to one interface element at a time. A user’s responses are predictable
in the sense that you know that the user is going to type something, even if you do not know
what it is.

Notifier

The Notifier 459

20.1.2 Event-driven Input Handling

Windowing systems are designed such that many sources of input are available to the user at
any given time. In addition to the keyboard, there are other input devices, such as the mouse.
Each keystroke and mouse movement causes an event that the application might consider.
These keystroke and mouse events are generated from the window system. Further, there are
other types of events that are generated from the window system itself and from other
processes. Another aspect of event-driven input handling is that you are not guaranteed to
have any predictable sequence of events from the user. That is, a user can position the mouse
on an object that receives text as input. Before the user is done typing, the user can move the
mouse to another window and select a panel button of some sort. The application cannot
(and should not) expect the user to type in window A first, then move to window B and select
the button. A well-written program should expect input from any window to happen at any
time.

20.2 Functions of the Notifier

The Notifier can do any of the following:

• Handle software interrupts—specifically, UNIX signals such as SIGINT or SIGCONT.

• Notice state changes in processes that your process has spawned (e.g., a child process that
has died).

• Read and write through file descriptors (e.g., files, pipes, and sockets).

• Receive notification of the expiration of timers so that you can regularly flash a caret or
display animation.

• Extend, modify, or monitor XView Notifier clients (e.g., noticing when a frame is opened,
closed, or about to be destroyed.)

• Use a non-notification-based control structure while running under XView (e.g., porting
programs to XView).

The Notifier also has provisions, to a limited degree, to allow programs to run in the Notifier
environment without inverting their control structure.

460 XView Programming Manual

20.3 How the Notifier Works

Up until now, we have been saying that you should register an event handler for objects when
they want to be notified of certain events such as mouse motion or selection or keyboard
input. What you may not have been aware of is that you are indirectly registering these event
handlers with the Notifier. When you specify callbacks or notify procedures, the XView
object specified is said to be the client of the Notifier. Look at the following code:

extern void my_event_handler();

xv_set(canvas,
CANVAS_PAINTWINDOW_ATTRS,

WIN_CONSUME_X_EVENT_MASK, ButtonPressMask | KeyPressMask,
WIN_EVENT_PROC, my_event_handler,
NULL,

NULL);

In the above code, each paint window of the canvas becomes a client of the Notifier.*

Generally stated, the Notifier detects events in which its clients have expressed an interest
and dispatches these events to the proper clients in a predictable order. In the X Window
System, events are delivered to the application by the X server. In XView, it is the Notifier
that receives the events from the server and dispatches them to its clients. After the client’s
notify procedure processes the event, control is returned to the Notifier.

20.3.1 Restrictions

The Notifier imposes some restrictions on its clients. Designers should be aware of these
restrictions when developing software to work in the Notifier environment. These restric-
tions exist so that the application and the Notifier do not interfere with each other. More pre-
cisely, since the Notifier is multiplexing access to user process resources, the application
needs to respect this effort so as not to violate the sharing mechanism.

For example, a client should not call signal (3). The Notifier is catching signals on behalf
of its clients. If a client sets up its own signal handler, then the Notifier will never notice the
signal. The program should call notify_set_signal_func() instead of signal (3)
(see Section 20.5, “Signal Handling”).

*CANVAS_PAINTWINDOW_ATTRS tells the CANVAS package to register the input mask and callback routine for
each of its paint windows.

Notifier

The Notifier 461

20.3.1.1 System calls to avoid

Assuming an environment with multiple clients and an unknown Notifier usage pattern, you
should not use any of the following system calls or C library routines:

signal (3) The Notifier is catching signals on behalf of its clients. If you set up your
own signal handler over the one that the Notifier has set up, then the Notif-
ier will never notice the signal.

sigvec (2) The same applies for sigvec (2) as for signal (3) above.

sigaction (2) The same applies for sigaction (2) as for signal (3) above.

setitimer (2) The Notifier is managing two of the process’s interval timers on behalf of
its many clients. If you access an interval timer directly, the Notifier could
miss a timeout. Use notify_set_itimer_func() instead of seti-
timer (2).

alarm (3) Because alarm (3) sets the process’s interval timer directly, the same
applies here as for setitimer (2) above.

getitimer (2) When using a Notifier-managed interval timer, you should call
notify_itimer_value() to get its current status. Otherwise, you
can get inaccurate results.

wait3 (2) The Notifier notices child process state changes on behalf of its clients. If
you do your own wait3 (2), then the Notifier may never notice the
change in a child process or you may get a change of state for a child pro-
cess in which you have no interest. Use notify_set
_wait3_func() instead of wait3 (2).

wait (2) The same applies for wait (2) as does for wait3 (2) above.

ioctl (2) (. . . , FIONBIO, . . .)
This call sets the blocking status of a file descriptor. The Notifier needs to
know the blocking status of a file descriptor in order to determine if there
is activity on it. fcntl (2) has an analogous request that should be used
instead of ioctl (2).

ioctl (2) (. . . , FIOASYNC, . . .)
This call controls a file descriptor’s asynchronous IO (input/output) mode
setting. The Notifier needs to know this mode in order to determine if
there is activity on it. fcntl (2) has an analogous request that should be
used instead of ioctl (2).

popen and pclose (2)
In the SunOS, these functions call wait (2). Hence, you should avoid
using these for the reasons mentioned above.

system (3) In the SunOS, this function calls signal (3) and wait (2). Hence, you
should avoid using this for the reasons mentioned above.

462 XView Programming Manual

20.4 What is a Notifier Client?

A client of the Notifier is anything that has registered a callback routine with it. In XView, a
client is an object such as a canvas or panel that you have created using xv_create().
Typically, most of the event registration happens at the time such clients are created. How-
ever, to the Notifier, a client is nothing more than an ID that distinguishes it from all other
Notifier clients. Thus, you could identify a client using a number such as “43” or the address
of an object as in &foo. XView objects are commonly used as Notifier clients because
xv_create() returns a unique handle to an object that has been allocated dynamically.

The client ID is of type Notify_client as declared in <xview/notify.h>.

Certain notify_* functions create Notifier clients. For example:

Notify_client client = (Notify_client)10101; /* arbitrary */
Notify_func destroy_func();

notify_set_destroy_func(client, destroy_func);

In this code fragment, up until the call to notify_set_destroy_func(), the client
may not have been registered as a client to the Notifier. When you call
notify_set_destroy_func(), internally, the Notifier package looks up in its table of
clients whether there is any other client using that identifier (the client handle is the identif-
ier, in this case this is an arbitrary value). If there is a client using the identifier, then the des-
troy function specified is set for that client’s destroy handling. Otherwise, a new Notifier cli-
ent is allocated and the client handle is also used as a handle to the new Notifier client.

Notifier clients are not XView objects for you to create or manipulate using xv_create()
or xv_set(). In fact, the Notifier is completely independent of XView and can be used in
applications that do not even use XView objects.

20.4.1 Types of Interaction

Client interaction with the Notifier falls into two general categories:

• Event Handling – A client may receive events and respond to them using event handlers.
As you have seen, event handlers (callbacks and notify procedures) do much of the work
in the Notifier environment.

• Interposition – A client may request that the Notifier install a special type of event han-
dler, supplied by the client, to be interposed ahead of the current event handler for a
given type of event and client. This allows clients to screen incoming events and redirect
them and to monitor and change the status of other clients. A thorough discussion of
interposition is presented later in this chapter.

A client establishes an interest in a certain type of event by registering an event handler to
respond to it. The following sections cover registration procedures for special signal and
UNIX-related event handlers, for application-defined client event handlers, and for interpos-
ing event handlers. All event handlers, including interposers, return a value of
NOTIFY_DONE, NOTIFY_IGNORED, or NOTIFY_UNEXPECTED, depending on how the event

Notifier

The Notifier 463

was handled. These three return values are sometimes used to convey important information
about the status of the event in the Notifier (usually the function that called
notify_next_*_func() looks at the return value). These return values and their signif-
icance are covered in Section 20.9.4, “Invoking the Next Function.”

20.5 Signal Handling

Signals are UNIX software interrupts. The Notifier multiplexes access to the UNIX signal
mechanism. A Notifier client may ask to be notified that a UNIX signal occurred either when
it is received (asynchronously) and/or later during normal processing (synchronously).

Clients may define and register a signal event handler to respond to any UNIX signal desired.
However, some of the signals that you might catch in a traditional UNIX program should be
caught instead by the Notifier.

CAUTION

Clients of the Notifier should not directly catch any UNIX signals using signal
(3), sigvec (2), or sigaction (2). There are critical stages of event reading
and dispatching that, if interrupted, could cause the program to jump to another
location and interrupt the communication protocol between the X server and the
application.

Exceptions to this are noted later in this section.

20.5.1 Signals to Avoid

Clients should not have to catch any of the following signals (even via notify_set_
signal_func() described below). If they are, you are probably utilizing the Notifier
inappropriately. The Notifier catches these signals itself under a variety of circumstances and
handles them appropriately.

SIGALRM Caught by the Notifier’s interval timer manager. Use notify_set_
itimer_func() instead.

SIGVTALRM The same applies for SIGVTALRM as for SIGALRM above.

SIGTERM Caught by the Notifier so that it can tell its clients that the process is going
away. Use notify_set_destroy_func() if that is why you are catch-
ing SIGTERM.

SIGCHLD Caught by the Notifier so that it can do child process management. Use
notify_set_wait3_func() instead.

464 XView Programming Manual

SIGIO Caught by the Notifier so that it can manage its file descriptors that are run-
ning in asynchronous I/O mode. Use notify_set_input_func() or
notify_set_output_func() if you want to know when there is activity
on your file descriptor.

SIGURG Caught by the Notifier so that it can dispatch exception activity on a file
descriptor to its clients. Use notify_set_exception_func() if you
are looking for out-of-band communications when using a socket.

The last two signals in the list are considered advanced topics and are not covered in this
manual.

20.5.2 A Replacement for signal()

Instead of using signal() to catch signals delivered by UNIX, you should register a signal
event handler by calling notify_set_signal_func(). This function allows you to call
another function when a specified signal is generated. Its form is as follows:

Notify_func
notify_set_signal_func(client, signal_func, sig, when)

Notify_client client;
Notify_func signal_func;
int sig;
Notify_signal_mode when;

signal_func is the function to call when the signal described by sig occurs.*

The when parameter is either NOTIFY_SYNC or NOTIFY_ASYNC. NOTIFY_SYNC causes notifi-
cation during normal processing. In other words, the delivery of the signal is delayed to avoid
interrupting Xlib Protocol communication between the X server and the application. When it
is safe to do so, your signal_func function is called and you can display a notice, exit, or
jump to another place in the program. Typically, there is a very short time between signal
delivery and notification to your callback routine. It is only a little slower than when you use
signal().

NOTIFY_ASYNC causes notification as soon as the signal is received. This mode mimics the
UNIX signal (3) semantics.

CAUTION

When using asynchronous signals, your routine may set a variable, a condition,
or a flag indicating that the signal was received, or it may change any internal
state to your program. Do not make any XView, Xlib, or Notifier calls or call
any function that might manipulate any XView data structures. Also, do not call
longjmp() or setjmp(); they can cause a condition that can interfere with
the X11 Protocol.

*See <signal.h> for a list of signals and definitions.

Notifier

The Notifier 465

notify_set_signal_func() returns a pointer to the function that was
installed before you set the new function. You should use this to reset the func-
tion if you want to unregister your installed function.

When the specified signal occurs, your signal_func is called:

Notify_value
signal_func(client, sig, when)

Notify_client client;
int sig;
Notify_signal_mode when;

The parameters to the signal handler are not the same as the ones given to a signal han-
dler in the call to signal (3). However, it is not advisable to use either one, except in
unusual circumstances. As a general rule, you should use notify_set_
signal_func() for all signal handling. If you want the signal code or context from
the signal that was generated (two parameters that are passed to a normal UNIX signal
handler), you can use:

int
notify_get_signal_code()

struct sigcontext *
notify_get_signal_context()

These two functions take no parameters—they return the signal code and context
(respectively) of the last signal generated. If you wish to save these values, you can
copy them.

Using the Notifier, you can catch any signal except SIGKILL and SIGSTOP, which can-
not be caught by a UNIX application. Attempting to do so generates an error.

An example of common signal handling is shown below:

#include <xview/notify.h>

...
extern Notify_value sigint_func();

notify_set_signal_func(frame, sigint_func, SIGINT, NOTIFY_SYNC);
...

Notify_value
sigint_func(client, sig, when)
Notify_client client;
int sig;
{

puts("received interrupt -- exiting");
xv_destroy_safe(frame);
return NOTIFY_DONE;

}

The return value of your signal handler tells whether you handled the signal or ignored
it.*

*Currently, the return value is ignored.

466 XView Programming Manual

20.5.3 Timers

One specific type of signal is a timer. Timers can be set up to call a routine after the passage
of a specified amount of time.* Such a routine may cause a caret to flash at regular intervals
or allow a clock application to change the time display. The timer is handled differently from
other signals in that multiple timers can be installed for various clients (say a flashing caret
and a clock in the same application). There can only be one timer function (timer_func)
per client.

Because the Notifier handles timers, you should not make calls to such routines as sleep()
or setitimer() (see Section 20.11, “Emulating a Sleep Call,” for information on how to
“sleep” in XView). As pointed out above, you should not attempt to use signal() to catch
SIGALRM or SIGVTALRM to trap timer signals. To set timers and be notified when they expire,
use notify_set_itimer_func(). The form of the call is:

Notify_func
notify_set_itimer_func(client, timer_func, which, value, ovalue)

Notify_client client;
Notify_func timer_func;
int which;
struct itimerval *value, *ovalue;

The parameter which indicates which type of timer you want to use. Its value is either
ITIMER_REAL or ITIMER_VIRTUAL.

The value parameter is a pointer to an itimerval which indicates the initial timeout and
an interval timeout. The interval timeout is what is used after the initial timeout times out. If
the initial timeout is 0, then the timer is not called, regardless of the value of the interval
timer. The granularity of the timer is dependent on your hardware architecture and operating
system. It is perhaps unwise to assume that you will be notified as frequently as 30 mil-
liseconds or less. Some cases may have higher minimum limits—your mileage may vary.

The ovalue is also a pointer to an itimerval structure. If there was a previous timeout
that has yet to expire, itimerval will have that time filled in. You may pass a NULL as
ovalue if you are not interested in this value.

The timer_func parameter is the function to call when the timer expires.
notify_set_itimer_func() returns the function that was previously set for this client
(see notify_set_signal_func above). The form of the timer_func is:

Notify_value
timer_func(client, which)

Notify_client client;
int which;

Example 20-1 demonstrates one possible use of notify_set_itimer_func(). This
program displays an animation of several icons stored in the icon font. When animating, the
next icon in a sequence is displayed using XDrawString() (since the icon is actually part
of the font). The slider controls the rate at which the next icon is drawn. If the slider is set to
0, the animation stops. The slider is a panel item whose callback routine makes calls to

*Event processing still takes place during this time segment.

Notifier

The Notifier 467

notify_set_itimer_func() to set the timer to the new value or to turn it off by set-
ting the function to NOTIFY_FUNC_NULL.

Example 20-1. The animate.c program

/*
* animate.c -- use glyphs from the "icon" font distributed with XView
* to do frame-by-frame animation.
*/
#include <stdio.h>
#include <ctype.h>
#include <X11/X.h>
#include <X11/Xlib.h>
#include <X11/Xos.h> /* for <sys/time.h> */
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/font.h>
#include <xview/notify.h>

Frame frame;
Display *dpy;
GC gc;
Window canvas_win;
Notify_value animate();
struct itimerval timer;

#define ArraySize(x) (sizeof(x)/sizeof(x[0]))
char *horses[] = { "N", "O", "P", "Q", "R" };
char *boys[] = { "\007", "\005", "\007", "\010" };
char *men[] = { "\\", "]", "Y", "Z", "[" };
char *eyes[] = {

"2", "5", "4", "3", "4", "5",
"2", "1", "0", "/", "0", "1"

};

int max_images = ArraySize(horses);
char **images = horses;
int cnt;

main(argc, argv)
int argc;
char *argv[];
{

Panel panel;
Canvas canvas;
XGCValues gcvalues;
Xv_Font _font;
XFontStruct *font;
void adjust_speed(), change_glyph();
extern void exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
NULL);

468 XView Programming Manual

Example 20-1. The animate.c program (continued)

panel = (Panel)xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

xv_create(panel, PANEL_SLIDER,
PANEL_LABEL_STRING, "Millisecs Between Frames",
PANEL_VALUE, 0,
PANEL_MAX_VALUE, 120,
PANEL_NOTIFY_PROC, adjust_speed,
NULL);

xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Glyphs",
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_DISPLAY_LEVEL, PANEL_ALL,
PANEL_CHOICE_STRINGS, "Horse", "Man", "Boy", "Eye", NULL,
PANEL_NOTIFY_PROC, change_glyph,
NULL);

window_fit(panel);

canvas = (Canvas)xv_create(frame, CANVAS,
XV_WIDTH, 64,
XV_HEIGHT, 64,
CANVAS_X_PAINT_WINDOW, TRUE,
NULL);

canvas_win = (Window)xv_get(canvas_paint_window(canvas), XV_XID);

window_fit(frame);

dpy = (Display *)xv_get(frame, XV_DISPLAY);
_font = (Xv_Font)xv_find(frame, FONT,

FONT_NAME, "icon",
NULL);

font = (XFontStruct *)xv_get(_font, FONT_INFO);

gcvalues.font = font->fid;
gcvalues.foreground = BlackPixel(dpy, DefaultScreen(dpy));
gcvalues.background = WhitePixel(dpy, DefaultScreen(dpy));
gcvalues.graphics_exposures = False;
gc = XCreateGC(dpy, RootWindow(dpy, DefaultScreen(dpy)),

GCForeground | GCBackground | GCFont | GCGraphicsExposures,
&gcvalues);

xv_main_loop(frame);
}

void
change_glyph(item, value)
Panel_item item;
int value;
{

cnt = 0;
if (value == 0) {

max_images = ArraySize(horses);

Notifier

The Notifier 469

Example 20-1. The animate.c program (continued)

images = horses;
} else if (value == 1) {

max_images = ArraySize(men);
images = men;

} else if (value == 2) {
max_images = ArraySize(boys);
images = boys;

} else if (value == 3) {
max_images = ArraySize(eyes);
images = eyes;

}
XClearWindow(dpy, canvas_win);

}

/*ARGSUSED*/
Notify_value
animate(client, which)
Notify_client client;
int which;
{

XDrawImageString(dpy, canvas_win, gc, 5, 40, images[cnt], 1);
cnt = (cnt + 1) % max_images;

return NOTIFY_DONE;
}

void
adjust_speed(item, value)
Panel_item item;
int value;
{

if (value > 0) {
timer.it_value.tv_usec = (value + 20) * 1000;
timer.it_interval.tv_usec = (value + 20) * 1000;
notify_set_itimer_func(frame, animate,

ITIMER_REAL, &timer, NULL);
} else

/* turn it off */
notify_set_itimer_func(frame, NOTIFY_FUNC_NULL,

ITIMER_REAL, NULL, NULL);
}

Figure 20-1 shows one frame of an animated horse sequence produced by animate.c.

20.5.4 Handling SIGTERM

The SIGTERM signal is a software terminate signal. If you receive a SIGTERM signal, another
process is telling your application to terminate. Rather than handling this signal with
notify_set_signal_func(), you could use notify_set_destroy_func(). It
takes the form:

Notify_func
notify_set_destroy_func(client, destroy_func)

470 XView Programming Manual

Notify_client client;
Notify_func destroy_func;

Figure 20-1. Output of animate.c

Like the other Notifier functions, this one also returns the previously set function that was
handling this signal. Note that it only interprets SIGTERM—it does not get called if the appli-
cation chooses to kill itself by calling either exit() or xv_destroy() on the base frame
or if the user selects the quit option from the title bar (provided by the OPEN LOOK window
manager).

20.5.5 Handling SIGCHLD

Let’s say that you want to fork a process to run another program. UNIX requires that you per-
form some housekeeping on that process. The minimum housekeeping required is to notice
when that process dies and to reap it. Normally, the system call wait() is used to do this.
By default, wait() will block until a spawned process has terminated. When wait()
returns, it has information about the process that died. Rather than have the application sit
and wait for a spawned (child) process to die, it should continue processing events and be
notified automatically when the process dies.

To handle this, you can register a wait3 event handler* that the Notifier will call whenever
a child process changes state (dies) by calling the following:

Notify_func
notify_set_wait3_func(client, wait3_func, pid)

static Notify_client client;
Notify_func wait3_func;
int pid;

In the above call, the pid identifies the particular child process that the client wants to wait
for. The wait3_func is the function to call when that child has died. Another reason that
an application should use notify_set_wait3_func() is the semantics of the wait3

*The name wait3 event originates from the wait3 (2) system call. There are other forms of wait including wait(),
wait2(), and wait4(). Since wait4() is not generally available, wait3() is the most efficient form of the
wait functionality.

Notifier

The Notifier 471

(2) system call. wait3 (2) will return with status about any process that has changed state.
If two clients are managing different child processes, they should hear only about their own
process. The Notifier keeps straight which client is managing which process.

20.5.5.1 Reaping dead processes

Many clients using child process control simply need to perform the required reaping after a
child process dies. These clients can use the predefined notify_default_wait3() as
their wait3 event handler. This default handler does nothing but return—the fact that it
handled the event is good enough for UNIX. The Notifier automatically removes a dead pro-
cess’s wait3 event handler.

The code segment in Example 20-2 demonstrates how a wait3 handler can be set up.

Example 20-2. Demonstrating a wait3 handler

#include <xview/notify.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>

/* canvas created in another part of the program */
extern Canvas canvas;

/* declare our own wait3 handler */
Notify_value my_wait3_handler();

fork_it(argv)
char *argv[];
{

int pid;

/* here’s the fork -- two processes are going to execute code
* from this point down.
*/
switch (pid = fork()) {

case -1:
perror("fork");
return;

case 0: /* this is the child of the fork -- the new process */
/* execute the specified command */
execvp(*argv, argv); /* execvp doesn’t return unless failed */
perror("execvp");
_exit(0); /* don’t call exit() -- man exec() for info */

default: /* this is the parent -- the original process */
/* Register a wait3 event handler */
(void) notify_set_wait3_func(canvas, my_wait3_handler, pid);

}
/* parent returns -- child is happily processing away */

}

static Notify_value
my_wait3_handler(me, pid, status, rusage)

Notify_client me;
int pid;

472 XView Programming Manual

Example 20-2. Demonstrating a wait3 handler (continued)

union wait *status;
struct rusage *rusage;

{
if (WIFEXITED(*status)) {

/* Child process exited with return code */
printf("child exited with status %d\n", status–>w_retcode);
/* Tell the Notifier that you handled this event */
return (NOTIFY_DONE);

}
/* Tell the Notifier that you ignored this event */
return (NOTIFY_IGNORED);

}

Example 20-2 is a simple example for demonstration only. There are other things to consider
for a complete and proper method for forking new processes. See Section 20.8, “Reading
and Writing through File Descriptors,” for a full example program that uses
notify_set_wait3_func().

20.6 Interaction with RPC

XView provides a function that allows XView and RPC to easily work together. RPC pro-
vides for a client and an RPC server. The client makes a remote procedure call to send a data
packet to the server. When the packet arrives, the server calls a dispatch routine, performs
whatever service is requested, sends back the reply, and the procedure call returns to the cli-
ent.

The RPC server is similar to the XView notifier; it waits for requests and dispatches them to a
procedure. The RPC server typically does some initialization (using the function svc_reg-
ister . . .) and then calls svc_run(), which is similar to xv_main_loop(). XView
works with RPC by incorporating svc_run()’s functionality into the notifier.

If you use an RPC server that also needs to work with XView, you should place the XView
function notify_enable_rpc_svc() in your main() program, and do not call
svc_run(). This function takes an int that tells the notifier whether it should handle RPC
requests.

void
notify_enable_rpc_svc(bool);

int bool;

Using this approach, xv_main_loop() handles incoming RPC requests; dispatching them
just as if svc_run() had been called.*

If notify_enable_rpc_svc() is enabled, performance will be affected by the addi-
tional call to svc_getreqset().

*Internally XView uses svc_getreqset(&ibits) which acts the same way as notify_dispatch(). It
checks svc_fdset and calls svc_getreqset() if a svc_fdset descriptor is readable, meaning a request is
coming in.

Notifier

The Notifier 473

20.7 Client Events

Client events are used by an application to communicate with clients of the Notifier. With
the client event mechanism, you can have any portion of your application send an event. The
Notifier dispatches the event to any of its clients that have expressed interest in that particu-
lar client event; essentially the event is sent, via the notifier, to another portion of the applica-
tion, where it is handled. Events are posted to specific clients of the Notifier.

Client events are important and are frequently used internally by XView; they can also be
used in an application. For example, if you want an application to notify an interested Notif-
ier client that input has been received from a pipe, once the data has been read, the applica-
tion can post the data to the Notifier as a client event (see Section 20.8, “Reading and Writing
through File Descriptors”).

From the Notifier’s point of view, client events are defined and generated by the application.
Client events are not interpreted by the Notifier in any way; the Notifier does not detect client
events. An X event is also a client event. Internally, the window package reads the X event
from the server and posts it to a client via notify_post_event(). When client events
are posted to the Notifier, it dispatches these events to a receiving client’s event handler. The
receiving client then interprets the client events.

The process for the delivery of client events is similar to that of signals. However, because
the entire process happens in the application, more control can be maintained by the Notifier.
This additional level of control uses optional parameters that may be passed to client event
handlers. These optional parameters include values for safe and immediate handling. With
safe handling the Notifier sends event handlers notification when it is safe to do so. This may
involve some delay between when an event is posted and when it is delivered. Alternatively,
for immediate handling, an event handler may ask to be immediately notified when a client
event is posted. A client event handler may have both a safe and an immediate event han-
dler. Safe and immediate notification are covered in more detail later on in this section.

The remainder of this section describes how to register client event handlers and how to post
client events.

NOTE

XView internally registers event handlers for its internally defined client events
when window-based objects are created. You will almost never need to register
your own client event handler. It is more common that you will want to inter-
pose in front of one of XView’s client event handlers. Refer to Section 20.9,
“Interposition,” for details on interposition.

474 XView Programming Manual

20.7.1 Receiving Client Events

To register a client event handler, use:

Notify_func
notify_set_event_func(client, event_func, when)

Notify_client client;
Notify_func event_func;
Notify_event_type when;

typedef enum notify_event_type {
NOTIFY_SAFE = 0,
NOTIFY_IMMEDIATE = 1,

} Notify_event_type;

The when parameter indicates whether the event handler will accept notifications only when
it is safe (NOTIFY_SAFE) or for immediate notification and when it is safe (NOTIFY_IMME-
DIATE). You may register two client event handlers to handle these cases individually, or
just one client event handler to cover both.

The calling sequence of a client event handler is:

Notify_value
event_func(client, event, arg, when)

Notify_client client;
Notify_event event;
Notify_arg arg;
Notify_event_type when;

The client is the one that was passed to notify_set_event_func(). The event is
passed through from notify_post_event(), which is described in the following sec-
tion. The arg and event parameters are completely defined by the client. The types
Notify_arg and Notify_event are of type caddr_t, a generic pointer type. The
when parameter is the actual situation in which event is being delivered. It can have the
value NOTIFY_SAFE or NOTIFY_IMMEDIATE, and can be different from when_hint of
notify_post_event().

The return value Notify_value may be one of NOTIFY_DONE, NOTIFY_IGNORED, or
NOTIFY_UNEXPECTED. NOTIFY_DONE indicates that the event was acted on in some way.
This implies that no further action is required by the client. If the safe event handler returns
NOTIFY_IGNORED, this indicates that the event failed to provoke any action. If the immedi-
ate client event handler returns NOTIFY_IGNORED, then the same notification will be
delivered to the safe client event handler when it is safe. A value of NOTIFY_UNEXPECTED
indicates the event was not handled and not recognized. This return value may indicate an
error condition.

Notifier

The Notifier 475

20.7.2 Posting Client Events

A client event may be posted to the Notifier at any time. The poster of a client event may
suggest to the Notifier when to deliver the event, but this is only a hint. The Notifier will see
to it that it is delivered at an appropriate time (more on this below). The call to post a client
event is:

typedef char * Notify_event;

Notify_error
notify_post_event(client, event, when_hint)

Notify_client client;
Notify_event event;
Notify_event_type when_hint;

The client handle from notify_set_event_func() is passed to notify_
post_event(). event is defined and interpreted solely by the client. A return code
of NOTIFY_OK indicates that the notification has been posted. Other values indicate an error
condition. NOTIFY_UNKNOWN_CLIENT indicates that client is unknown to the Notifier.
NOTIFY_NO_CONDITION indicates that client has no client event handler registered with
the Notifier.

Usually it is during the call to notify_post_event() that the client event handler is
called. Sometimes, however, the notification is queued up for later delivery. The Notifier
chooses between these two possibilities by noting which kinds of client event handlers
client has registered, whether it is safe, and what the value of when_hint is. Here are
the cases broken down by the kind of client event handlers client has registered:

Immediate only If when_hint is NOTIFY_SAFE or NOTIFY_IMMEDIATE, the event is
delivered immediately.

Safe only If when_hint is NOTIFY_SAFE or NOTIFY_IMMEDIATE, the event is
delivered when it is safe.

Both safe and immediate
A client may have both an immediate client event handler as well as a safe
client event handler. If when_hint is NOTIFY_SAFE, then the notifica-
tion is delivered to the safe client event handler when it is safe. If
when_hint is NOTIFY_IMMEDIATE, then the notification is delivered to
the immediate client event handler right away. If the immediate client
event handler returns NOTIFY_IGNORED, then the same notification will be
delivered to the safe client event handler when it is safe.

476 XView Programming Manual

20.7.2.1 Actual delivery time

For client events, other than knowing which event handler to call, the main function of the
Notifier is to know when to make the call. The Notifier defines when it is safe to make a
client notification. If it is not safe, then the event is queued up for later delivery. Here are the
conventions:

• A client that has registered an immediate client event handler is sent a notification as
soon as it is received. The client has complete responsibility for handling the event
safely. It is rarely safe to do much of anything when an event is received asynchronously.
Usually, just setting a flag that indicates that the event has been received is about the
safest thing that can be done.

• A client that has registered a safe client event handler will have a notification queued up
for later delivery when the notification was posted during an asynchronous signal notifi-
cation. Immediate delivery is not safe because your process, just before receiving the
signal, may have been executing code at any arbitrary place.

• A client that has registered a safe client event handler will have a notification queued up
for later delivery if the client’s safe client event handler hasn’t returned from processing
a previous event. This convention is mainly to prevent the cycle: Notifier notifies A, who
notifies B, who notifies A. A could have had its data structures torn up when it notified B
and was not in a state to be re-entered.

These conventions imply that a safe client event handler is called immediately from other
signal handlers. The following sequence shows how the notification might progress.

• A client’s input pending event handler is called by the Notifier.

• Two characters are read by the client’s input pending event handler.

• The first character is given to the Notifier to deliver to the client’s save event handler (the
delivery is accomplished with notify_post_event()).

• Returning back to the input pending event handler, the second character is sent. This
character is also delivered immediately.

20.7.3 Posting with an Argument

XView posts a fixed-field structure with each event. Sometimes additional data must be pas-
sed with an event. For instance, when the scrollbar posts an event to its owner to do a scroll,
the scrollbar’s handle is passed as an argument along with the event. The function
notify_post_event_and_arg() provides this argument-passing mechanism (see
below).

When posting a client event, there is the possibility of delivery being delayed. In the case of
XView, the event being posted is a pointer to a structure. The Notifier avoids an invalid
(dangling) pointer reference by copying the event if delivery is delayed. It calls routines the
client supplies to copy the event information and later to free up the storage the copy uses.

Notifier

The Notifier 477

notify_post_event_and_arg() provides this storage management mechanism.

Notify_error
notify_post_event_and_arg(client, event, when_hint, arg,

copy_func, release_func)
Notify_client client;
Notify_event event;
Notify_event_type when_hint;
Notify_arg arg;
Notify_copy copy_func;
Notify_release release_func;

typedef caddr_t Notify_arg;

typedef Notify_arg (*Notify_copy)();
#define NOTIFY_COPY_NULL ((Notify_copy)0)

typedef void (*Notify_release)();
#define NOTIFY_RELEASE_NULL ((Notify_release)0)

copy_func() is called to copy arg (and, optionally, event) when event and arg need
to be queued for later delivery. release_func() is called to release the storage allocated
during the copy call when event and arg were no longer needed by the Notifier.

Any of arg, copy_func(), or release_func() may be NULL. If copy_func is not
NOTIFY_COPY_NULL and arg is NULL, then copy_func() is called anyway. This allows
event the opportunity to be copied because copy_func() takes a pointer to event. The
event pointed to may be replaced as a side effect of the copy call. The same applies to a
NOTIFY_RELEASE_NULL release function with a NULL arg argument.

The copy() and release() routines are client-dependent, so you must write them your-
self. Their calling sequences are the following:

Notify_arg
copy_func(client, arg, event_ptr)

Notify_client client;
Notify_arg arg;
Notify_event *event_ptr;

void
release_func(client, arg, event)

Notify_client client;
Notify_arg arg;
Notify_event event;

20.7.4 Posting Destroy Events

When a destroy notification is set, the Notifier also sets up a synchronous signal condition for
SIGTERM that will generate a DESTROY_PROCESS_DEATH destroy notification. Otherwise, a
destroy function will not be called automatically by the Notifier. One or two (depending on
whether the client can veto your notification) explicit calls to notify_post_
destroy() need to be made.

478 XView Programming Manual

Notify_error
notify_post_destroy(client, status, when)

Notify_client client;
Destroy_status status;
Notify_event_type when;

NOTIFY_INVAL is returned if status or when is not defined. After notifying a client to
destroy itself, all references to client are purged from the Notifier.

20.7.5 Delivery Time of Destroy Events

Unlike a client event notification, the Notifier does not try to detect when it is safe to post a
destroy notification. Thus, a destroy notification can come at any time. It is up to the good
judgement of a caller of notify_post_destroy() or notify_die() (described in
Section 20.10, “Notifier Control”) to make the call when a client is not likely to be in the
middle of accessing its data structures.

If status is DESTROY_CHECKING and the argument when is NOTIFY_IMMEDIATE, then
notify_post_destroy() may return NOTIFY_DESTROY_VETOED, if the client does not
want to go away. See Section 20.9.5, “Modifying an Objects’ Destruction,” for details on
these values.

Often you want to tell a client to go away at a safe time. This implies that delivery of the
destroy event will be delayed, in which case the return value of notify_post_des-
troy() cannot be NOTIFY_DESTROY_VETOED because the client has not been asked yet. To
get around this problem, the Notifier will flush the destroy event of a checking/destroy pair of
events if the checking phase is vetoed. Thus, a common idiom is:

(void) notify_post_destroy(client, DESTROY_CHECKING, NOTIFY_SAFE);
(void) notify_post_destroy(client, DESTROY_CLEANUP, NOTIFY_SAFE);

20.8 Reading and Writing Through File Descriptors

The Notifier is set up for testing whether or not there is input pending on file descriptors and
whether file descriptors are available to accept data for writing. The file descriptors can rep-
resent files, pipes, and sockets. System calls such as read() or write() can be used on
any of these file descriptors.

In an event-driven system, the application cannot wait for data to be read. Instead it is better
for the system to notify the application when data can be read. System calls such as read()
will block if there is no input to be read. That is, read() waits until there is something to
read before it returns. If your application is blocking on a read, then it cannot process events
that the user may be generating, such as selecting a panel button. Rather than blocking on a
call to read(), the Notifier can inform you when there is input ready on that file descriptor
so that when you finally call read(), it returns immediately.

Notifier

The Notifier 479

To handle this, the Notifier provides functions such as notify_set_input_func() and
notify_set_output_func() to test whether a file descriptor has data to be read or is
ready for writing. These functions inform you of the status of file descriptors, whether they
are files, pipes, or sockets.*

Notify_func
notify_set_input_func(client, input_func, fd)

Notify_client client;
Notify_func input_func;
int fd;

Notify_func
notify_set_output_func(client, output_func, fd)

Notify_client client;
Notify_func output_func;
int fd;

input_func() is called whenever the file descriptor (fd) has data to be read.† out-
put_func() is called whenever the file descriptor (fd) is ready to receive data.

Generally, file descriptors open for writing are always ready to receive data, so this function
may not be as widely used as the input function case. However, it is important if you are
writing to a pipe where another process is probably on the other side of the pipe. Pipes have
buffers which, when full, will not accept any more data on them until the process on the other
side of the pipe reads the data written so far (thus emptying the buffer). If the process on the
other side of the pipe is slow in reading the data you have written to it, then you may need to
use notify_set_output_func() so that you can be notified when the pipe is ready to
have more data written to it.

input_func() and output_func() take the following form:

Notify_value
func(client, fd)

Notify_client client;
int fd;

20.8.1 Reading Files

Our first example demonstrates how notify_set_input_func() can be used to read
data from a file. The program is simple; it does not bother using any XView objects such as
frames or canvases. Because of this, it makes use of notify_start(), which is covered
in Section 20.10, “Notifier Control.”

*notify_set_exception_func() is also available for determining if out-of-band data is available on a sock-
et. Its format is described in the XView Reference Manual.
†Exceptions to this are discussed in Section 20.8.1, “Reading Files.”

480 XView Programming Manual

Example 20-3. The notify_input.c program

/*
* notify_input.c -- use notify_set_input_func to monitor the state of
* a file. The Notifier is running and checking the file descriptors
* of the opened files associated with the command line args. The
* routine installed by notify_set_input_func() is called whenever
* there is data to be read. When there is no more data to be read
* for that file, the input function is unregistered. When all files
* have been read, notify_start() returns and the program exits.
*/
#include <stdio.h>
#include <sys/ioctl.h>
#include <xview/notify.h>

main(argc, argv)
char *argv[];
{

Notify_value read_it();
Notify_client client = (Notify_client)10101; /* arbitrary */
FILE *fp;

while (*++argv)
if (!(fp = fopen(*argv, "r")))

perror(*argv);
else {

(void) notify_set_input_func(client, read_it, fileno(fp));
client++; /* next client is new/unique */

}

/* loops continuously */
notify_start();

}

/*
* read_it() is called whenever there is input to be read. Actually,
* it is called continuously, so check to see if there is input to be
* read first.
*/
Notify_value
read_it(client, fd)
Notify_client client;
int fd;
{

char buf[BUFSIZ];
int bytes, i;

if (ioctl(fd, FIONREAD, &bytes) == -1 || bytes == 0)
(void) notify_set_input_func(client, NOTIFY_FUNC_NULL, fd);

else
do

if ((i = read(fd, buf, sizeof buf)) > 0)
(void) write(1, buf, i);

while (i > 0 && (bytes -= i) > 0);
return NOTIFY_DONE;

}

Notifier

The Notifier 481

The comments in this sample program describe what is going on up front. However, behind
the scenes, there are interesting things happening.

The first thing to notice is that the clients used in the Notifier start at 10101 and, for each file
on the command line, the client is incremented by one. Remember, the client is an arbitrary
identifier and can be any unique value. Since there are no other clients of the Notifier, we
know that 10101 is going to be unique.

The function read_it() is installed to read data from the files given on the command line.
The first thing that read_it() does is check if there is data to be read. The ioctl() call
returns the number of bytes to read in the bytes variable. If there is data to be read, then
read() is used to read buffers (of size BUFSIZ) until it has read all the bytes pending. This
continues until the program has read the entire file. Once this happens, the ioctl() call
will return that there are no bytes to read. Normally, it would return -1 indicating that the
end of file has been reached. However, the Notifier has modified the state of the file descrip-
tor for internal purposes (to set nonblocking mode). When we have reached the end of the
file, we unregister the client by calling notify_set_input_func() with a
notify_func of NOTIFY_FUNC_NULL.

notify_input.c is not terribly interesting because you do not need to be notified of data to be
read on a file; you can just open the file, read it till EOF, and then close it. But if you know
that the file is going to have data continuously added to it, you might want to be informed
when there is new data to be read and then print it out.

This can be accomplished by not unregistering the input function with the Notifier when
there is no data to be read. Unfortunately, your function is going to be called continuously
whether there is new data to be read or not. This is true only for file descriptors that repre-
sent files and is not the case for pipes.

20.8.2 Reading and Writing on Pipes

A more interesting and likely problem occurs when an application has to execute another
program, send data to it, and read output from it all at the same time. The best way to handle
such a situation is as follows:

• Set up a pipe for each stream (such as stdin and stdout). This is done using the
pipe() system call.

• fork() a new process. The child will execute the program (using execvp()) and
have its input and output redirected to the appropriate ends of the pipes (using dup2()).

• The parent registers input and output functions to read and write from the “other” ends of
the pipes (using notify_set_input_func()). Also, the parent calls
notify_set_wait3_func(), as discussed earlier.

The example program that demonstrates this capability is a little longer, but it is still simple.
It follows the steps outlined above and is the minimum needed to spawn a new process.
Again, to keep the code short and simple, no XView objects are created. The existence of
XView objects would not affect the program in any way.

482 XView Programming Manual

The way to run this program is to specify a command on the command line of the program.
For example:

% ntfy_pipe cat

Remember, there are two processes involved here: the parent process (ntfy_pipe) and the
child process (cat). Both programs read from their respective stdin and write to their own
stdout. However, because the child process (cat) was spawned off from the parent, we
need to handle the IO (input/output) of the new process. After the call to fork(), its stdin
and stdout must be redirected to the pipe that was set up before the fork. The parent,
however, retains its IO—its stdin and stdout remain directed towards the window in
which you typed the command.

Example 20-4. The ntfy_pipe.c program

/*
* ntfy_pipe.c -- fork and set up a pipe to read the IO from the
* forked process. The program to run is specified on the command
* line. The functions notify_set_input_func() and
* notify_set_output_func() are used to install functions which read
* and write to the process’ stdin and stdout.
* The program does not use any XView code -- just the Notifier.
*/
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/resource.h>
#include <sys/ioctl.h>
#include <xview/notify.h>

Notify_client client1 = (Notify_client)10;
Notify_client client2 = (Notify_client)11;

int pipe_io[2][2]; /* see diagram */
/*
* [0] [1]
* child reads: |========= pipe_io[0] ========| <- parent writes
* pipe_io[0][0] pipe_io[0][1]
*
* parent reads: |========= pipe_io[1] ========| <- child writes
* pipe_io[1][0] pipe_io[1][1]
*
* The parent process reads the output of the child process by reading
* pipe_io[1][0] because the child is writing to pipe_io[1][1].
* The child process gets its input from pipe_io[0][0] because the
* parent writes to pipe_io[0][1]. Thus, one process is reading from
* one end of the pipe while the other is writing at the other end.
*/
main(argc, argv)
char *argv[];
{

Notify_value read_it(), write_it(), sigchldcatcher();
int i, pid;
FILE *fp;

Notifier

The Notifier 483

Example 20-4. The ntfy_pipe.c program (continued)

if (!*++argv)
puts("specify a program [w/args]"), exit(1);

pipe(pipe_io[0]); /* set up input pipe */
pipe(pipe_io[1]); /* set up output pipe */
switch (pid = fork()) {

case -1:
close(pipe_io[0][0]);
close(pipe_io[0][1]);
close(pipe_io[1][0]);
close(pipe_io[1][1]);
perror("fork failed");
exit(1);

case 0: /* child */
/* redirect child’s stdin (0), stdout (1) and stderr(2) */
dup2(pipe_io[0][0], 0);
dup2(pipe_io[1][1], 1);
dup2(pipe_io[1][1], 2);
for (i = getdtablesize(); i > 2; i--)

(void) close(i);
for (i = 0; i < NSIG; i++)

(void) signal(i, SIG_DFL);
execvp(*argv, argv);
if (errno == ENOENT)

printf("%s: command not found.0, *argv);
else

perror(*argv);
perror("execvp");
_exit(-1);

default: /* parent */
close(pipe_io[0][0]); /* close unused portions of pipes */
close(pipe_io[1][1]);

}

/* when the process outputs data, read it */
notify_set_input_func(client1, read_it, pipe_io[1][0]);
notify_set_wait3_func(client1, sigchldcatcher, pid);

/* wait for user input -- then write data to pipe */
notify_set_input_func(client2, write_it, 0);
notify_set_wait3_func(client2, sigchldcatcher, pid);

notify_start();
}

/*
* callback routine for when there is data on the parent’s stdin to
* read. Read it and then write the data to the child process via
* the pipe.
*/
Notify_value
write_it(client, fd)
Notify_client client;
int fd;
{

484 XView Programming Manual

Example 20-4. The ntfy_pipe.c program (continued)

char buf[BUFSIZ];
int bytes, i;

/* only write to pipe (child’s stdin) if user typed anything */
if (ioctl(fd, FIONREAD, &bytes) == -1 || bytes == 0) {

notify_set_input_func(client, NOTIFY_FUNC_NULL, pipe_io[0][1]);
close(pipe_io[0][1]);

} else
while (bytes > 0) {

if ((i = read(fd, buf, sizeof buf)) > 0) {
printf("[Sending %d bytes to pipe (fd=%d)]0,

i, pipe_io[0][1]);
write(pipe_io[0][1], buf, i);

} else if (i == -1)
break;

bytes -= i;
}

return NOTIFY_DONE;
}

/*
* callback routine for when there is data on the child’s stdout to
* read. Read, then write the data to stdout (owned by the parent).
*/
Notify_value
read_it(client, fd)
Notify_client client;
register int fd;
{

char buf[BUFSIZ];
int bytes, i;

if (ioctl(fd, FIONREAD, &bytes) == 0)
while (bytes > 0) {

if ((i = read(fd, buf, sizeof buf)) > 0) {
printf("[Reading %d bytes from pipe (fd=%d)]0,

i, fd);
(void) write(1, buf, i);
bytes -= i;

}
}

return NOTIFY_DONE;
}

/*
* handle the death of the child. If the process dies, the child
* dies and generates a SIGCHLD signal. Capture it and disable the
* functions that talk to the pipes.
*/
Notify_value
sigchldcatcher(client, pid, status, rusage)
Notify_client client; /* the client noted in main() */
int pid; /* the pid that died */
union wait *status; /* the status of the process (unused here) */
struct rusage *rusage; /* resources used by this process (unused) */
{

Notifier

The Notifier 485

Example 20-4. The ntfy_pipe.c program (continued)

if (WIFEXITED(*status)) {
printf("Process termined with status %d0, status–>w_retcode);
/* unregister input func with appropriate file descriptor */
notify_set_input_func(client, NOTIFY_FUNC_NULL,

(client == client1)? pipe_io[1][0] : 0);
return NOTIFY_DONE;

}
puts("SIGCHLD not handled");
return NOTIFY_IGNORED;

}

Assuming that the program was run with cat (1) as described earlier, input to the child pro-
cess comes from the function write_it(). That is, write_it() is the function that
writes to the other side of the pipe that the child is reading from. This function was set up as
the input_func for the parent’s stdin. The function gets its input from whatever you type in
the window in which you ran the program. It could have gotten its input from a text panel
item or a selection using the selection service. It reads whatever data is sent through the pipe
and ends up as the stdin for the child process.

Similarly, when the child process writes anything to its stdout, the data is redirected
through the pipe. The parent reads from the other end of the pipe in read_it(). Whatever
the parent reads is written to the parent’s stdout, which is the user’s tty window. It does
this by calling write(1, buf, i). This line of the program can easily be replaced by:

textsw_insert(textsw, buf, i);

This shows how you can redirect the output (including stderr output) from a child process
to a text subwindow.

The last thing to note about the program is its treatment of extraneous file descriptors and of
signals handled by the child process after forking. When using fork(), the child process
inherits all the file descriptors and signal handling set up by the parent.* This could seriously
affect your program if the child process gets certain signals. In this case the best thing for the
child to do is loop through all the signals that are dealt with by the parent and reset them to
SIG_DFL using signal (3). Then it can close all file descriptors except for the child’s
stdin (0), stdout (1), and stderr (2) descriptors.

We use the signal() system call here because it is assumed that the child is not going to
execute any of the XView code in the parent’s program. Therefore, the child does not need
to use the notify_set_signal_func() routine to unregister the signals. Releasing
these signals in this way completely disassociates the program from the parent.

This very general program is used as an example, but it is useful in all applications that need
to run external processes. The only modifications it needs are alternate sources for the input
and output of the parent. main() could be replaced by a general function that simply gets
an argv parameter containing the program to execute, including arguments.

*Unless the file descriptors were set to close on exec using ioctl(fd, FIOCLEX, 0).

486 XView Programming Manual

The program could be modified to be used as a replacement for the system (3) call. Even if
you do not expect to read the child’s stdout or send data to its stdin, the child process still
needs to be handled differently from system (3) because that function calls wait() and
attempts to do its own signal handling.

20.8.3 Exception Occurred Events

Exception occurred notifications are similar to input pending notifications. The only known
devices that generate exceptions are stream-based socket connections when an out-of-band
byte is available. Thus a SIGURG signal catcher is set up by the Notifier, much like a SIGIO
for asynchronous input.

Notify_func
notify_set_exception_func(nclient, func, fd)

Notify_client nclient;
Notify_func func;
int fd;

20.8.4 Getting an Event Handler

This section contains a list of the notify_get_*_func() routines. These functions
allow you to retrieve the value of a client’s event handler. Once you have the value of a
client’s event handler, you could modify or replace the event handler. It is recommended that
you use the Notifier’s interposition mechanism instead of using these functions. The argu-
ments for these functions parallel the associated notify_set_*_func() functions
described previously, except for the absence of the event handler function pointer. Refer to
the XView Reference Manual for a description of the arguments.

For all of the notify_get_*_func() functions in the following list, a return value of
NOTIFY_FUNC_NULL indicates an error. If the client is unknown, then notify_errno is
set to NOTIFY_UKNOWN_CLIENT. If no event handler is registered for the specified event,
then notify_errno is set to NOTIFY_NO_CONDITION. Other values on notify_errno
are possible, depending on the event; for example, NOTIFY_BAD_FD if an invalid file descrip-
tor is specified.

Here is a list of the event handler retrieval routines:

• notify_get_input_func(client, fd)

• notify_get_event_func(client, when)

• notify_get_output_func(client, fd)

• notify_get_exception_func(client, fd)

• notify_get_signal_func(client, which)

• notify_get_itimer_func(client, signal, mode)

Notifier

The Notifier 487

• notify_get_wait3_func(client, pid)

• notify_get_destroy_func(client)

20.9 Interposition

The Notifier provides a mechanism called interposition, with which you can intercept control
of the internal communications within XView. Interposition is a powerful way to both moni-
tor and modify window behavior in ways that extend the functionality of a window object.

Interposition allows a client to intercept an event before it reaches the base event handler.
The base event handler is the one set originally by a client. The client can call the base event
handler before and/or after its own handling of the event or not at all. This allows the appli-
cation to override the handling provided by XView’s base event handler, or to add special
event handling. The notifier supports interposition by keeping track of how interposition
functions are ordered for each type of event for each client.

There may be more than one interposer for a Notifier client. As each interposer is added, it is
inserted ahead of the last interposer installed. Interposes may also be removed from the
interposer list. When an event arrives, the Notifier calls the function at the top of the inter-
poser list for that client.

Keeping track of which function to call when running down the list of interposers is done by
maintaining an interposition stack. The number of interpositions allowed on the stack is lim-
ited to a maximum size (about six levels deep). Since the base event handler is placed on the
interposition stack, there are five usable levels, although few applications should require
more than two levels of interposition. Figure 20-2 illustrates the flow of control with interpo-
sition. Note that the interposer could have stopped the flow of control to the next event han-
dler.

Event
Dispatched

Notifier

Interposer Base Event Handler

Figure 20-2. Flow of control in interposition

488 XView Programming Manual

20.9.1 Uses of Interposition

Typically, it is application-level code that uses interposition. But, in general, any client’s
creator may want to use interposition. There are many reasons why an application might
want to interpose a function in the call path to a client’s event handler.

• An application may want to use the fact that a client has received a particular event as a
trigger for some application-specific processing.

• An application may want to filter the events to a client, thus modifying the client’s behav-
ior.

• An application may want to extend the functionality of a client by handling events that
the client is not programmed to handle.

XView window objects utilize the Notifier for much of their communication and cooperation.
Thus, if an application wanted to monitor the user actions directed to a particular window, the
application would use interposition to get into the flow of control.

20.9.2 Interface to Interposition

The Notifier supports interposition by keeping track of how interposition functions are
ordered for each type of event for each client. Here is a typical example of interposition:

• An application creates a client. The client has set up its own client event handler using
notify_set_event_func(). XView does this internally, using a default event han-
dler, when you create a window based object.

• The application tells the Notifier that it wants to interpose a function in front of the
client’s event handler by calling notify_interpose_event_func(), which uses
the same calling sequence as notify_set_event_func().

• When the application’s interposed function is called, it tells the Notifier to call the next
function, i.e., the client’s function, via a call to notify_next_event_func(),
which uses the same calling sequence as that passed to the interposer function.

Note that you can only interpose if a base event handler has been set with
notify_set_*_func (one of the notify_set functions). If no function is set,
notify_interpose_*_func() will return an error.

20.9.3 Registering an Interposer

This section lists the routines that allow you to interpose your own function in front of an
event handler. The arguments to each notify_interpose_*_func() function like the
associated notify_set_*_func() function described in the previous sections on the
Notifier. Refer to the associated notify_set_*_func() description, or to the XView
Reference Manual for details on the various arguments.

Notifier

The Notifier 489

• notify_interpose_destroy_func()

• notify_interpose_exception_func()

• notify_interpose_event_func()

• notify_interpose_input_func()

• notify_interpose_itimer_func()

• notify_interpose_output_func()

• notify_interpose_signal_func()

• notify_interpose_wait3_func()

The return values from these functions may be NOTIFY_OK, NOTIFY_UNKNOWN_CLIENT,
NOTIFY_NO_CONDITION, NOTIFY_UNEXPECTED, or NOTIFY_FUNC_LIMIT. For NOTIFY_OK
the interposition was successful. For NOTIFY_UNKNOWN_CLIENT the client is not known to
the notifier. For NOTIFY_NO_CONDITION there is no event handler of the type specified. For
NOTIFY_FUNC_LIMIT the level of interposition was exceeded. NOTIFY_FUNC_LIMIT means
you are trying to use more than the maximum allowed levels of interposition.

If the return value is something other than NOTIFY_OK, then notify_errno contains the
error code.

20.9.4 Invoking the Next Function

This section lists the routines that you call from your interposed function in order to invoke
the next function in the interposition sequence (if you want to override the normal sequence,
do not use these routines). The arguments to each notify_next_*_func() function are
the same as the arguments passed to the interposer function. Refer to the XView Reference
Manual, for details on the arguments.

• notify_next_destroy_func()

• notify_next_exception_func()

• notify_next_event_func()

• notify_next_input_func()

• notify_next_itimer_func()

• notify_next_output_func()

• notify_next_signal_func()

• notify_next_wait3_func()

The return value for these functions may be one of the following: NOTIFY_DONE,
NOTIFY_IGNORED, or NOTIFY_UNEXPECTED. NOTIFY_DONE indicates that the event was
acted on in some way. This implies that no further action is required by the client. If the safe
event handler returns NOTIFY_IGNORED, this indicates that the event failed to provoke any

490 XView Programming Manual

action. If the immediate client event handler returns NOTIFY_IGNORED, then the same notifi-
cation will be delivered to the safe client event handler when it is safe. A value of
NOTIFY_UNEXPECTED indicates the event was not handled and not recognized. This return
value may indicate an error condition.

20.9.5 Removing an Interposed Function

This section presents a list of routines that allow you to remove the interposer function that
you installed using a notify_interpose_*_func() call. The arguments to each
notify_remove_*_func() function are the same as the arguments passed to the associ-
ated notify_set_*_func() function described in previous sections. Refer to the previ-
ous section, or to the XView Reference Manual, for details on these arguments. Note the one
exception to this rule is that the arguments to notify_remove_itimer_func() are a
subset of the arguments to notify_set_itimer_func().

• notify_remove_destroy_func()

• notify_remove_exception_func()

• notify_remove_event_func()

• notify_remove_input_func()

• notify_remove_itimer_func()

• notify_remove_output_func()

• notify_remove_signal_func()

• notify_remove_wait3_func()

If the function returns successfully, the return value will be NOTIFY_OK. Otherwise, the error
codes are the same as those associated with the notify_interpose_*_func() calls.

20.9.6 An Interposition Example

You can notice when a frame opens or closes by interposing in front of the frame’s client
event handler. The client event handler that you want to interpose in front of is the default
client event handler supplied by XView. To register an interposer, the following routine is
used:

Notify_error
notify_interpose_event_func(client, event_func, type)

Notify_client client;
Notify_func event_func;
Notify_event_type type;

The client must be the handle of the Notifier client in front of which you are interposing.
In XView, this is the handle returned from xv_create(), for a Tty subwindow or a

Notifier

The Notifier 491

Textsw, the handle is the OPENWIN_NTH_VIEW of the window. For a Canvas, the handle
returned from is CANVAS_NTH_PAINT_WINDOW.

Let’s say that the application is displaying some animation and wants to do the necessary
computation only when the frame is open. It can use interposition to notice when the frame
opens or closes.

In Example 20-5, note the call to notify_next_event_func(). This function transfers
control to the frame’s client event handler through the Notifier. The routine
notify_next_event_func() takes the same arguments as the interposer.

Example 20-5. Transferring control through the Notifier

#include <xview/xview.h>

main()
{

Frame frame;
Notify_value my_frame_interposer();

/* Create the frame */
frame = xv_create(NULL, FRAME, NULL);

/* Interpose in front of the frame’s event handler */
(void) notify_interpose_event_func(frame,

my_frame_interposer, NOTIFY_SAFE);
...

/* Show frame and start dispatching events */
xv_main_loop(frame);

}

Notify_value
my_frame_interposer(frame, event, arg, type)
Frame frame;
Event *event;
Notify_arg arg;
Notify_event_type type;
{

int closed_initial, closed_current;
Notify_value value;

/* Determine initial state of frame */
closed_initial = (int) xv_get(frame, FRAME_CLOSED);

/* Let frame operate on the event */
value = notify_next_event_func(frame, (Notify_event)event, arg, type);

/* Determine current state of frame */
closed_current = (int) xv_get(frame, FRAME_CLOSED);

/* Change animation if states differ */
if (closed_initial != closed_current) {

if (closed_current) {
/* Turn off animation because closed */
(void) notify_set_itimer_func(me, my_animation,

ITIMER_REAL, ITIMER_NULL, ITIMER_NULL);

492 XView Programming Manual

Example 20-5. Transferring control through the Notifier (continued)

} else {
/* Turn on animation because opened */
(void) notify_set_itimer_func(me, my_animation,

ITIMER_REAL, &NOTIFY_POLLING_ITIMER, ITIMER_NULL);
}

}
return (value);

}

In Example 20-5, the base event handler is intended to handle the event (so that the frame
gets closed/opened). If the interposed function replaces the base event handler and you do
not want the base event handler to be called at all, your interposed procedure should not call
notify_next_event_func().

20.9.7 Interposing on Resize Events

Another use of interposition is to give your application more control over the layout of its
subwindows. To do this, you set up an interpose event handler which checks if the event type
is WIN_RESIZE. If so, rather than calling notify_next_event_func() to dispatch the
event to the normal handler for resizing, you call your own resize routine:

Notify_value
my_frame_interposer(frame, event, arg, type)
Frame frame;
Event *event;
Notify_arg arg;
Notify_event_type type;
{

Notify_value value;

if (event_action(event) == WIN_RESIZE)
value = resize(frame);

else
value = notify_next_event_func(frame, (Notify_event)event, arg, type);

return(value);
}

20.9.8 Modifying an Object’s Destruction

Suppose an application must detect when the user selects the “Quit” menu item in order to
perform some application-specific confirmation. To accomplish this, the application should

Notifier

The Notifier 493

interpose a new function in front of the object’s client-destroy event handler using the fol-
lowing routine:

Notify_error
notify_interpose_destroy_func(client, destroy_func)

Notify_client client;
Notify_func destroy_func;

For an XView object, destruction may originate from several sources:

• The application may be terminated by a software interrupt from the calling process.

• The connection to the server has been lost and the Notifier is informing the application
that it is dying.

• xv_destroy(object) was called from within the application.

• The user may select the “Quit” menu item from the window manager’s pulldown menu.

Each of these scenarios results in a different destruction method. When the object is going to
be destroyed, the process happens in two phases. First, the object’s destroy-interposer is
called, informing it of the impending destruction. At this point, the interposer can veto the
destruction or it can allow it to take place—at which time the Notifier proceeds to phase two,
the actual object destruction.

Destroy event handlers use a status parameter to determine which phase of destruction the
Notifier is in—whether the Notifier is requesting if it is feasible for the client to be ter-
minated at present (phase one, DESTROY_CHECKING) or if it is making a request to terminate
(phase two, DESTROY_CLEANUP or DESTROY_PROCESS_DEATH).

The destroy-interpose function takes the following form:

Notify_value
destroy_func(client, status)

Notify_client client;
Destroy_status status;

typedef enum destroy_status {
DESTROY_PROCESS_DEATH,
DESTROY_CHECKING,
DESTROY_CLEANUP,
DESTROY_SAVE_YOURSELF,

} Destroy_status;

If the status argument is DESTROY_CHECKING and the client cannot terminate at present,
the destroy event handler should call notify_veto_destroy(), indicating that termina-
tion would not be advisable at this time, and return normally. If the client can terminate at
present, then the destroy handler should do nothing; a subsequent call will tell the client to
actually destroy itself. This veto option is used, for example, to give a text subwindow the
chance to ask the user to confirm the saving of any editing changes when quitting a tool.

If status is DESTROY_PROCESS_DEATH, then the client can count on the entire process
dying and should do whatever it needs to do to clean up its outside entanglements, such as
updating a file used by a text subwindow. Since the process is about to die, it need not free
allocated memory which is implicitly freed by the process’s termination.

494 XView Programming Manual

Since the entire process is dying, you cannot display a notice or do any sort of prompting
with the user to try to veto this request.

However, if status is DESTROY_CLEANUP then the client is asked to destroy itself and to be
very tidy about cleaning up all the process internal resources that it is using, as well as its
outside entanglements. This may be called on frames which are not the sole frames used by
the application. If a frame is dismissed but the application is still running (e.g., dismissing a
pinned up menu), then the frame should clean up—including freeing allocated memory.

If the status is set to DESTROY_SAVE_YOURSELF when the window manager has sent a
WM_SAVE_YOURSELF message to all the clients on the desktop, this means the user may have
selected the “Save Workspace” option from an OPEN LOOK window manager’s menu. Basi-
cally, this means that the application should save its current state in such a way that it could
be resumed in the same state at a later time. For example, a text editing program would
update the file being edited, a graphics program would output its image display to a file, or
whatever.

When the user selects “Save Workspace” from an OPEN LOOK window manager, XView sets
its status to DESTROY_SAVE_YOURSELF and then checks to see if the attribute
FRAME_WM_COMMAND_ARGC_ARGV is set. XView informs the window manager of the option
and the window manager writes the application’s default command-line options to
˜/.openwin-init. If FRAME_WM_COMMAND_ARGC_ARGV is set, the window manager
appends any user-specified command-line options to the default values written to
˜/.openwin-init.

Normally FRAME_WM_COMMAND_ARGC_ARGV is set when an application is initialized with
xv_init(). In the special case when there are two base frames for an application,
FRAME_WM_COMMAND_ARGC_ARGV should be set to -1 for one of the base frames (and for
additional subsequent base frames for the application). This prevents the application from
appending two sets of command-line options to ˜/.openwin-init.

20.9.8.1 Interposing a client destroy handler

We present an example of interposing in front of the frame’s client-destroy event handler.
The following program displays a frame, a panel, and a panel button labeled “Quit.” When
the user chooses the panel button or the frame’s “Quit” menu selection, the interposer is
called and indicates the fact that the frame is about to go away.

Example 20-6. The interpose.c program

/*
* interpose.c -- shows how to use an interpose destroy function
*/
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>
#include <xview/notice.h>

Frame frame;

Notify_value
destroy_func(client, status)

Notifier

The Notifier 495

Example 20-6. The interpose.c program (continued)

Notify_client client;
Destroy_status status;
{

if (status == DESTROY_CHECKING) {
int answer = notice_prompt(client, NULL,

NOTICE_MESSAGE_STRINGS, "Really Quit?", NULL,
NOTICE_BUTTON_YES, "No",
NOTICE_BUTTON_NO, "Yes",
NULL);

if (answer == NOTICE_YES)
notify_veto_destroy(client);

} else if (status == DESTROY_CLEANUP) {
puts("cleaning up");
/* allow frame to be destroyed */
return notify_next_destroy_func(client, status);

} else if (status == DESTROY_SAVE_YOURSELF)
puts("save yourself?");

else
puts("process death");

return NOTIFY_DONE;
}

main (argc, argv)
int argc;
char *argv[];
{

Panel panel;
int quit();

xv_init (XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create (NULL, FRAME,
FRAME_LABEL, argv[0],
XV_WIDTH, 200,
XV_HEIGHT, 100,
NULL);

notify_interpose_destroy_func(frame, destroy_func);

panel = (Panel)xv_create (frame, PANEL, NULL);
(void) xv_create (panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, quit,
NULL);

xv_main_loop(frame);
}

int
quit()
{

xv_destroy_safe(frame);
return XV_OK;

}

496 XView Programming Manual

The first time the interposer is called, the status is DESTROY_CHECKING. Here, we display a
notice prompting the user to confirm the quit. We want the default action to be “No,” so we
make the NOTICE_YES button have the label “No” and the NOTICE_NO button have the label
“Yes.” This is because the notice’s default button is the NOTICE_YES button.

If the user selects the default “No” choice, then notify_veto_client() is called, veto-
ing the destruction request. Otherwise, the routine returns and the destruction sequence con-
tinues as usual. The routine is then called again, notifying that it is being destroyed this time.
It calls notify_next_destroy_func() to allow the process to continue. This is where
any process cleaning up should take place.

20.9.8.2 Enabling panel item interposition

The attribute PANEL_POST_EVENTS saves the application from the burden of installing a base
event handler on a panel item. This replaces the default event handler, which for perfor-
mance reasons, does not use the notifier. Setting attribute PANEL_POST_EVENTS to TRUE

replaces the default panel item event handler with another one that calls
notify_post_event(). Note that setting this attribute alone makes no functional dif-
ference between the panel item and any other panel items (besides the difference in perfor-
mance due to events being dealt through the notifier rather than being sent directly).

If PANEL_POST_EVENTS is TRUE, a client may then proceed to call notify_inter-
pose_event_func() on a panel item. All interposers on panel items set up this way
should be of type NOTIFY_IMMEDIATE. The interposer reaches the next or default event
handler via the notify_next_event_func() call.

This attribute has no bearing whatsoever on the PANEL_EVENT_PROC mechanism. The client
may still replace the default event handler for a particular event by using
PANEL_EVENT_PROC.

The following example illustrates interposing on a panel item:

ptxt = xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Text:",
PANEL_POST_EVENTS, TRUE,
NULL);

/* make textfield all upper case */
notify_interpose_event_func(ptxt, all_upper, NOTIFY_IMMEDIATE);

[...............]

Notify_value
all_upper (client, event, arg, type)

Notify_client client;
Notify_event event;
Notify_arg arg;
Notify_event_type type;

{
int id = event_action((Event *) event);

if (isascii(id) && islower(id))
event_set_action((Event *) event, toupper(id));

Notifier

The Notifier 497

else if (id == ACTION_PASTE)
/* whatever, */

/*
* panel_default_handle_event, text_handle_event,
* next interposer,
*/
return notify_next_event_func(client, event, arg, type);
}

20.10 Notifier Control

The Notifier is started automatically by calling xv_main_loop(). The function
xv_main_loop() takes a window object (typically the base frame of the application) and
sets XV_SHOW to TRUE. Then it calls notify_start(), and the Notifier is running. The
function notify_start() loops through the Notifier’s processing loop, waiting for events
in which its clients have expressed interest. This continues until the application calls
notify_stop() or there are no more clients registered. At this time, notify_start()
returns and the application continues or finishes. Essentially, the Notifer enters a loop,
blocks until there is input (which it dispatches), and then blocks to wait for more input.

When notify_start() is called, the Notifier takes over and none of the application code
is executed unless it is directly or indirectly called by callback procedure. If the callback
routine calls notify_stop(), when that callback function returns, notify_start()
returns and, as a result, xv_main_loop() returns. The Notifier can be stopped by using
this method despite that there are still clients registered with the Notifier. At this point, the
application may call notify_start() again, or it may attempt to do either implicit or
explicit dispatching of events.

Explicit dispatching is done by calling notify_dispatch(). Here, the Notifier steps
through one iteration of its normal control loop. This allows you to monitor events during
the execution of a time consuming or computationally complex portion of the program. Say
your application generates a complex fractal image. The process is initiated from the selec-
tion of a panel button. Because the generation of fractals is very time consuming, you may
wish to check every once in a while to see if the user has generated any events that need to be
processed—like selecting a panel button labeled Stop. In this case, the callback procedure
for the panel button should call notify_stop() and return. The Notifier returns to the
top-level, notify_start() returns (and thus, xv_main_loop() returns), and your
application begins to generate the fractal image. During each iteration of the loop (or more
often, if necessary), notify_dispatch() is called to ensure processing of any pending
events that the user might have generated.

Implicit dispatching indicates that you are going to make calls to read() or select(),
system calls that block. If notify_do_dispatch() is called, then events the user gener-
ates (such as moving the mouse or selecting a panel button) will continue to be processed
even though the read() has not yet returned.

Implicit and explicit dispatching may be used before or after the call to xv_main_loop()
or notify_start(), but it is not permitted to call these functions while the Notifier is
looping on its own (from within a call to notify_start()). Therefore, you should never

498 XView Programming Manual

attempt to do direct dispatching from within a callback routine or any function that has been
called indirectly by the Notifier.

These two methods of dispatching make porting programs that do not use the Notifier much
easier. Thus, building an XView interface on top of a typical mainline-based, input-driven
program is also much easier. Programs written from scratch should try to follow the event-
driven input style of program design and try to avoid using implicit or explicit dispatching
whenever possible.

20.10.1 Mass Destruction

The following routine causes all the client destruction routines to be called immediately with
a destroy status set to status:

Notify_error
notify_die(status)

Destroy_status status;

This routine causes all the client destruction functions to be called immediately with sta-
tus as the reason. The return values are NOTIFY_OK or NOTIFY_DESTROY_VETOED; the lat-
ter indicates that someone called notify_veto_destroy() and status was DES-

TROY_CHECKING. It is then the responsibility of the caller of notify_die() to exit the
process, if so desired. Refer to the discussion on notify_post_destroy for more infor-
mation.

20.10.2 Implicit Dispatching

Implicit dispatching is used whenever you wish to loop on a call that might block, such as
read (2). Before calling read(), you should first call the function: notify_do_dis-
patch(); This tells the Notifier that you are going to do implicit dispatching and that it
should use its own version of read() rather than using the standard system call as the func-
tion. The two are equivalent with one exception:read() will return 0 on EOF rather than
-1, as you might expect.

After notify_do_dispatch() has been called, you can call notify_dispatch()
directly (to process events you know have already been delivered), call read(), or both.

The following example program demonstrates how this can be done. The program creates
our usual frame, panel, and “Quit” panel button, but instead of calling xv_main_loop(),
we create a small loop which reads stdin waiting for typed input.

Notifier

The Notifier 499

Example 20-7. The ntfy_do_dis.c program

/*
* ntfy_do_dis.c -- show an example of implicit notifier dispatching
* by calling notify_do_dispatch(). Create a frame, panel and "Quit"
* button, and then loop on calls to read() from stdin. Event
* processing is still maintained because the Notifier uses its own
* non-blocking read().
*/
#include <stdio.h>
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>

Frame frame;

main (argc, argv)
int argc;
char *argv[];
{

Panel panel;
char buf[BUFSIZ];
int n, quit();

xv_init (XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create (NULL, FRAME,
FRAME_LABEL, argv[0],
XV_WIDTH, 200,
XV_HEIGHT, 100,
XV_SHOW, TRUE,
NULL);

panel = (Panel)xv_create (frame, PANEL, NULL);

(void) xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, quit,
NULL);

/* Force the frame to be displayed by flushing the server */
XFlush(xv_get(frame, XV_DISPLAY));

/* tell the Notifier that it should use its own read() so that it
* can also detect and dispatch events. This allows us to loop
* in this code segment and still process events.
*/
notify_do_dispatch();

puts("Frame being displayed -- type away.");
while ((n = read(0, buf, sizeof buf)) >= 0)

printf("read %d bytes0, n);

printf("read() returned %d0, n);
}

int
quit()

500 XView Programming Manual

Example 20-7. The ntfy_do_dis.c program (continued)

{
xv_destroy_safe(frame);
return XV_OK;

}

There are several things to note here. First, because xv_main_loop() is not called, we
need to explicitly set the attribute XV_SHOW to TRUE for the base frame. Otherwise, it will
never be displayed. Also, because of the nature of event dispatching, we must flush the con-
nection between the X server and the application to make sure that the frame is displayed by
the time the first read() call returns. If this is not done, the frame is not displayed until
after the first read() returns.

20.10.3 Explicit Dispatching

Frequently, the programmer is plagued with the following problem: A great deal of process-
ing has to be done to process something that the user has initiated. As mentioned before, the
programmer might want to generate a fractal image or compute the value of pi when the user
selects a panel button. Any time-consuming process that requires this type of functionality
should utilize explicit dispatching. It seems like an easy solution to fork() and let the
background process perform the operation, but this is frequently an expensive operation and
should be avoided if explicit dispatching is sufficient. If forking is required, then refer to
Section 20.5.5, “Handling SIGCHLD,” and Section 20.8.2, “Reading and Writing on Pipes.”

The call notify_dispatch() does explicit event dispatching immediately to service an
event that you know is waiting to be read and dispatched. Typically, this is called at particu-
lar locations within a control loop that is processing time consuming tasks. It is assumed that
this control loop does not call read() or select(). Rather, explicit dispatching is used
within loops that might do heavy computation such as graphics processing or number crunch-
ing. This is necessary because while the computations are busy computing, the user might be
attempting to interact with the application by selecting a panel button.

If notify_dispatch() is called frequently enough, then performance of the user inter-
face may still be perceived as acceptable even though the program is very busy with its com-
putations. Architecturally, such a program is designed in a similar way with ntfy_do_dis.c in
Section 20.10.1, “Implicit Dispatching.” That is, there is a central processing loop which is
doing the main work of the program. In this case, notify_do_dispatch() is not called.

#include <xview/xview.h>
...
int finished;

main(argc, argv)
char *argv[];
{

Display *dpy;
Frame frame;

...

xv_create(NULL, FRAME, NULL);

Notifier

The Notifier 501

...

dpy = (Display *)xv_get(frame, XV_DISPLAY);
/* flush everything before starting loop */
XFlush(dpy);
while (!finished) {

notify_dispatch();
XFlush(dpy);
/* compute PI to the next place */
process_pi();

}
}

Notice that after notify_dispatch(), XFlush() is called. It is imperative that this
happen; otherwise, any Xlib calls (which result from many xv_create() or xv_set()
calls) may not be displayed. You only need to call XFlush() once after one or more calls
to a sequence of calls to notify_dispatch(). The rule of thumb is to flush the server
whenever you want to see the latest display.

20.11 Emulating a sleep() Call

XView allows you to emulate the system call sleep(). You cannot simply make the call
since this would cause problems for the Notifier. Example 20-8 demonstrates how XView
applications can implement a “sleep.”

Example 20-8. Emulating a sleep

#include <xview/xview.h>
#include <xview/panel.h>
#include <sys/time.h>

Frame frame;
Panel panel;

main(argc,argv)
int argc;
char *argv[];
{

int sleep_for_awhile();

xv_init(XV_INIT_ARGS, argc,argv, 0);

frame = xv_create(0,FRAME, 0);

panel = xv_create(frame,PANEL, 0);

xv_create(panel,PANEL_BUTTON,
PANEL_NOTIFY_PROC, sleep_for_awhile,
PANEL_LABEL_IMAGE,
panel_button_image(panel,"Sleep For Awhile",0,0),

NULL);

window_fit(panel);
window_fit(frame);

502 XView Programming Manual

Example 20-8. Emulating a sleep (continued)

xv_main_loop(frame);
}

sleep_for_awhile()
{

sleep(5);
}

sleep(sec)
int sec;
{

our_sleep(sec,0);
}

usleep(usec)
int usec;
{

our_sleep(0,usec);
}

our_sleep(sec,usec)
int sec,usec;
{

int oldmask,mask;
struct timeval tv;

tv.tv_sec = sec;
tv.tv_usec = usec;

mask = sigmask(SIGIO);
mask |= sigmask(SIGALRM); /* change = to |= JLM */
oldmask = sigblock(mask);

if ((select(0,0,0,0,&tv)) == -1) {
perror("select");

}

sigsetmask(oldmask);
}

20.12 Advanced Notifier Usage

This section covers Notifier prioritization and scheduling. These topics should be considered
advanced topics, since their use changes the way XView schedules and prioritizes event
handling in the Notifier. If you incorrectly modify these areas of the Notifier, you may expe-
rience severe problems with your application.

Notifier

The Notifier 503

NOTE

These facilities should rarely be used by clients; a client should normally rely on
XView’s default scheduling and prioritizing scheme.

20.12.1 Prioritization

The order in which a particular client’s conditions are notified may be controlled by provid-
ing a prioritizer operation. Assuming asynchronous or immediate notifications have
already been sent, the default prioritizer makes its notifications in the following order:

• Interval timer notifications (ITIMER_REAL and then ITIMER_VIRTUAL).

• Child process control notifications.

• Synchronous signal notifications by ascending signal numbers.

• Exception file descriptor activity notifications by ascending fd numbers.

• Handle client events by order in which received.

• Output file descriptor activity notifications by ascending fd numbers.

• Input file descriptor activity notifications by ascending fd numbers.

20.12.1.1 Providing a prioritizer

This section describes how a client can provide its own prioritizer.

Notify_func
notify_set_prioritizer_func(client, prioritizer_func)

Notify_client client;
Notify_func prioritizer_func;

The function notify_set_prioritizer_func() takes an opaque client handle and
the function to call before any notifications are sent to client. The previous function that
would have been called is returned. If this function was never defined, then the default prior-
itization function is returned. If the prioritizer_func() argument supplied is
NOTIFY_FUNC_NULL, then no client prioritization is done for client and the default priori-
tizer is used.

The calling sequence of a prioritizer function is shown below:

Notify_value
prioritizer_func(client, nfd, ibits_ptr, obits_ptr

ebits_ptr, nsig, sigbits_ptr, auto_sigbits_ptr,
event_count_ptr, events, args)

Notify_client client;
fd_set *ibits_ptr, *obits_ptr, *ebits_ptr;
int nfd, nsig, *sigbits_ptr, *auto_sigbits_ptr;

*event_count_ptr;
Notify_event *events;

504 XView Programming Manual

Notify_arg *args;
#define SIGBIT(sig) (1 << ((sig) -1))

In this function, client from the associated notify_set_prioritizer_func() is
passed to prioritizer_func(). In addition, all the notifications that the Notifier is
planning on sending to client are described in the other parameters. This data reflects
only data that client has expressed interest in by asking for notification of these condi-
tions. The remaining arguments and the return values are described in the XView Reference
Manual.

20.12.1.2 Dispatching events

From within a prioritization routine, the following functions are called to cause the specified
notifications to be sent:

• notify_event()

• notify_input()

• notify_output()

• notify_exception()

• notify_itimer()

• notify_signal()

• notify_wait3()

The notifier won’t send any notifications it wasn’t planning on sending anyway, so one can’t
use these calls to drive clients programmatically. A return value of NOTIFY_OK indicates that
client was sent the notification. The return value for an unknown client,
NOTIFY_UNKNOWN_CLIENT indicates that client is not recognized by the Notifier and no
notification was sent. A return value of NOTIFY_NO_CONDITION indicates that client does
not have the requested notification pending and no notification was sent.

A client may choose to replace the default prioritizer. Alternatively, a client’s prioritizer
may call the default prioritizer after sending only a few notifications. Any notifications not
explicitly sent by a client prioritizer will be sent by the default prioritizer (when called), in
their normal turn. Once notified, a client will not receive a duplicate notification for the same
event.

Signals indicated by bits in sigbits_ptr should call notify_signal(). Signals in
auto_sigbits_ptr need special treatment:

• SIGALRM means that notify_itimer() should be called with a which of
ITIMER_REAL.

• SIGVTRM means that notify_itimer() should be called with a which of
ITIMER_VIRTUAL.

• SIGCHLD means that notify_wait3() should be called.

• SIGTSTP means notify_destroy() should be called with status

Notifier

The Notifier 505

DESTROY_CHECKING.

• SIGTERM means notify_destroy() should be called with status DES-

TROY_CLEANUP.

• SIGKILL means notify_destroy() should be called with status DESTROY_PRO-

CESS_DEATH.

Asynchronous signal notifications, destroy notifications, and client event notifications that
were delivered right when they were posted do not pass through the prioritizer.

20.12.1.3 Getting the prioritizer

The routine notify_get_prioritizer_func() returns the current prioritizer of a
client:

Notify_func
notify_get_prioritizer_func(client)

Notify_client client;

This function takes an opaque client handle. The function that will be called before any noti-
fications are sent to client is returned. If this function was never defined for client,
then a default function is returned. A return value of NOTIFY_FUNC_NULL indicates an error.
If client is unknown, then notify_errno is set to NOTIFY_UNKNOWN_CLIENT.

20.12.2 Scheduling the Notifier

Scheduling the notifier allows you to control the order in which clients are notified, which is
done by a particular client’s prioritizer function (refer to the previous section, “Prioritiza-
tion”). The scheduler has the following calling sequence:

Notify_func
notify_set_scheduler_func(scheduler_func)

Notify_func scheduler_func;

The notify_set_scheduler_func() function allows you to arrange the order in
which clients are called. The argument scheduler_func is the function to call to do the
scheduling of clients. The previous function that would have been called is returned. This
returned function will, almost always, be important to store and call later because it is most
likely the default scheduler.

Replacement of the default scheduler is most often done by a client that needs to make sure
that other clients don’t take too much time servicing all of their notifications. For example, if
doing “real-time” cursor tracking in a user process, the tracking client wants to schedule
itself ahead of other clients, whenever there is input pending on the mouse.

The calling sequence of a scheduler function is:

Notify_value
scheduler_func(n, clients)

int n;
Notify_client *clients;

506 XView Programming Manual

The argument n is passed into scheduler_func(). This is a list of clients, all of which
are slated to receive some notification this time around. The scheduler scans clients and
makes calls to notify_client() (refer to the next section, “Dispatching Clients”).
Clients so notified should have their slots in clients set to NOTIFY_CLIENT_NULL. The
return value from scheduler_func() is one of the following:

• NOTIFY_DONE – All of the clients had a chance to send notifications. The implies that no
further clients should be scheduled this time around the notification loop. Unsent notifi-
cations are preserved for consideration the next time around the notification loop.

• NOTIFY_IGNORED – One or more clients were scheduled; that is, some clients
may have been scheduled, but not all. This implies that another scheduler should try to
schedule any clients in clients that are not NOTIFY_CLIENT_NULL.

20.12.2.1 Dispatching clients

The following routine is called from scheduler routines to cause all pending notifications for
client to be sent:

Notify_error
notify_client(client)

Notify_client client;

The return value is NOTIFY_OK, NOTIFY_NO_CONDITION, or NOTIFY_UNKNOWN_CLIENT.
The return value NOTIFY_OK indicates the client was notified. NOTIFY_NO_CONDITION indi-
cates no conditions for client. This might mean notify_client() was already called
with this client handle. NOTIFY_UNKNOWN_CLIENT indicates an unknown client.

20.12.2.2 Getting the scheduler

The following routine returns the function that will be called to do client scheduling:

Notify_func
notify_get_scheduler_func()

This function is always defined to be the default scheduler.

20.13 Error Codes

This section describes the basic error handling scheme used by the Notifier and lists the
meaning of each of the possible error codes. Every call to the Notifier returns a value that
indicates success or failure. On an error condition, notify_errno describes the failure.
notify_errno is set by the Notifier as errno is set by UNIX system calls. (i.e.,
notify_errno is set only when an error is detected during a call to the Notifier. It is not
reset to NOTIFY_OK on a successful call to the Notifier.)

enum notify_error {
... /* Listed below */

};

Notifier

The Notifier 507

typedef enum notify_error Notify_error;

extern Notify_error notify_errno;

Table 20-1 contains a complete list of error codes.

Table 20-1. Notifier Error Codes

Error Code Description

NOTIFY_OK The call was completed successfully.
NOTIFY_UNKNOWN_CLIENT The client argument is not known by the Notifier. A

notify_set_*_func call needs to be made in order for
the Notifier to recognize it.

NOTIFY_NO_CONDITION A call was made to access the state of a condition, but the
condition was not set with the Notifier for the client in
question. This situation can occur when a
notify_get_*_func() type call is made before the
equivalent notify_set_*_func(). Also, the Notifier
automatically clears some conditions after they have
occurred, e.g., when an interval timer expires.

NOTIFY_BAD_ITIMER The which argument to an interval timer routine was not
valid.

NOTIFY_BAD_SIGNAL The signal argument to a signal routine was out of range.
NOTIFY_NOT_STARTED A call to notify_stop() was made, but the Notifier was

never started.
NOTIFY_DESTROY_VETOED A client refused to be destroyed during a call to

notify_die() or notify_post_destroy() when sta-

tus was DESTROY_CHECKING.
NOTIFY_INTERNAL_ERROR Some internal inconsistency in the Notifier itself has been

detected.
NOTIFY_SRCH The pid argument to a child process control routine was

not valid.
NOTIFY_BADF The fd argument to an input or output routine was not

valid.
NOTIFY_NOMEM The Notifier dynamically allocates memory from the heap.

This error code is generated if the allocator could not get
any more memory.

NOTIFY_INVAL Some argument to a call to the Notifier contained an inva-
lid argument.

NOTIFY_FUNC_LIMIT An attempt to set an interposer function has encountered
the limit of the number of interposers allowed for a single
condition.

The routine notify_perror() acts like library call perror (3).

notify_perror(str)
char *str;

508 XView Programming Manual

notify_perror() prints the string str, followed by a colon, and followed by a string
that describes notify_errno to stderr.

20.14 Issues

Here are some additional issues surrounding the Notifier:

• The layer over the UNIX signal mechanism is not complete. Signal blocking (sigblock
(2)) can still be done safely in the flow of control of a client to protect critical portions of
code as long as the previous signal mask is restored before returning to the Notifier.
Signal pausing (sigpause (2)) is essentially done by the Notifier. Signal masking
(sigmask (2)) can be accomplished via multiple notify_set_ signal_func()
calls. Setting up a process signal stack (sigstack (2)) can still be done. Setting the
signal catcher mask and on-signal-stack flag (sigvec (2)) could be done by reaching
around the Notifier, but this is not supported.

• Not all process resources are multiplexed (e.g., rlimit (2), setjmp (2), umask
(2), setquota (2), and setpriority (2)), only ones that have to do with flow
of control multiplexing. Thus, some level of cooperation and understanding needs to
exist among packages in the single process.

• One might intercept close (2) and dup (2) calls so that the Notifier is not waiting on
invalid or incorrect file descriptors if a client forgets to remove its conditions from the
Notifier before making these calls.

• One might intercept signal (3) and sigvec (2) calls so that the Notifier does not get
confused by programs that fail to use the Notifier to manage its signals.

• One might intercept setitimer (2) calls so that the Notifier does not get confused by
programs that fail to use the Notifier to manage interval timers.

• One might intercept ioctl(2) calls so that the Notifier does not get fouled up by pro-
grams that use FIONBIO and FIOASYNC instead of the equivalent fcntl (2) calls.

• One might intercept readv (2) and write (2) just like read (2) and select (2) so that a
program does not tie up the process.

• The Notifier is not a lightweight process mechanism that maintains a stack per thread of
control. However, if such a mechanism becomes available, then the Notifier will still be
valuable for its support of notification-based clients.

• Client events are disjointed from UNIX events. This is done to give complete freedom to
clients as to how events are defined. One could imagine certain clients wanting to unify
client and UNIX events. This could be done with a layer of software on top of the Notif-
ier. A client could define events as pointers to structures that contain event codes and
event specific arguments. The event codes would include the equivalents of UNIX event
notifications. The event specific arguments would contain, for example, the file descrip-
tor of an input-pending notification. When an input-pending notification from the Notif-
ier was sent to a client, the client would turn around and post the equivalent client event
notification.

Notifier

The Notifier 509

• One could imagine extending the Notifier to provide a record and replay mechanism that
would drive an application. However, this is not supported by the current interface.

510 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

21
Color

The X Window System has various ways of allocating, specifying, and using colors. While
all of these methods are available to applications without XView intervening, XView pro-
vides its own model for color specification that may be used as an alternative. It does not
provide anything more than what is already available, but it may provide a simpler interface
to request and specify colors. This model is especially useful when specifying colors for
XView objects, such as panel buttons and scrollbars.

This chapter does not directly discuss how to use colormaps and related Xlib color-specific
functions. For a discussion of them, see Volume One, Xlib Programming Manual, Chapter 7,
Color. This chapter discusses only the XView color model.

Obviously, the user cannot view colors in an application without having a color display. But
you cannot tell at the time your application is written whether the user’s display is going to
be able to support color. You can use the DisplayDepth() macro to determine whether
the user’s display can handle color:

Display *dpy = (Display *)xv_get(frame, XV_DISPLAY);
extern use_color;

if (DefaultDepth(dpy, DefaultScreen(dpy)) < 2)
use_color = False;

21.1 XView Color Model

XView applications deal with color by using colormap segments. Use the CMS package to
create a colormap segment. Figure 21-1 shows the class hierarchy for the CMS package.

As a simple introduction, the following code fragment creates a colormap segment with the
specified colors and returns a handle to it:

cms = (Cms)xv_create(NULL, CMS,
CMS_SIZE, 4,
CMS_NAMED_COLORS, "white", "red", "green", "blue", NULL,
NULL);

Color

Color 513

Generic
Object CMS

Figure 21-1. CMS package class hierarchy

Window-based objects (canvases, panels, textsw, etc.) use colormap segments to get their
colors. These objects get a default colormap segment when they are created, but you can as-
sign a new one using the WIN_CMS attribute:

canvas = (Canvas)xv_create(frame, CANVAS,
WIN_CMS, cms,
NULL);

Colormap segments must be applied to windows to assure that the window can access the
color you are attempting to draw into. However, there is much to understand about colors,
colormaps, colormap segments, visuals, servers, and X11 to be able to use colors in an effi-
cient and robust way. Unless done correctly, you may produce code that only works on spe-
cific machines or in specific environments.

21.1.0.1 What is a colormap segment?

A colormap segment (cms), is a subset of the available cells in a colormap on the X server.
These are XView entities (i.e., not Xlib) that provide a veneer over the Xlib color mecha-
nism. Colormap segments can be created as either static or dynamic and are derived from an
underlying colormap of the same type.

Any object subclassed from the window object may allocate and use colormap segments.
You can use Xlib routines to do all your color and colormap manipulation within canvas win-
dows, pixmaps, and other X-related objects, but you must use the colormap segment API for
XView objects.

More than one XView object may reference the same colormap segment. However, a color-
map segment does not keep track of the objects that are using it. The application is required
to keep track of changes in colors and update its objects accordingly.

The internals to XView attempt to create colormap segments that are as small as possible so
that numerous segments can share the same underlying colormap. If a colormap segment
requires more colors than the current colormap has space for, a new colormap must be
created.

514 XView Programming Manual

21.1.1 Colormap Segment Types

You can create static or dynamic colormap segments. The type is set with the CMS_TYPE

attribute. Its value can be either XV_STATIC_CMS or XV_DYNAMIC_CMS. A colormap seg-
ment’s type cannot change, so the CMS_TYPE attribute is for xv_create() only.

The X11 Protocol specifies that the Visual type of a window must be declared at the time it
is created. Therefore, XView objects that allocate colormap segments are required, at cre-
ation time, to specify the type of visual they propose to use. The default visual is determined
by the default visual of the screen.

21.1.1.1 Static colormap segments

Applications must always use static colormap segments unless they require read-write colors.
Colors allocated from a static colormap segment are shared among all applications. In static
colormap segments, when a new color is asked for, the XView library will try to return the
closest (or exact) matching color from the server (using XAllocColor()) if the default
colormap on the server is StaticColor.

Whenever possible, a colormap segment is derived from the default colormap obtained from
the screen in which the window resides (e.g., DefaultColormap()). Only when the
colors on that colormap have been exhausted is a new colormap allocated. If XView needs to
allocate a new colormap for a new cms, it does this internally. It is impossible for the appli-
cation to specify a colormap for a colormap segment.

The cells in a static cms are initialized once and are read-only from then on. Static colormap
segments, by sharing color cells across applications, use the shared hardware colormap
resources more efficiently and reduce flashing. Flashing is a blinking effect you sometimes
get when moving the cursor in and out of various windows on the screen. This is caused by
the server popping different colormaps in and out as you move from one window to the next.

21.1.1.2 Dynamic colormap segments

When you ask for a dynamic cms, XView sends a request to the server to allocate read-write
colors. When colors are requested from this cms, the color returned is the exact color; the
closest match is not returned as it is with static colors.

Color

Color 515

21.2 Creating Colormap Segments

Applications that use color must include the file <xview/cms.h>. A cms can be created using
the standard call to xv_create() with the package name CMS.

Cms cms;

cms = (Cms)xv_create(parent, CMS, attrs, NULL);

The parent of a colormap segment is the XView screen object with which the colormap is
associated. If a parent is not specified, the default screen of the default server is used as the
parent.

21.2.0.1 Cms size

A cms may contain as many colors as you like as long as they fit within the largest colormap
you can create. Having more than one colormap segment reference the same color value is
perfectly legal and reasonable. Data is frequently shared among segments for optimal effi-
ciency.

When creating a colormap segment, you must specify its size (i.e., the number of colors it
has) using the CMS_SIZE attribute. If you don’t set the size, it defaults to the macro,
XV_DEFAULT_CMS_SIZE, which is 2. CMS_SIZE is a create-only and get-only attribute; once
a colormap is created, its size cannot be changed, although you can query a colormap’s size
using xv_get().

If all the colors in a colormap segment are not initialized, the uninitialized colors are unde-
fined and should not be used. You can change colors within a dynamic cms at any time.
Uninitialized colors of a static cms can be initialized using xv_set(), but once initialized,
they may not be changed.

You might want to create a segment of a larger size than the number of colors you assign it
because you may not have all the colors you know you’ll need right away. For example, you
create a colormap segment of size n, but initialize it with only n-4 colors. When the rest of
the colors are ready to be loaded into the segment, you do so at the location of the uninitial-
ized colors, namely, at index n-4. The CMS_INDEX attribute is used to specify this location.

CAUTION

All the colors in a static cms must be specified at the time of creation to avoid
race conditions in the associated X11 colormap. Because static colormaps are
shared with other applications, if you request n colors but do not initialize all of
them, another application could request and initialize enough colors to fill up the
colormap before you get a chance to set the rest of your colors.

When creating a cms or setting new colors, you may specify CMS_COLOR_COUNT to indicate
the number of colors to load. Again, if you want to load these colors at a position other than
the beginning of the segment, use CMS_INDEX. This is typically used only when you are
creating a colormap segment and not initializing each color right away. Or, if you have

516 XView Programming Manual

already done this, you are adding more colors to a prebuilt colormap segment that hasn’t had
all of its colors initialized. Therefore, this is a create-only and set-only attribute.

21.2.1 Specifying Colors

You can specify actual colors by name or by RGB values. When using RGB values, you can
use XView or Xlib data structures. In each case, we are going to create a colormap segment
with the same four colors: white, red, green, and blue.

21.2.1.1 Specifying colors by name

The attribute CMS_NAMED_COLORS takes as its value a NULL-terminated list of strings repre-
senting color names:

cms = (Cms)xv_create(parent, CMS,
CMS_SIZE, 4,
CMS_NAMED_COLORS, "white", "red", "green", "blue", NULL,
NULL);

The colors specified by the names are converted into actual values using XParseColor()*
and allocated into the colormap segment using XAllocColor() (for static colormaps) or
XStoreColor() (for dynamic colormaps). The example shown probably works because
the colors used are common colors found on most X servers’ color databases. However, you
should be careful when requesting named colors in this fashion because the database may not
contain the color name you specify. If any of the colors requested fails, then no change to the
cms is affected and xv_set() returns XV_ERROR. If a cms is being created via xv_cre-
ate() and an error occurs, no cms is created and xv_create() returns NULL.

CMS_NAMED_COLORS cannot be used by xv_get().

21.2.1.2 Specifying colors by RGB values

You can request colors more directly by specifying the actual red, green, and blue (RGB) val-
ues using one of two attributes. CMS_COLORS takes as a value an array of
Xv_singlecolor objects. This XView-defined type is declared as:

typedef struct xv_singlecolor {
unsigned char red, green, blue;

} Xv_singlecolor;

*XParseColor() is an Xlib call that maps char * color names into RGB values.

Color

Color 517

We can use the following to produce a cms with the same colors:

static Xv_singlecolor colors[] = {
{ 255, 255, 255, }, /* white */
{ 255, 0, 0 }, /* red */
{ 0, 255 0, }, /* green */
{ 0, 0, 255 }, /* blue */

};
cms = xv_create(NULL, CMS,

CMS_SIZE, 4,
CMS_COLORS, colors,
NULL);

Alternatively, you can use the attribute CMS_X_COLORS to specify an array of XColor struc-
tures, defined in <X11/Xlib.h> as:

typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags; /* do_red, do_green, do_blue */
char pad;

} XColor;

Here is a way to produce a colormap segment with the same colors but using an array of
XColors:

static XColor colors[] = {
/* white */ { 0, 255<<8, 255<<8, 255<<8, DoRed|DoGreen|DoBlue, 0 },
/* red */ { 0, 255<<8, 0, 0, DoRed|DoGreen|DoBlue, 0 },
/* green */ { 0, 0, 255<<8, 0, DoRed|DoGreen|DoBlue, 0 },
/* blue */ { 0, 0, 0, 255<<8, DoRed|DoGreen|DoBlue, 0 },
};
cms = xv_create(NULL, CMS,

CMS_SIZE, 4,
CMS_X_COLORS, colors,
NULL);

Note that the color values in the red, green, and blue fields of the XColor data structure are
left-shifted by 8. For more details on specifying colors with Xlib, see Volume One, Xlib Pro-
gramming Manual.

When storing colors, if the colormap segment type is static, XView uses XAllocColor().
If the colormap segment type is dynamic, XView uses XAllocColorCells() and
XStoreColors() to allocate a dynamic colormap and store the requested colors in it.

After setting colors in a cms, the pixel values for the colors can be retrieved. These pixel val-
ues are indices into the colormap itself, not the colormap segment. See Section 21.3, “Color
and Pixel Values.”

The XView attributes to set colors can be used to get the colors from the cms as well. For
example, to get the colors into an array of Xv_singlecolor, use:

Xv_singlecolor colors[SIZE];

xv_get(cms, CMS_COLORS, colors);

The size of the colors array must be the same size as the color segment because
xv_get() gets the entire colormap segment and stores the colors at the base of the array.

518 XView Programming Manual

You cannot get a partial list of colors from the cms. The same is true for getting the colors
into an array of XColor:

XColor colors[SIZE];

xv_get(cms, CMS_X_COLORS, &colors);

In each case, xv_get() returns a pointer to the base of the array of data structures passed as
the third argument. We choose to ignore it here because the array itself is sufficient.

21.2.2 Cms Name

Colormap segments can be named using CMS_NAME.* Windows can change between color-
maps by setting their WIN_CMS_NAME to the names of allocated colormap segments. How-
ever, this old-style method of specifying colormap segments for windows is made obsolete by
the attribute WIN_CMS, the recommended method for assigning colormap segments to win-
dows.

If unnamed, a cms will get a unique name assigned to it. You can retrieve that name using
xv_get() and CMS_NAME. CMS_NAME is also the only attribute for which you can use
xv_find() for the CMS package.

21.3 Color and Pixel Values

By now, you know that a color is defined to be a set of red, green, and blue (RGB) intensity
values. For example, red is represented by a full intensity for the red value and no intensity
for the green and blue values. Other shades are achieved by raising or lowering the intensi-
ties of one or more of the RGB values. A colormap is an array of RGB values; a pixel is an
index into that array.

21.3.0.1 Logical versus real indices

If a colormap segment of size n is created, its logical indices range from 0 to n-1. XView
attributes that take color values (e.g., WIN_FOREGROUND_COLOR, PANEL_ITEM_COLOR, etc.)
always deal with logical index values.

The real indices of a colormap segment are the actual indices into the hardware colormap.
Each colormap segment maintains an internal table to translate from logical to real indices.
Real index values (pixels) are used for setting the foreground and background colors in GCs
used in Xlib calls.

*CMS_NAME is defined to be XV_NAME.

Color

Color 519

The index table from a colormap segment can be obtained using the attribute CMS_

INDEX_TABLE.

unsigned long *colors;

colors = (unsigned long *)xv_get(cms, CMS_INDEX_TABLE);

Similarly, the pixel values from a window-based object can be obtained using the window at-
tribute, WIN_X_COLOR_INDICES:

unsigned long *colors;

colors = (unsigned long *)xv_get(canvas, WIN_X_COLOR_INDICES);

Note the object passed to xv_get().

In both cases, the returned value is a pointer to an array of unsigned long types. For a
colormap segment of size n, colors[0], colors[1], . . . colors[n-1] contain
the actual pixel values corresponding to the colors in the underlying X11 colormap. These
pixel values can be used in calls to XSetForeground() or XSetBackground() to
change GC values.

To get the real pixel value corresponding to a logical index value, you can use the CMS_PIX-
EL attribute:

Cms cms;
unsigned long red, blue;

cms = (Cms)xv_create(NULL, CMS,
CMS_SIZE, 2,
CMS_NAMED_COLORS, "red", "blue", NULL,
NULL);

red = (unsigned long)xv_get(cms, CMS_PIXEL, 0);
blue = (unsigned long)xv_get(cms, CMS_PIXEL, 1);

CMS_PIXEL can only be used to get the value of pixels; you cannot use it to set cms color val-
ues.

As discussed earlier, the CMS_X_COLORS attribute can be used to get an array of XColor ele-
ments. This data structure has a pixel field that can be referenced to get the pixel values
associated with colors.

21.3.1 Foreground and Background Colors

Foreground and background colors correspond to the last and first colors in a colormap seg-
ment. That is, the segment’s background color corresponds to the logical index 0 in the cms,
whereas the foreground color corresponds to the logical index n-1 (where n is the size of the
cms).

Identifying the foreground and background colors on certain XView objects may not be as
straightforward as it appears. For example, the background color of a canvas is the color the
entire canvas is painted with when XClearArea() is called. The foreground color is a thin
border color around the inside perimeter of each canvas view window. This is not

520 XView Programming Manual

necessarily the color in which graphics are rendered into the canvas using XCopyArea() or
XDrawString(). The color of the graphical images you see in a canvas is dependent on
the foreground color set in the GC used by the Xlib routines.

The real pixel values for the foreground and background colors of a cms may be obtained di-
rectly using the attributes CMS_FOREGROUND_PIXEL and CMS_BACKGROUND_PIXEL.

Cms cms;
unsigned long fg, bg;

bg = (unsigned long)xv_get(cms, CMS_BACKGROUND_PIXEL);
fg = (unsigned long)xv_get(cms, CMS_FOREGROUND_PIXEL);

21.3.1.1 Colors of control objects

A control object in XView refers to panels, scrollbars, notices, and menus. These packages
cannot have their foreground and background modified programmatically in the same way as
other window-based objects. This restriction applies to the 3D interface; the 2D interface
may allow the foreground and background colors to be modified. However, OPEN LOOK
states that the background of all control objects appear consistent; thus, a single control color
is used. On panels, it is possible, but not recommended, to set the WIN_FOREGROUND_COLOR
and WIN_BACKGROUND_COLOR attributes. Panel items, may have their colors set by setting
PANEL_ITEM_COLOR to a logical index into the panel’s cms. XView allows the user, not the
programmer, to set the background color for control objects via the resource database. This
is discussed in Section 21.5, “The Control Colormap Segment.”

21.4 The color_logo.c Program

Using the basic principles discussed so far, we present Example 21-1 to demonstrate the cre-
ation and initialization of a colormap segment for an XView canvas. Pixel values are
extracted from the colormap segment and set into a GC’s foreground. Xlib calls are then
used to render various items in the same four basic colors we’ve been using.

Example 21-1. The color_logo.c program

/* color_logo.c --
* This program demonstrates the combined use of the XView color
* model/API and Xlib graphics calls. The program uses XView to
* create and manage its colormap segment while doing its actual
* drawing using Xlib routines.
* The program draws the X logo in red, green and blue in a canvas.
*/
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/cms.h>
#include <xview/xv_xrect.h>
#include <X11/bitmaps/xlogo64>

/* Color indices */

Color

Color 521

Example 21-1. The color_logo.c program (continued)

#define WHITE 0
#define RED 1
#define GREEN 2
#define BLUE 3
#define NUM_COLORS 4

GC gc; /* used for rendering logos */
unsigned long *pixel_table; /* pixel values for colors */
Pixmap xlogo; /* the xlogo */

/* Create a frame, canvas, and a colormap segment and assign the
* cms to the canvas. CMS_INDEX_TABLE returns the actual colormap
* indices and are used to set the gc’s foreground for XCopyPlane
* calls.
*/
main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
XGCValues gc_val;
XGCValues gcvalues;
void canvas_repaint_proc();
Cms cms;
static Xv_singlecolor colors[] = {

{ 255, 255, 255 }, /* white */
{ 255, 0, 0 }, /* red */
{ 0, 255, 0 }, /* green */
{ 0, 0, 255 }, /* blue */

};

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

cms = (Cms) xv_create(NULL, CMS,
CMS_SIZE, 4,
CMS_COLORS, colors,
NULL);

frame = (Frame)xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
XV_WIDTH, 448,
XV_HEIGHT, 192,
NULL);

(void) xv_create(frame, CANVAS,
CANVAS_X_PAINT_WINDOW, TRUE,
CANVAS_REPAINT_PROC, canvas_repaint_proc,
WIN_CMS, cms,
NULL);

/* Get the actual indices into the colormap */
pixel_table = (unsigned long *)xv_get(cms, CMS_INDEX_TABLE);

/* create the xlogo -- get display/window from the frame obj */
xlogo = XCreateBitmapFromData(

xv_get(frame, XV_DISPLAY), xv_get(frame, XV_XID),

522 XView Programming Manual

Example 21-1. The color_logo.c program (continued)

xlogo64_bits, xlogo64_width, xlogo64_height);

/* setup gc for rendering logos to screen */
gcvalues.graphics_exposures = False;
gcvalues.background = pixel_table[WHITE];
gc = XCreateGC(xv_get(frame, XV_DISPLAY), xv_get(frame, XV_XID),

GCBackground | GCGraphicsExposures, &gcvalues);

xv_main_loop(frame);
}

/* Draws onto the canvas using Xlib drawing functions.
* Draw the X logo into the window in three colors. In each case,
* change the GC’s foreground color to the pixel value specified.
*/
void
canvas_repaint_proc(canvas, pw, display, win, xrects)
Canvas canvas; /* unused */
Xv_Window pw; /* unused */
Display *display;
Window win;
Xv_xrectlist *xrects; /* unused */
{

/* Use XCopyPlane because the logo is a 1-bit deep pixmap. */
XSetForeground(display, gc, pixel_table[RED]);
XCopyPlane(display, xlogo, win, gc, 0, 0,

xlogo64_width, xlogo64_height, 64, 64, 1);

XSetForeground(display, gc, pixel_table[GREEN]);
XCopyPlane(display, xlogo, win, gc, 0, 0,

xlogo64_width, xlogo64_height, 192, 64, 1);

XSetForeground(display, gc, pixel_table[BLUE]);
XCopyPlane(display, xlogo, win, gc, 0, 0,

xlogo64_width, xlogo64_height, 320, 64, 1);
}

Example 21-1 uses Xlib routines to draw into the canvas’s paint window. Therefore, the GC’s
foreground color is set to an index from the colormap being used by that paint window. In
order to get the correct color from the colormap, we need to get the color table for the win-
dow using the attribute CMS_COLOR_INDEX. The repaint routine draws the X logo in the
specified colors.

Color

Color 523

21.5 The Control Colormap Segment

The management of colormap segments is a little different for control objects (panels,
notices, menus, etc.) than it is for other XView objects. In order for XView to provide the
same control colors for control objects, these objects must use a control colormap segment.
This is just like a normal cms except that parts of it are reserved for the predefined colors.

Since OPEN LOOK suggests that the background of control objects in an application appear in
a consistent color, XView sets that color to be that specified by the resource OpenWin-
dows.WindowColor from the user’s environment. This color is used as the background
color, and along with a few others, they are set aside in the first few indices of the control
colormap segment.

These control colors are used to provide a 3D look for the control objects. Thus, the control
colormap segment must be used for all control objects.

Aside from the added colors, there is little difference between a control cms and a normal
cms. The cms may still request many colors and there is no limit to the choice of colors used
in the new cms. However, these extra colors cannot be used as the background for control
objects.

A control colormap segment is created by setting the boolean attribute CMS_CONTROL_CMS to
TRUE in the call to xv_create(). The macro CMS_CONTROL_COLORS (defined in
<xview/cms.h>) indicates how many predefined control colors there are, so the first
CMS_CONTROL_COLORS indices in the cms are initialized by the XView library. If the appli-
cation requires n other colors in this cms, it must explicitly ask that the segment be created
with a size of:

n + CMS_CONTROL_COLORS

In such a case, the application must refer to its own n colors using the index range:

CMS_CONTROL_COLORS to CMS_CONTROL_COLORS + n-1

An application-defined colormap segment set on a control object (such as a panel) must be a
control colormap segment so that the object can be pointed with the 3D look.

#define WHITE 0
#define RED 1
#define GREEN 2
#define BLUE 3
#define NUM_COLORS 4

control_cms = xv_create(NULL, CMS,
CMS_SIZE, CMS_CONTROL_COLORS + NUM_COLORS,
CMS_CONTROL_CMS, TRUE,
CMS_NAMED_COLORS, "white", "red", "green", "blue", NULL,
NULL);

524 XView Programming Manual

We set the boolean attribute CMS_CONTROL_CMS to TRUE to indicate that we are creating a
control cms. Notice that the size of the colormap segment is the number of colors we speci-
fied plus the number of control colors. This colormap segment contains both control colors
and our colors; XView automatically allocates our colors after the control colors.

When we create the panel, we specify the new colormap segment as the panel’s cms using
the common window attribute, WIN_CMS:

panel = (Panel)xv_create(frame, PANEL,
WIN_CMS, control_cms,
NULL);

When we reference our own specified colors, we must offset those color values by CMS_

CONTROL_COLORS:

/* assume a 1-bit deep 16x16 square pixmap */
extern Server_image chip;

xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Colors",
PANEL_CHOICE_IMAGES, chip, chip, chip, chip, NULL,
PANEL_CHOICE_COLOR, 0, WHITE + CMS_CONTROL_COLORS,
PANEL_CHOICE_COLOR, 1, RED + CMS_CONTROL_COLORS,
PANEL_CHOICE_COLOR, 2, GREEN + CMS_CONTROL_COLORS,
PANEL_CHOICE_COLOR, 3, BLUE + CMS_CONTROL_COLORS,
NULL);

Here, we create a choice item whose choices are colored “chips” in solid colors correspond-
ing to the color names offset by the control colormap segment.

21.5.1 Coloring Panel Items

You can specify colors for panel items using PANEL_ITEM_COLOR. This attribute takes as a
value an index into a colormap segment. The value -1 is reserved for the panel’s foreground
color, whatever that may be. It is also the default color of panel items unless you have speci-
fied otherwise with PANEL_ITEM_COLOR. The scrollbar on a PANEL_LIST will always take
on the window color that is specified in the Workspace Properties sheet.
PANEL_ITEM_COLOR on a PANEL_LIST will only affect the scrolling list’s label, title, and
rows. Remember, if you’re going to be using the 3D interface, then you must create the cms
as a control cms. Example 21-2 briefly demonstrates how to create colored panel items.

Example 21-2. The color_panel.c program

/* color_panel.c --
* This program demonstrates how to set panel items to different
* colors using the XView API for color.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/cms.h>

/* Color indices */
#define WHITE 0
#define RED 1

Color

Color 525

Example 21-2. The color_panel.c program (continued)

#define GREEN 2
#define BLUE 3
#define NUM_COLORS 4

/* Create a frame, panel, and a colormap segment and assign the
* cms to the panel.
*/
main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Cms cms;
extern void exit(), pressed();
static Xv_singlecolor colors[] = {

{ 255, 255, 255 }, /* white */
{ 255, 0, 0 }, /* red */
{ 0, 255, 0 }, /* green */
{ 0, 0, 255 }, /* blue */

};

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

cms = (Cms) xv_create(NULL, CMS,
CMS_CONTROL_CMS, TRUE,
CMS_SIZE, CMS_CONTROL_COLORS + 4,
CMS_COLORS, colors,
NULL);

frame = (Frame)xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
FRAME_SHOW_FOOTER, TRUE,
NULL);

panel = xv_create(frame, PANEL,
WIN_CMS, cms,
NULL);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Red",
PANEL_ITEM_COLOR, CMS_CONTROL_COLORS + RED,
PANEL_NOTIFY_PROC, pressed,
NULL);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Green",
PANEL_ITEM_COLOR, CMS_CONTROL_COLORS + GREEN,
PANEL_NOTIFY_PROC, pressed,
NULL);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Blue",
PANEL_ITEM_COLOR, CMS_CONTROL_COLORS + BLUE,
PANEL_NOTIFY_PROC, pressed,
NULL);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",

526 XView Programming Manual

Example 21-2. The color_panel.c program (continued)

PANEL_ITEM_COLOR, CMS_CONTROL_COLORS + WHITE,
PANEL_NOTIFY_PROC, exit,
NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

void
pressed(item, event)
Panel_item item;
Event *event;
{

char *name = (char *)xv_get(item, PANEL_LABEL_STRING);
Frame frame = xv_get(xv_get(item, PANEL_PARENT_PANEL), XV_OWNER);

xv_set(frame, FRAME_LEFT_FOOTER, name, NULL);
}

Notice how the color index for each panel item is offset by the number of colors in the con-
trol color item. If all the references to the CMS_CONTROL_COLORS and CMS_CONTROL_CMS

attributes were removed, the result would be a 2D panel whose panel items are the same
colors as their names.

21.6 Using xv_find() with Colormap Segments

xv_find() can be used to find a previously created colormap segment. Currently, the attri-
bute CMS_NAME is the only attribute used by xv_find() to find a match.

cms = (Cms)xv_find(screen, CMS,
CMS_NAME, "palette",
XV_AUTO_CREATE, FALSE,
NULL);

This example returns a handle to a colormap segment whose name is “palette.”
XV_AUTO_CREATE is set to FALSE to prevent a new colormap segment from being created. If
the colormap segment with that name is not found, then NULL is returned.

Color

Color 527

21.7 Canvases and Colormaps

When the colormap segment associated with a canvas is changed, the contents of the canvas
must be repainted to reflect the new colors. If the boolean attribute CANVAS_CMS_REPAINT is
set to TRUE, the library automatically calls the canvas’s repaint procedure each time a new
colormap segment is set on the canvas. The damage list passed to the routine contains the
dimensions of the entire paint window.

Note that the application itself must track any changes in the contents of a colormap segment.
CANVAS_CMS_REPAINT enables the library to generate a synthetic repaint event only when
the actual colormap segment is switched.

For dynamic colormap segments, when a color changes, the pixel value remains the same but
the color represented by the index into the colormap segment changes. Therefore, the repaint
routine is not called and the window’s appearance changes automatically. This method of
colormap manipulation is commonly used to implement color animation.

21.8 Multi-visual Support

XView allows you to create windows and colormap segments using arbitrary visuals (See
Chapter 7 of Volume One, Xlib Programming Manual for a description of visuals in X11).
You can use this functionality to access any visual that the X11 server supports. The attri-
butes described in this section allow you to indicate visuals you want associated with your
windows and colormap segments.

The attribute XV_VISUAL specifies the exact visual that will be used in the creation of a win-
dow or colormap segment. The value is a pointer a Visual structure (available from
XMatchVisualInfo or XGetVisualInfo). This attribute applies only to WINDOW and
CMS objects.

The attribute XV_VISUAL_CLASS specifies the class of the visual that will be used in the cre-
ation of the window or colormap segment. The value should be one of the following:

StaticGray
GrayScale
StaticColor
PseudoColor
TrueColor
DirectColor

If the server that the window is being created for does not support the visual class specified,
XView uses the default visual. XV_VISUAL_CLASS also only applies to a WINDOW or to a CMS
object.

The attribute WIN_DEPTH specifies the depth of the window that you are creating. If the value
specified by this attribute is not supported by the server, the library uses the default depth
instead. This attribute, like all WIN_* attributes applies only to WINDOW objects.

528 XView Programming Manual

21.8.1 Using the Visual Attributes

Both XV_VISUAL and XV_VISUAL_CLASS do essentially the same thing. XV_VISUAL is more
specific. Use XV_VISUAL_CLASS, optionally in conjunction with WIN_DEPTH, if you have no
preference about the specific visual, but just require a certain visual class. However, if you
want to make sure that you are using a specific visual that the server supports, use XGet-
VisualInfo or XMatchVisualInfo to find the visual and then use the visual as an
argument to XV_VISUAL.

If you are creating your own colormap segment(s), make sure that they are created with the
same visual as the window you will be using with the CMS. For example, if you have a win-
dow that requires a cms, do the following:

cms = (Cms)xv_create(screen, CMS,
XV_VISUAL, (Visual *)xv_get(window, XV_VISUAL),
...
NULL);

Note that you should never assume that creating a window with XV_VISUAL_CLASS or
WIN_DEPTH will use the class and depth you specify. If the server does not have a visual of
the given class and depth, you will not be supplied with the visual you specify. If your appli-
cation depends on using a specific visual, be sure to check the visual class and depth of the
window, using xv_get(), to see if you did indeed get the required visual. Alternatively,
you may query the server before the creating the window, using XGetVisualInfo or
XMatchVisualInfo, to check the visuals that the server supports.

21.9 Another Example

This final example demonstrates just about all of the features discussed in this chapter. It
includes creating a colormap segment, initializing color, using foreground and background
colors, and setting colors on specific XView objects, including panel items.

In Example 21-3, the user selects objects (from the “Objects” item) to be colored by selecting
one of the color tiles from the “Colors” choice item. The callback function for this panel
item calls color_notify(), which sets the currently selected colors on the foreground or
background of the selected objects. Whether to use foreground or background colors is
dependent on the value of the “Fg/Bg” panel item; the items whose colors are affected are
retrieved by getting the value of the “Objects” panel item. Since more than one object can be
selected from this item, the value is a mask of the selected items. We loop through each bit in
the mask identifying which objects should have their colors set.

Example 21-3. The color_objs.c program

/*
* color_objs.c --
* This program demonstrates the use of color in XView. It allows
* the user to choose the foreground and background colors of the
* various objects in an interactive manner.
*/
#include <xview/xview.h>

Color

Color 529

Example 21-3. The color_objs.c program (continued)

#include <xview/svrimage.h>
#include <xview/textsw.h>
#include <xview/panel.h>
#include <xview/cms.h>
#include <xview/notice.h>

#define SELECT_TEXTSW 0
#define SELECT_TEXTSW_VIEW 1
#define SELECT_PANEL 2
#define SELECT_ICON 3

#define NUM_COLORS 8

/* Icon data */
static short icon_bits[] = {
#include "cardback.icon"
};

/* solid black square */
static short black_bits[] = {

0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF

};

Panel_item objects;
Textsw textsw;
Panel panel;
Icon icon;

/*
* main()
* Create a panel and panel items. The application uses panel items
* to choose a particular object and change its foreground and
* background colors in an interactive manner. Create a textsw.
* Create an icon. All the objects share the same colormap segment.
*/
main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel_item color_choices, panel_fg_bg;
Cms cms;
int i;
Server_image chip, icon_image;
void color_notify();
extern void exit();
static Xv_singlecolor cms_colors[] = {

{ 255, 255, 255 }, /* white */
{ 255, 0, 0 }, /* red */
{ 0, 255, 0 }, /* green */
{ 0, 0, 255 }, /* blue */
{ 255, 255, 0 }, /* yellow */
{ 188, 143, 143 }, /* brown */
{ 220, 220, 220 }, /* gray */
{ 0, 0, 0 }, /* black */

530 XView Programming Manual

Example 21-3. The color_objs.c program (continued)

};

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME,
FRAME_LABEL, argv[0],
NULL);

cms = (Cms)xv_create(NULL, CMS,
CMS_NAME, "palette",
CMS_CONTROL_CMS, TRUE,
CMS_TYPE, XV_STATIC_CMS,
CMS_SIZE, CMS_CONTROL_COLORS + NUM_COLORS,
CMS_COLORS, cms_colors,
NULL);

/* Create panel and set the colormap segment on the panel */
panel = (Panel)xv_create(frame, PANEL,

PANEL_LAYOUT, PANEL_VERTICAL,
WIN_CMS, cms,
NULL);

/* Create panel items */
objects = (Panel_item)xv_create(panel, PANEL_TOGGLE,

PANEL_LABEL_STRING, "Objects",
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_CHOICE_STRINGS, "Textsw", "Textsw View",

"Panel", "Icon", NULL,
NULL);

panel_fg_bg = (Panel_item)xv_create(panel, PANEL_CHECK_BOX,
PANEL_LABEL_STRING, "Fg/Bg",
PANEL_CHOOSE_ONE, TRUE,
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_CHOICE_STRINGS, "Background", "Foreground", NULL,
NULL);

chip = (Server_image)xv_create(XV_NULL, SERVER_IMAGE,
XV_WIDTH, 16,
XV_HEIGHT, 16,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, black_bits,
NULL);

color_choices = (Panel_item)xv_create(panel, PANEL_CHOICE,
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_LABEL_STRING, "Colors",
PANEL_CLIENT_DATA, panel_fg_bg,
XV_X, (int)xv_get(panel_fg_bg, XV_X),
PANEL_NEXT_ROW, 15,
PANEL_CHOICE_IMAGES,

chip, chip, chip, chip, chip, chip, chip, chip, NULL,
PANEL_CHOICE_COLOR, 0, CMS_CONTROL_COLORS + 0,
PANEL_CHOICE_COLOR, 1, CMS_CONTROL_COLORS + 1,
PANEL_CHOICE_COLOR, 2, CMS_CONTROL_COLORS + 2,
PANEL_CHOICE_COLOR, 3, CMS_CONTROL_COLORS + 3,
PANEL_CHOICE_COLOR, 4, CMS_CONTROL_COLORS + 4,

Color

Color 531

Example 21-3. The color_objs.c program (continued)

PANEL_CHOICE_COLOR, 5, CMS_CONTROL_COLORS + 5,
PANEL_CHOICE_COLOR, 6, CMS_CONTROL_COLORS + 6,
PANEL_CHOICE_COLOR, 7, CMS_CONTROL_COLORS + 7,
PANEL_NOTIFY_PROC, color_notify,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void)window_fit_height(panel);

/* create textsw and set the colormap segment for it */
textsw = (Textsw)xv_create(frame, TEXTSW,

WIN_CMS, cms,
WIN_BELOW, panel,
WIN_ROWS, 15,
WIN_COLUMNS, 80,
TEXTSW_FILE_CONTENTS, "/etc/motd",
WIN_BACKGROUND_COLOR, CMS_CONTROL_COLORS + 0,
NULL);

/* adjust panel dimensions */
(void)xv_set(panel, WIN_WIDTH, xv_get(textsw, WIN_WIDTH), NULL);

icon_image = (Server_image)xv_create(NULL, SERVER_IMAGE,
XV_WIDTH, 64,
XV_HEIGHT, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, icon_bits,
NULL);

/* associate icon with the base frame */
icon = (Icon)xv_create(XV_NULL, ICON,

ICON_IMAGE, icon_image,
WIN_CMS, cms,
WIN_BACKGROUND_COLOR, CMS_CONTROL_COLORS + 0,
NULL);

xv_set(frame, FRAME_ICON, icon, NULL);

window_fit(frame);

xv_main_loop(frame);
}

/*
* This routine gets called when a color selection is made.
* Set the foreground or background on the currently selected object.
* WIN_FOREGROUND_COLOR & WIN_BACKGROUND_COLOR allow the application
* to specify indices into the colormap segment as the foreground
* and background values.
*/
void
color_notify(panel_item, choice, event)
Panel_item panel_item;
int choice;
Event *event;

532 XView Programming Manual

Example 21-3. The color_objs.c program (continued)

{
int cnt;
Xv_opaque object, get_object();
unsigned objs = (unsigned)xv_get(objects, PANEL_VALUE);
int fg = (int)xv_get(xv_get(panel_item, PANEL_CLIENT_DATA),

PANEL_VALUE);

/* the value of the objects panel item is a bit mask ... "on" bits
* mean that the choice is selected. Get the object associated
* with the choice and set it’s color. "&" tests bits in a mask.
*/
for (cnt = 0; objs; cnt++, objs >>= 1)

if (objs & 1)
if ((object = get_object(cnt)) != panel)

xv_set(object,
fg? WIN_FOREGROUND_COLOR : WIN_BACKGROUND_COLOR,
CMS_CONTROL_COLORS + choice, NULL);

else if (fg)
PANEL_EACH_ITEM(panel, panel_item)

xv_set(panel_item,
PANEL_ITEM_COLOR, CMS_CONTROL_COLORS + choice,
NULL);

PANEL_END_EACH
else

notice_prompt(panel, NULL,
NOTICE_FOCUS_XY, event_x(event), event_y(event),
NOTICE_MESSAGE_STRINGS,

"You can’t set the color of a panel.", NULL,
NOTICE_BUTTON_YES, "Ok",
NULL);

}

/*
* Return the XView handle to nth object.
*/
Xv_opaque
get_object(n)
int n;
{

switch (n) {
case SELECT_TEXTSW:

return textsw;
case SELECT_TEXTSW_VIEW:

return xv_get(textsw, OPENWIN_NTH_VIEW, 0);
case SELECT_PANEL:

return panel;
case SELECT_ICON:

return icon;
default:

return textsw;
}

}

Color

Color 533

21.10 Cms Package Summary

Table 21-1 lists the attributes for the CMS package. This information is described fully in the
XView Reference Manual.

Table 21-1. Cms Attributes

CMS_BACKGROUND_PIXEL CMS_NAME

CMS_COLOR_COUNT CMS_NAMED_COLOR

CMS_COLORS CMS_PIXEL

CMS_CONTROL_CMS CMS_SCREEN

CMS_FOREGROUND_PIXEL CMS_SIZE

CMS_INDEX CMS_TYPE

CMS_INDEX_TABLE CMS_X_COLORS

XV_DEPTH XV_VISUAL

XV_VISUAL_CLASS

534 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

22
Internationalization

In this chapter, I discuss the features in XView that allow applications to be international-
ized. For additional information on internationalization for XView Version 3.2, refer to the
XView 3.2 Developer’s Notes, Part II “Internationalization,” distributed by Sun Microsys-
tems, Inc. It describes the internationalization modifications by package as well as XView’s
wide character support. Internationalized applications do not have to be redesigned or
recompiled to run in a different language or locale. The goal is to make a single object ver-
sion of an application support any number of languages. The attribute XV_USE_LOCALE

enables the internationalization features. All internationalized applications must set this
attribute to TRUE.

The basic idea in internationalization is to separate language-specific data from the rest of
the application code. Adapting the application to any supported language, or localization ,
then requires modification of only the language-specific data. The task of internationaliza-
tion includes translation of application-specific strings and modification of layout files. All
other aspects of the user interface are handled by XView.

The internationalization features discussed in this chapter are:

Locale Setting
Before running an internationalized application, a user must choose what language
to run in. This is done by the locale setting mechanism of XView.

Localized Text Handling
Developers need to be able to write application strings (error messages, menu labels,
etc.) in their native language and have those strings retrieved in the language speci-
fied by the locale. This process is described in Section 22.2, “Localized Text Hand-
ling.”

Object Layout and Customization
When an application is run in a non-native language, the dimensions of its strings
may change (among other things). This may cause the dimensions of objects with
text strings in them, such as buttons and panels, to change. Object Layout is the
mechanism by which the screen location of objects is modified to accommodate
these kinds of changes. Section 22.3, “Object Layout and Customization,” describes
how an application can be customized to accommodate various object layouts.

Internationalization

Internationalization 537

22.1 Locale Setting

This section describes the following internationalization topics:

• Locale definition.

• How to enable internationalization features in XView.

• How to switch the locale from the OpenWindows Localization Properties Sheet.

• How the locale is set in XView using locale attributes, command-line options, XView
locale resources, and the ANSI-C/POSIX setlocale() function.

• Locale implementation limits and restrictions.

22.1.1 Locale Definition

In an internationalized program, the locale specifies the language and cultural conventions
used in a program. Locale setting affects the display and manipulation of language-depen-
dent features.

XView defines a program’s locale and the categories within each locale. These categories
refer to the language-dependent features defined by ANSI-C and OPEN LOOK. These features
include the display characteristics of monetary, numeric, and time fields.

XView offers several methods of setting locale. In order of priority, locale is set as follows:

1. XView locale attributes.

2. Locale command-line options.

3. XView locale resources (using the OpenWindows Workspace Property Sheet or an entry
in the X resource database).

22.1.2 Enabling Internationalization

The attribute XV_USE_LOCALE enables the internationalization features in XView. For inter-
nationalized applications to work properly, this attribute must be set to TRUE. This attribute is
only valid for xv_init(). The following is an example:

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv,
XV_USE_LOCALE, TRUE,

NULL);

538 XView Programming Manual

22.1.2.1 Setting path of locale-specific files

The attribute XV_LOCALE_DIR specifies the location of an application’s locale-specific files.
The directory structure referenced by XV_LOCALE_DIR is:

<XV_LOCALE_DIR>/locale/LC_MESSAGES
<XV_LOCALE_DIR>/locale/app-defaults
<XV_LOCALE_DIR>/locale/app-defaults/<application name>

where locale is expanded differently depending on which internationalized feature is using
XV_LOCALE_DIR. For a discussion of the specific use of XV_LOCALE_DIR, refer to Section
22.2, “Localized Text Handling,” and to Section 22.3, “Object Layout and Customization.”

22.1.3 OpenWindows Localization Properties Sheet

The OpenWindows Localization Properties Sheet, shown in Figure 22-1, provides the
OPEN LOOK user interface for setting locale. To set locale, bring up the OpenWindows
Workspace Property sheet and choose “Localization” from the menu. The system then
allows you to specify the following categories within the Localization Menu:

Basic Setting
Specifies the country of the user interface. Once the Basic Setting is specified, the user
can set the specific settings. The specific settings define properties for each locale.

Display Language
Specifies the language in which labels, messages, menu items, help text, and so on, are
shown.

Input Language
Specifies the language used for input.

Time Format
Specifies the format for time and date displays.

Numeric Format
Defines the numeric format.

Supplementary Settings
Provides a selection of additional settings for any of the Specific Settings. That is, if
additional selections are required to specify Display Language, Input Language, Time
or Numeric Format, pressing the Supplementary Settings button will display them.

The Localization Property Sheet sets locale via XView locale resources in the X
resource manager database. This process is described later in this chapter. Once a set-
ting is made in the Localization Properties Sheet, subsequent applications will adopt
the new environmental settings.

Internationalization

Internationalization 539

Category: Localization

Basic Setting:

Specific Setting:

Display Language:

Input Language:

Time Format:

Numeric Format:

English

English

12/31/89 21:30:30

10,000.0

U.S.A.

U.S.A.

France

Workspace Properties

Supplementary...

ResetApply

Figure 22-1. OPEN LOOK localization menu

22.1.4 XView Locale Attributes

Several attributes let you specify the locale from within an application. Each of these locale
attributes corresponds to the locale parameters described for the OpenWindows property
sheet. The attributes are shown in Table 22-1.

Table 22-1. XView Locale Attributes

Locale Parameter XView Attribute

Basic Setting XV_LC_BASIC_LOCALE

Display Language XV_LC_DISPLAY_LANG

Input Language XV_LC_INPUT_LANG

Numeric Format XV_LC_NUMERIC

Time Format XV_LC_TIME_FORMAT

These attributes specify the different OPEN LOOK locale categories. They can only be set at
creation time through xv_init(), but can be queried at any time with xv_get() on any
object that is a subclass of WINDOW or SERVER. The value that is set using the above attri-
butes must be a valid locale name in the system.*

Locale attributes are used in situations when an application developer needs to force a pro-
gram to operate in a specific locale. For example, if a program only works in the French
locale, then the locale attributes can be used to hardwire the locale to French, preventing

*The valid locale names are dependent upon the operating system used.

540 XView Programming Manual

anyone from switching the locale using X resources or command-line options. Each of these
attributes takes a char * argument. Once again, these attributes are only valid for
xv_init() and xv_get(). For example, set the basic locale to French with the follow-
ing code:

xv_init(XV_USE_LOCALE, TRUE,
XV_LC_BASIC_LOCALE, "fr",
XV_INIT_ARGC_PTR_ARGV, &argc, argv,
NULL);

22.1.5 Command-line Options for Specifying Locale

The locale command-line options allow the locale to be set when an application is started.
These options may be used to override the system environment for a specific program. The
command-line options are shown in Table 22-2, and in Section 6, Command-line Arguments
and XView Resources, in the XView Reference Manual.

Table 22-2. Locale Command-line Options

Locale Parameter Command-line Option

Basic Setting –lc_basiclocale

Display Language –lc_displaylang

Input Language –lc_inputlang

Numeric Format –lc_numeric

Time Format –lc_timeformat

An example of these command-line options follows:

% textedit –lc_basiclocale fr –lc_displaylang C –lc_inputlang fr

This command line brings up a text editor with messages and panel labels in English. The
user’s input would be in French.

22.1.5.1 XView locale resources

Locale can also be set through resources written in the X11 Resource Manager database
(˜/.Xdefaults). The workspace property sheet uses the XView Locale Resources to set locale
parameters. Resources are shown in Table 22-3.

Internationalization

Internationalization 541

Table 22-3. XView Locale Resources

Locale Parameter Resource Name

Basic Setting basicLocale

Display Language displayLang

Input Language inputLang

Numeric Format numeric

Time Format timeFormat

The example below shows locale resource entries in the X resource database. This example
shows the resources set to the value of “C.” This is the default locale on most operating sys-
tems. As far as character input/output is concerned, “C” is synonymous with 7-bit ASCII.

*basicLocale: C
*displayLang: C
*inputLang: C
*numeric: C
*timeFormat: C

This example shows the resource set to the value “C”. This value specifies the English lan-
guage (American).

22.1.5.2 ANSI-C/POSIX

Internally, XView uses several standard ANSI-C/POSIX functions. The setlocale() is an
internal function that should not be used in application programs. If locale attributes, com-
mand-line options, or resources are not specified, XView uses environment variables to set
locale information. This method follows the ANSI-C/POSIX specification for locale
announcement. The environmental variables are the same as the POSIX locale categories.
POSIX categories are shown in Table 22-4.

Table 22-4. POSIX Categories

OPEN LOOK Category POSIX Category

Basic Setting LC_CTYPE/LANG*

Display Language LC_MESSAGES

Input Language n/a
Numeric Format LC_NUMERIC

Time Format LC_TIME

n/a LC_MONETARY

n/a LC_COLLATE

*LANG (Basic Setting above) is not one of the POSIX categories, but is a convenience environment variable used to set
the default for other locales. Basic Locale sets LC_CTYPE, LC_MONETARY, and LC_COLLATE. Input Language will be
the same as LC_CTYPE.

542 XView Programming Manual

22.1.6 Limits and Restrictions

The Basic Locale setting determines the character set used by XView. The other locale
categories can differ from the basic setting, but they cannot require a different character set
from the Basic Locale. For example, setting the Basic Locale to “fr” (French) and the Display
Language to “ja” (Japanese) will not work because the French and Japanese locales require
different character sets.

The following restrictions thus apply:

1. If basic locale setting is the “C” locale, then all other locale categories must be in the “C”
locale.

2. If the Basic Locale is set to a locale other than the “C” locale, then all other locale
categories must be set either to a locale that uses the same character set as the basic set-
ting, or to the “C” locale.

22.2 Localized Text Handling

When creating an internationalized application, developers need to write text strings in their
native language (error messages, menu labels, button labels) and have those strings appear in
foreign languages based on the locale established in the environment. Note that the term
“foreign language” refers to non-native languages. XView allows you to define any lan-
guage as the native language and any other language as the foreign language.

Localized text handling allows a developer to write text strings in the native language and
have those strings retrieved in a foreign language. To implement localized text handling in an
XView program, the developer must perform the following tasks:

1. For all displayable text strings, use the string as an argument in the gettext() or
dgettext() functions. These functions accept native language strings as arguments,
and return the equivalent foreign language strings.

2. Extract the native language text strings used with gettext() and dgettext() from
the source and store them in a portable message file. This extraction can be done by
hand, or through the source filter xgettext.

3. Provide the foreign language equivalent for each text string, and put it in the portable
message file. The portable message file can be edited using any plain text editor which
supports both the native and foreign language.

4. Run the msgfmt program on the portable message file to create a text domain. Here is
an explanation on domains. The complete list of messages that exists in a system can be
divided in two different ways: Those that belong to a particular language can be grouped
together in a locale.

Those that logically belong to a “function” (for lack of a better word), “package,”
“library,” etc., can be grouped together in a “text domain.” Messages are grouped in
domains for convenience and maintenance. A domain contains messages from its

Internationalization

Internationalization 543

“group” in all the valid languages of the system. Likewise, a locale contains all the mes-
sages in a specific language (this covers all domains of the system). Example of domains
are, “panel_labels,” “library_error_messages,” “menu_labels,” and so on.

So, to obtain the correct translation of a message string, one needs to know what language
it is to be displayed in (locale - French, Japanese, etc), and which logical group it belongs
to (domain - error messages, button labels, etc.) The text domain is in binary file format
and is not interchangeable between CPU architectures. This file cannot be edited using an
editor; it must be created using msgfmt.

XView follows the UniForum Messaging Proposal (1003.1b) specification of gettext, dget-
text, text domain, and portable source file format for messages (PSFFM).

22.2.1 Localized Text Handling – Application Programmer Interface

Several functions support localized text handling. They are described in this section.

22.2.1.1 gettext()

The procedure gettext() retrieves the foreign language string for the passed string. The for-
mat of gettext() is:

char *
gettext(msg_id)

char *msg_id;

where “msg_id” is the native language string for which the foreign language equivalent is
required. The locale used for retrieval is the current setting of the Display Language cate-
gory (LC_MESSAGES). The domain used is the “current domain,” or the domain set by the last
call to “textdomain().” If a call to textdomain() has not been made, the default domain is
used.

If gettext() cannot find the foreign language equivalent for “msg_id,” then “msg_id” itself is
used.

The example below searches the current text domain for the foreign language string that is
identified by the key “wrongbutton.” The foreign language string is then assigned to “mes-
sage:”

message = gettext("wrongbutton");

544 XView Programming Manual

22.2.1.2 dgettext()

Another function, dgettext(), allows you to specify the text domain from which to
retrieve the foreign language string without changing the current text domain. Its format is:

char *
dgettext (domain_name, string)

char *domain_name;
char *string;

Where domain_name is the text domain containing the desired foreign language equivalent,
and string is the native language string for which the foreign language equivalent is desired.

The following example searches for the foreign language equivalent wrongbutton in the
text domain library_error_strings, then assigns the result to message. The cur-
rent text domain, which was active before this call, is not changed.

message = dgettext("library_error_strings",
"wrongbutton");

22.2.1.3 textdomain()

Use textdomain() to specify the current text domain. It has the following format:

char *
textdomain(domain_name)

char *domain_name;

Where domain_name is the desired current text domain.

The following example sets the current text domain to library_error_strings. All
subsequent gettext() calls automatically search library_error_strings for the
foreign language equivalent.

textdomain("library_error_strings");

The value of the current text domain can be queried as follows:

current_domain = textdomain(NULL);

The domain may be set to the implementation-defined default domain by calling
textdomain() with a domain name set to an empty string. Such a call to
textdomain() will also return the implementation-defined default domain. (Refer to the
man page on textdomain for specific information on the default domain for your operating
system.) For example:

default_domain = textdomain("");

Multiple text domains can be used within the same application. This allows different types of
strings to be grouped into separate text domains. For example, one text domain might contain
error messages from the XView library, a second text domain might contain XView menu
and button text, and a third might contain strings from the application.

Internationalization

Internationalization 545

22.2.1.4 bindtextdomain()

The current Uniforum messaging proposal does not specify a method for identifying the loca-
tion of text domains in the file system. The function bindtextdomain() performs this
function. The function defines the location of the text domain files to the library. The format
of the bindtextdomain() call is:

char *
bindtextdomain(domain_name, binding)

char *domain_name;
char *binding;

The following example sets the binding for the text domain library_error_strings to
/home/myapp/lib/locale :

bindtextdomain("library_error_strings", "/home/myapp/lib/locale");

All subsequent gettext() and dgettext() calls for the text domain library_error_strings will
look in:

/home/myapp/lib/locale/<Display Language Setting>/LC_MESSAGES

for the message file library_error_strings.mo.

The bindtextdomain() function also has a default domain binding. The default domain
binding is applied to any text domains that haven’t been bound explicitly by a
bindtextdomain() call. Unlike the other bindings, the default binding is actually a list
of directories that are searched in order. There is always at least one directory in the list:
/usr/lib/locale .

Additional directories can be added to the list as follows:

bindtextdomain("", "/home/myapp/lib/locale");

Directories are searched in the order in which they are added to the list. In the above
example, /usr/lib/locale would be searched first followed by /home/myapp/lib/locale .

An opaque snapshot of the state of the default binding list can be taken with the following:

(char *) state = bindtextdomain("", NULL);

Note that this is similar in principle to using setlocale():

setlocale(LC_ALL, NULL);

The state can be restored at a later time using the following:

bindtextdomain("", state);

546 XView Programming Manual

22.2.1.5 Examples

The following three examples retrieve the same strings, but have different effects on the text
domain. The first example does not change the current text domain. The second and third
examples change the current text domain to library_error_strings, then retrieve the
foreign language string of wrongbutton.

message = dgettext("library_error_strings",
"wrongbutton");

textdomain("library_error_strings");
message = gettext("wrongbutton");

textdomain("library_error_strings");
message = dgettext("", "wrongbutton"); * "" = current domain *\\

22.2.1.6 XV_LOCALE_DIR

If XV_LOCALE_DIR is set in xv_init(), XView calls bindtextdomain() on the appli-
cation’s behalf to prepend the pathname specified by XV_LOCALE_DIR to the default domain
path list. All unbound text domains would be located in the directory with the general format:

<XV_LOCALE_DIR>/<Display Language Setting>/LC_MESSAGES/domain

"domain” is the name of the text domains. The default value of XV_LOCALE_DIR is
$OPENWINHOME/lib/locale.
An example, using XV_LOCALE_DIR follows:

xv_init(XV_INIT_ARGS, argc, argv,
XV_LOCALE_DIR, "/app_home/lib/locale",
NULL);

22.2.2 Creating a Text Domain

Once the program is written using gettext() and dgettext(), text domains are created
using the following procedures:

1. For example, you could run xgettext on the following source file fragment (see the
man page for xgettext for proper usage):

message1 = dgettext("library_error_string", "Save");
message2 = dgettext("library_error_string", "File");
message3 = dgettext("library_error_string", "Edit");

Internationalization

Internationalization 547

This filter extracts the strings from the source files, and places them in a portable message
file. The format of the portable message file produced is shown below:

domain "library_error_strings
msgid "File"
msgstr
msgid "Save"
msgstr
msgid "Edit"
msgstr

The xgettext filter currently does not expand #define commands. If you have
#define strings which need to be extracted, then you need to run your application
through the C preprocessor as follows:

cc -P file.c

This runs the source file through the C preprocessor only, and outputs to a file with a suf-
fix, .i. You should then run this .i file through xgettext to extract all strings:

xgettext xgettext options file.i

This will produce a file called library_error_string.po.

2. Add the foreign language equivalents for all the native language strings in the portable
message file between quotes next to msgstr. Use a plain text editor that supports the
character set/encoding for the language.

domain "library_error_strings
msgid "File"
msgstr "<french for File>"
msgid "Save"
msgstr "<french for Save>"
msgid "Edit"
msgstr "<french for Edit>"

If you wish to create multiple text domains, you may separate the related text strings into
separate files. Be sure that the first line of every file consists of a domain line at the begin-
ning of each file. You may also have multiple text domains within the same file. To do
this, simply start each new domain with the line:

domain "domain_name"

where domain_name is the name of the text domain. Note that the message identifiers and
strings of a particular domain must be in the same file under the same domain name.

3. Run the msgfmt program on each portable message file to produce the text domain file:

msgfmt library_error_string.po

This produces the text domain file library_error_string.mo, which contains the messages
compiled in an internal format. The text domain file is in binary format, and is not inter-
changeable between CPU architectures. It cannot be edited using an editor, and must be
created using msgfmt.

4. Move each text domain to the directory under the path specified as follows:

<XV_LOCALE_DIR>/locale/LC_MESSAGES

548 XView Programming Manual

As mentioned previously, gettext() and dgettext() search the text domain for the
native language text or key value, then extract the corresponding foreign language text.
The key is a unique name that identifies the string to be retrieved. The key does not have
to be the native language string, but the native language string is a good choice since it
tends to be self-documenting.

22.2.3 New and Enhanced XView Attributes for gettext()

NOTICE_MESSAGE_STRING specifies text to print in a notice. NOTICE_MESSAGE_STRING is
necessary when using gettext() to get a notice message. The value of this attribute is a
single NULL-terminated string, which may contain “\n” as a line break. NOTICE_MES-

SAGE_STRINGS specifies the text to print in a notice. The value is NULL-terminated list of
strings, which may contain “\n” as a line break. NOTICE_MESSAGE_STRINGS_ARRAY_PTR

specifies the text to print in a notice. The value is a variable pointing to a NULL-terminated
array of strings, which may contain “\n” as a line break.

This example shows how notices are displayed in XView Version 2.

result = notice_prompt(panel , NULL,
NOTICE_BUTTON, "Update changes" , 101,
NOTICE_BUTTON, "Ignore changes" , 102,
NOTICE_BUTTON, "Destroy everything" ,103,
NOTICE_MESSAGE_STRINGS, "Press button,"

"then go home" ,
NULL,
NULL);

This example uses NOTICE_MESSAGE_STRING and makes the same notice window as the pre-
vious example.

result = notice_prompt(panel , NULL,
NOTICE_BUTTON, "Update changes", 101,
NOTICE_BUTTON, "Ignore changes", 102,
NOTICE_BUTTON, "Destroy everything", 103,
NOTICE_MESSAGE_STRING, "Press button,\nthen go home" ,
NULL);

This example shows how to embed gettext().

result = notice_prompt(panel , NULL,
NOTICE_BUTTON, gettext("Update changes"), 101,
NOTICE_BUTTON, gettext("Ignore changes"), 102,
NOTICE_BUTTON, gettext(" Destroy everything"), 103,
NOTICE_MESSAGE_STRING, gettext(" Press button,\n then go home"),
NULL);

Internationalization

Internationalization 549

22.3 Object Layout and Customization

The layout of screen objects (buttons, panel items, etc.) needs to change when the dimensions
of the strings within those objects change. For example, a button string in French might be
much longer than the same button string in English, thus requiring other buttons to be reposi-
tioned. Another example of object layout changes are objects that have to be repositioned to
accommodate locale-specific representations such as date or time. A mechanism is required
to alter the layout during localization.

22.3.1 Implicit and Explicit

Object layout of an XView application may be implicit or explicit. Using explicit layout, the
application specifies x and y coordinates for the objects in the application. Implicit layout
relies on certain defaults that are built into the toolkit. Thus, if a series of panel items is
created, and no layout information is explicitly specified, the panel package will position the
items based on default spacing rules. For example, one rule is to start a new row when a
panel item extends past the edge of a panel.

Implicit positioning may be all that is required to localize an application. When the locale is
switched, the new strings are picked up and the panel package automatically adjusts the lay-
out of the panel items based on the dimensions of the new strings.

Other scenarios may exist, however, where explicit layout is required. One situation where
implicit positioning does not provide a satisfactory layout is when switching locales. Another
scenario requiring explicit repositioning is when accommodating changes in format when
locales are switched. For example, the date representation in the United States is mm/dd/yy,
while in India the date is represented as dd/mm/yy. Reliance on such explicit formats requires
modification during localization.

The attributes, XV_USE_DB and XV_INSTANCE_NAME, allow developers to specify customiz-
able attributes. These attributes can be used to specify explicit object layout.

22.3.2 Layout and Customization API

22.3.2.1 XV_LOCALE_DIR

Each application may have one or more locale-specific application defaults files. These files
provide layout information and any other data stored under the X Resource Manager that is
specific to a given locale.

The directory structure for the locale-specific defaults files used by the layout scheme is:

<XV_LOCALE_DIR>/locale/app-defaults/<appname>.db (read first)
<XV_LOCALE_DIR>/locale/app-defaults/<appname>/*.db

where locale is the current setting of Basic Locale.

550 XView Programming Manual

Typically an application would have its locale-specific application defaults file (one file) in:

<XV_LOCALE_DIR>/locale/app-defaults/<appname>.db

If the application wants to group its application defaults into multiple files, they can be
placed in the directory:

<XV_LOCALE_DIR>/locale/app-defaults/<appname>/*.db

22.3.2.2 XV_USE_DB

XV_USE_DB can be used to specify a set of attributes that are to be searched in the X11
Resource Manager database. XV_USE_DB takes a NULL-terminated list of attribute value pairs
as its values. During program execution, each attribute in this NULL-terminated list is looked
up in the X11 Resource Manager database. If the attribute is not found in the database, then
the value specified in the attribute-value pair is used as the default value.

22.3.2.3 XV_INSTANCE_NAME

The attribute XV_INSTANCE_NAME is used to associate an instance name with an XView
object. The instance name is used to construct the key value (resource name) used by the
resource manager to perform the lookup. The key value is constructed by concatenating the
instance names of all objects in the current object’s lineage, starting with the name of the
application or whatever was passed in with the -name command-line option. The XView
attribute name remains in lowercase.

An example using XV_INSTANCE_NAME is shown below. Assume that the application name is
“app.” The key value is constructed by concatenating “app,” “frame1,” and “panel1.” Thus,
resource files containing entries such as the following would be specified as in Example 22-1:

app.frame1.panel1.xv_x: 20
app.frame1.panel1.xv_y: 20

Example 22-1. Using XV_INSTANCE_NAME

(void)xv_init(XV_USE_LOCALE, TRUE,
XV_INIT_ARGC_PTR_ARGV, &argc, argv,
...
NULL);

frame = (Frame)xv_create(0, FRAME,
XV_INSTANCE_NAME, "frame1" ,
NULL);

panel = (Panel)xv_create(frame, PANEL,
XV_INSTANCE_NAME, "panel1" ,
XV_USE_DB,
XV_X, 10,
XV_Y, 15,
NULL,
NULL);

Internationalization

Internationalization 551

If entries corresponding to the attributes XV_X and XV_Y were not specified in the resource
file, the default values specified in the attribute-value pair will be used (XV_X will default to
10 and XV_Y will default to 15).

For more detailed information on the X resource manager, refer to Volume One, Xlib Pro-
gramming Manual.

The list of attributes that are customizable is shown below:

CANVAS_HEIGHT CANVAS_MIN_PAINT_HEIGHT
CANVAS_MIN_PAINT_WIDTH CANVAS_WIDTH

PANEL_CHOICE_NCOLS PANEL_CHOICE_NROWS
PANEL_DROP_HEIGHT PANEL_DROP_WIDTH
PANEL_EXTRA_PAINT_HEIGHT PANEL_EXTRA_PAINT_WIDTH
PANEL_GAUGE_WIDTH PANEL_ITEM_X
PANEL_ITEM_X_GAP PANEL_ITEM_Y
PANEL_ITEM_Y_GAP PANEL_JUMP_DELTA
PANEL_LABEL_WIDTH PANEL_LABEL_X
PANEL_LABEL_Y PANEL_LIST_DISPLAY_ROWS
PANEL_LIST_ROW_HEIGHT PANEL_LIST_WIDTH
PANEL_MAX_VALUE PANEL_MIN_VALUE
PANEL_NEXT_COL PANEL_NEXT_ROW
PANEL_SLIDER_WIDTH PANEL_TICKS
PANEL_VALUE_DISPLAY_LENGTH PANEL_VALUE_DISPLAY_WIDTH
PANEL_VALUE_STORED_LENGTH PANEL_VALUE_X
PANEL_VALUE_Y

WIN_COLUMNS WIN_DESIRED_HEIGHT
WIN_DESIRED_WIDTH WIN_ROWS

XV_HEIGHT XV_WIDTH
XV_X XV_Y

22.3.3 Command-line Options

The internationalization command-line options are supported for use with the customizable
attributes. The list of command-line options is available in Section 6, Command-line Argu-
ments and XView Resources, in the XView Reference Manual. The -name command-line
option can be used to set the application instance name. For example, if you run:

mytool -name big

all the resource names of customizable attributes within mytool will use:

big.<rest of name>

for resource database lookup.

552 XView Programming Manual

22.4 Internationalization Attribute Summary

The attributes that support internationalization are shown in Table 22-5. This information is
described fully in the XView Reference Manual.

Table 22-5. Internationalization Attributes

XV_INSTANCE_NAME

XV_LC_BASIC_LOCALE

XV_LC_DISPLAY_LANG

XV_LC_INPUT_LANG

XV_LC_NUMERIC

XV_LC_TIME_FORMAT

XV_LOCALE_DIR

XV_LOCALE_DIR

XV_USE_DB

XV_USE_LOCALE

Internationalization

Internationalization 553

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

23
Help Facilities

This chapter addresses the general-usage Help facilities that apply to all XView packages.
The help mechanism is available for the application programmer to register help information
in response to user requests.

OPEN LOOK describes a help mechanism that enables the user to get help from anywhere in
the user interface. The user requests help using the Help key on the keyboard, or, if one does
not exist, the F1 function key. When this key is used, the window under the pointer receives
the ACTION_HELP event. In such cases, a Help window is displayed as shown in Figure 23-1.

Figure 23-1. A sample Help window

Note that when you request help on a menu or a menu item, this action will dismiss the menu.
This dismissal is required, since the Menu package must relinquish its pointer and keyboard
grabs in order for the help request to be processed.

Help Facilities

Help Facilities 557

23.1 Using XV_HELP_DATA

The attribute XV_HELP_DATA is used to provide XView with information about where to find
the text for the help frame. The attribute’s value is a string in the form of:

"filename:token"

The filename is found from a list of directories set in the $HELPPATH environment vari-
able. The actual filename has the .info suffix appended to its base name. Thus, the complete
path to the filename that contains the help information is:

$HELPPATH/filename.info

If $HELPPATH is not set, the directory /usr/lib/help is used. However, if $HELPPATH is set,
then that path is searched exclusively and /usr/lib/help is not searched unless it is
explicitly listed in the variable’s setting. Therefore, users should always have the default
path in their environment setting. Since $HELPPATH may be set to any number of direc-
tories, a possible setting would be (for the C shell):

setenv HELPPATH /usr/lib/help:/path/to/other/help/directories:.

Or, for the Bourne shell:

HELPPATH=/usr/lib/help:/path/to/other/help/directories:.
export HELPPATH

The trailing “.” indicates that the current directory is included.

Once the filename is found, the token is searched for within the file. The file must contain the
string ":token" at the beginning of the line. All the text following the token, starting on
the next line, is displayed in the scrolling text subwindow within the help frame. A maxi-
mum of 10 lines of text, each terminated by a newline, is visible in the help text subwindow.
If the help text exceeds 10 lines, a scrollbar is provided. Each line of help text may not
exceed 50 characters. Scrollbars do not appear when a line is too long vertically to fit in the
help window. You need to manually type a return in the help text to trim help text lines to fit
within the 50-character limit. The text ends when a line is found that starts with a “#"
or a “:”.

23.2 HELP Key Binding

Servers that know about the XK_HELP keysym because they use a key labeled Help, as on
Type-4 Sun keyboards, provide help messages when the HELP key is selected. On servers
that don’t know about XK_HELP, the user cannot get help unless some key is mapped to
XK_HELP (OPEN LOOK requires that some key be mapped to provide help messages). The
user, or system administrator, may define a help key by mapping the resource OpenWin-
dows.KeyboardCommand.Help to a key such as F1.

OPEN LOOK also describes a method to access additional on-line information when a “More”
button is placed in the help window. XView allows the More button to be selected with the
mouse, or used with an accelerator (see Table 23-1). Selecting the More button allows the
application to provide additional help according to the current help context.

558 XView Programming Manual

Help for a text subwindow is also provided. Table 23-1 shows the default bindings for the
various types of help functions provided by OPEN LOOK.

Table 23-1. Modified Help Keystrokes

Key Type of Help

<Help> Spot Help
Shift-Help More Spot Help (an accelerator)
Ctrl-Help Help on Text
Shift-Ctrl-Help More Help on Text (an accelerator)

23.2.1 Attaching Help Data

Let’s say you have written a program called my_program. In this program, there is a panel
with a button labeled “Save.” The user wants to know exactly what this button will do if
selected. The user can select the Help key over the panel item in order to obtain help associ-
ated with the item. To support this action, you must attach help data to the panel items in the
following manner:

...
extern Frame frame;
extern void save_it();
Panel panel;

panel = (Panel)xv_create(frame, PANEL, NULL);

xv_create(panel, PANEL_BUTTON,
XV_HELP_DATA, "my_program:save",
PANEL_LABEL_STRING, "Save",
PANEL_NOTIFY_PROC, save_it,
NULL);

xv_create(panel, PANEL_TEXT,
XV_HELP_DATA, "my_program:target",
PANEL_LABEL_STRING, "Filename: ",
NULL);

...

The value for XV_HELP_DATA contains the name of the program as the “filename” to search
for and the token is :save. The filename was chosen based on the name of the application
for easier administration of the help files. The next step is to create the file my_program.info
and add the help text. The file might look like this:

Help Facilities

Help Facilities 559

:save
When selecting this panel item, all changes made
to the current document will be saved in the target
file. To change the target file, type in a new
name at the "Filename:" text item.
#

:target
This filename represents the name of the file to use
to load a new file or to store editing changes. Full
pathnames should be specified to insure that you get
the correct filename.
#

The “#” used to terminate help text makes the file more readable. Otherwise, it could be
omitted, in which case the text would terminate at the next ":token" or the end of the
file—whichever comes first.

23.2.2 More Help

The Spot Help window displays a More Help button when “More Help” is available. Alter-
natively, when Shift-Help is depressed, More Help is requested on the graphical object under
the pointer, but the Spot Help window is not displayed. The help mechanism provides More
Help when a field is added to the .info file, and More help is requested. The More Help field
specifies a shell command that is executed to provide additional help information.

:spot_help_token:more_help_shell_command

The more_help_shell_command includes everything from the character after the sec-
ond colon (:), to the character before the newline (\n). The More Help field should contain a
string that is used as an argument for an invocation with the system library routine. This
executes a command that provides help messages, or executes a help viewer (More Help).
For example, an entry in a .info file containing a token and description for the topic back,
and providing more help with the helpopen command, contains two fields as well as the
Spot Help text.

:Back:$OPENWINHOME/bin/helpopen handbooks/workspace.handbook

Choose Back to send the selected window to the
back of the window stack.
#

Prior to executing the system command, if the -display switch was specified on the com-
mand line, the help mechanism calls putenv() on the DISPLAY environment variable. This
ensures that the help viewer, for example, helpopen above, is invoked on the display on
which the More Help request was issued.

560 XView Programming Manual

23.2.3 Text Help

Help information for a selected text string is presented using XView’s text help feature and
the HELP_STRING_FILENAME attribute. Text help allows XView to search for a string of text
and to display help information that is stored in a help file associated with the string of text.

The Ctrl-HELP sequence produces an ACTION_TEXT_HELP event which begins the text
help search. The window under the pointer will get an ACTION_HELP event and XView then
requests the contents of the primary selection, a text string. XView opens the file associated
with the window’s HELP_STRING_FILENAME attribute and searches for a matching text
string. If a match is found, the text’s associated filename and target, which are stored in a
second field in the HELP_STRING_FILENAME file, provide Spot Help, and/or More Help. If
any condition is not met, then a notice is displayed.

The sequence Shift-Ctrl-Help produces the semantic action ACTION_MORE_TEXT_HELP for
More help on a text string.

The HELP_STRING_FILENAME attribute contains the name of a file with a list of string pairs.
The file is searched for in the directories listed in the environment variable HELPPATH. Each
line in the file contains two words: the first word, which must be less than 128 characters, is
the string on which help is available. The second word, which must be less than 64 charac-
ters, is of the form “file:target,” which XView uses to find the Spot Help text.

HELP_STRING_FILENAME is set on the paint window, or on any of its owners where the help
strings are painted.

23.2.4 Displaying Help Manually

If the window corresponds to an XView package that handles its own events, such as Panels
or Menus, then XView displays the help frame automatically. All you need to provide is the
data for the help message by using the attribute XV_HELP_DATA.

If you are handling events (such as a canvas) in the window, then you are responsible for dis-
playing the help frame as well as providing the help data. The function to accomplish this is
xv_help_show(). It takes the following form:

xv_help_show(window, help_data, event)
Xv_Window window;
char *help_data; /* "file:key" */
Event *event;

The window parameter is an XView window associated with an XView object. The
help_data parameter is a string identical to the value of XV_HELP_DATA discussed in the
previous section. The event parameter represents the event that caused the need for the
help window to be displayed. This event structure may be modified upon return, so it should
not be referenced after use.

Help Facilities

Help Facilities 561

An event handler for a canvas would have to track help-key events, display the help frame,
and provide the text to display in the frame. The following code fragments show how this
might be done.

...
canvas = xv_create(frame, CANVAS,

...
WIN_CONSUME_EVENTS, ..., ACTION_HELP, ..., NULL,
WIN_EVENT_PROC, my_event_handler,
NULL);

...

my_event_handler(window, event)
Xv_Window window;
Event *event;
{

if (event_action(event) == ACTION_HELP) {
xv_help_show(window, "canvas:help_info", event);
return;

}
...

}

The meaning of “canvas:help_info” is the same as the help data described earlier.

23.2.5 Help File Installation

Once the help file has been written, you should install it in /usr/lib/help on your system. If
you don’t, then the user must set the $HELPPATH environment variable correctly to point to
the path where the file actually resides. Otherwise, the user’s request for help will result in a
notice that help being posted cannot be found. Further, the file and the path to the file
(including directories and links) must be readable and searchable.

If circumstances prevent you from installing the help file in the designated area, it is not rea-
sonable to expect the user to know where the help file is. That is, do not expect that the user
has set the $HELPPATH variable correctly. You should set the environment for the user. The
path must be set to include at least two pathnames: /usr/lib/help and the path to your help file.
Both are needed because the user might request help from XView objects that provide their
own help; these help files reside in the default directory and may be needed.

The following code fragment shows how $HELPPATH should be initialized to locate help
files that do not reside in /usr/lib/help .

#include <stdio.h> /* for BUFSIZ */

#define HELPPATHNAME "/help/directory" /* set this yourself */

main(argc, argv)
int argc;
char *argv[];
{

extern char *getenv();
char *helppath, buf[BUFSIZ];

562 XView Programming Manual

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

/* ... */
sprintf(buf, "HELPPATH=/usr/lib/help:%s:", HELPPATHNAME);
if (helppath = getenv("HELPPATH"))

strcat(buf, helppath);
putenv(buf);

/* ... */

xv_main_loop(...);
}

Notice that we are setting the value of $HELPPATH regardless of its previous value. We
don’t know if the previous value of $HELPPATH existed; if it did, we don’t know if the nec-
essary pathnames were already in it. It is not worth the effort writing code to parse the string
to see if the path exists. Even if it does, we want to be sure it is at the beginning of the vari-
able. This ensures that the path is searched first. Since the same path can be set more than
once, no harm is done by prefixing the variable with the desired pathnames.

Further, the use of putenv() requires that the char * buffer passed be valid throughout
the life of the variable (e.g., until it is unset or reset later). In most cases, we would have to
use malloc() and pass in new memory or use a static variable. However, since this
putenv() is called from main, the variable space used by buf will not be corrupted until
main() exits. So we don’t bother with allocating memory.

Lastly, it should be mentioned that the effects of putenv() are temporary; the new path set-
ting affects this process and application only. Each process has its own version of HELPPATH,
so setting it explicitly for our application does not affect other programs.

23.2.5.1 HELPPATH usage with internationalization

The help mechanism checks the value of the attribute XV_USE_LOCALE. If this attribute is set
to TRUE, the help files are searched for in locale specific directories, according to the setting
of the attribute XV_LC_DISPLAY_LANG. If XV_USE_LOCALE is TRUE, XV_LC_DISPLAY_LANG
is "C," and HELPATH is set to $APPHOME, then the application searches in the specified
directory, as well as in the language specific directory for its .info files. In this case, the
search path includes two directories:

$APPHOME/C/help
$APPHOME

23.2.5.2 Setting the application name

The attribute XV_APP_NAME sets the string to be used by XView as the application’s name.
(Currently this is only for the help package). The application name can be localized using
gettext around the string that is set with XV_APP_NAME. XView will use the localized
string set with XV_APP_NAME in the header of spot help windows to indicate which applica-
tion generated the help window.

Help Facilities

Help Facilities 563

This attribute allows for more than one help file while still displaying the same name in the
spot help header window.

23.3 Help Package Summary

Table 23-2 lists the attributes and procedures for the HELP package. This information is
described fully in the XView Reference Manual.

Table 23-2. Help Attributes and Procedures

Attributes Procedures

XV_HELP_DATA xv_help_show()

HELP_STRING_FILENAME

XV_APP_NAME

564 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

24
Error Recovery

This chapter addresses the general-usage Error Handling facilities that apply to all XView
packages. All XView packages, including extensions to existing packages or those packages
you write yourself, should address error handling to provide adequate feedback for the pro-
grammer.

There are two different types of errors addressed: XView errors and Xlib protocol errors.
The two are very different from one another; XView errors are generated by misusing the
XView Toolkit in some way, while Xlib protocol errors result from calling Xlib functions
incorrectly or using incorrect values to those functions. We’ll start with XView errors since,
as you may already know, it is easy to generate run-time errors when writing XView applica-
tions.

24.1 XView Errors

XView errors are caused by specifying invalid or unknown attributes, objects, or values.
Often, XView errors are generated by simply failing to terminate a list of values of attribute-
value pairs. Whatever the reason, for an error, the XView internals call the function
xv_error().

This function is the highest level interface into the XView error package. Like many of the
other XView functions, xv_error() takes a NULL-terminated attribute-value list of param-
eters. These parameters, set by the calling function, describe the nature of the error encoun-
tered. xv_error() then calls either a programmer-supplied function or a default function
that prints the nature of the error to stderr. Before discussing the details of these routines,
let’s first address the problem of when you need to use them and to what extent.

XView error handling is most useful during the early development of applications. If you
want to force a core dump for debugging purposes or if you want to suppress the standard
error messages from being displayed on the controlling tty’s stderr, then all you need to
do is install a general error handling routine. If you are writing your own XView packages or
wish to get detailed information about the nature of an XView error, see Section 24.4,
“Advanced Error Handling.”

First, we’ll address the specific task of how to install an error handler for an XView applica-
tion, then we’ll move on to more advanced error handling methods.

Error Recovery

Error Recovery 567

24.2 Simple Error Handling

An error handler is installed using the attribute, XV_ERROR_PROC in the call to xv_init().

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv,
XV_ERROR_PROC, my_error_proc,
NULL);

Because xv_init() is called only once, the error routine cannot be changed or uninstalled.
The routine must be installed at this time, and it remains installed for the life of the applica-
tion.

The XView error handler is called whenever xv_error() is called. That is, when there is
an internal error in XView, not if there is an X Protocol error or errors of any other kind.

The following call generates an XView error:

xv_set(NULL, PANEL_LABEL, "foo", NULL);

The reason for the error is that an invalid XView object was given to xv_set(). This may
seem like a simplistic example because no one would ever intentionally pass NULL as an
object. However, attempting to set attributes for uninitialized objects is not an uncommon
error. A more common mistake made by the novice XView programmer is forgetting to use a
NULL terminator at the end of the attribute-value list to xv_set() or xv_create(). This
is also a more subtle error that may not always generate an error due to the undefined value
of the missing parameter.*

When xv_error() is called, it in turn calls the registered error handling routine, which
takes the following form:

error_proc(object, avlist)
Xv_object object;
Attr_attribute avlist[ATTR_STANDARD_SIZE];

Since XView errors are always generated in response to an internal XView package or rou-
tine, there is always an object associated with the error. This is passed as the object
parameter. The avlist provides details about the nature of the error. Note that this is not
an attribute-value list in the form of the other attribute-value lists used throughout most of
the book. It is an array of attributes and values that have been constructed from a NULL-ter-
minated attribute-value list. See Chapter 25, XView Internals, for more details.

*A fundamental understanding of variable-argument lists shows that a missing parameter (the NULL parameter in this
case) translates into an unpredictable value, which by many coincidences may turn out to be 0.

568 XView Programming Manual

The following code fragment shows a sample error procedure that supports this interface.

error_proc(object, avlist)
Xv_object object;
Attr_avlist avlist;
{

char buf[32];

printf("%s\nDump core? ", xv_error_format(object, avlist));
fflush(stdout);
if (gets(buf) && (buf[0] == ’y’ || buf[0] == ’Y’))

abort(); /* may return if application is trapping SIGIOT */
return XV_OK;

}

24.2.0.1 Using xv_error_format()

The above procedure makes use of the routine xv_error_format(). This function
returns a pointer to a static char * describing the XView error that has occurred. It takes as
parameters an XView object and an Attr_avlist. Because xv_error_format()
returns a pointer to a static string, it should be copied into your own buffer if you wish to
retain the value since repeated calls overwrite the contents.

Since the parameters to xv_error_format() are the same as those passed to the error
function, they may be passed on to the format function without further processing. This func-
tion is useful if you don’t want to parse the Attr_avlist yourself, but still wish to print
the error message.

This is all very simple if you do not care to put a great deal of work into your error handling
routine and parse the avlist. Note that we aren’t even testing to see if the severity of the
error was recoverable or not. If an error occurs, no matter how innocent, we want to trace it
down to the offending function call.

24.3 X Error Handling

Catching errors that occur from Xlib or the X server should be done using the methods
described in Volume One, Xlib Programmer’s Manual. This section shows how you can
write your own routine that handles Xlib errors as well as errors with the server.

To register an Xlib error handler, you set an XV_X_ERROR_PROC or you may use XSetEr-
rorHandler(). Using XSetErrorHandler() allows you to register one error hand-
ling routine per application. XSetErrorHandler() overrides any existing error proce-
dures and makes it necessary to deal with all X errors (by default XView catches some X
error events). Using the attribute XV_X_ERROR_PROC in the xv_init() call allows XView
to continue to filter out some X error events (some of these error events may be not fatal
errors caused by the toolkit).

int x_error_proc();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv,

Error Recovery

Error Recovery 569

XV_X_ERROR_PROC, x_error_proc,
NULL);

If an Xlib error occurs, your routine is called with the following parameters:

int
x_error_proc(dpy, event)

Display *dpy;
XErrorEvent *event;

The routine should return XV_OK if you have handled the error to your satisfaction. In this
case, XView will ignore the error and continue on with the execution of the program. If the
routine returns XV_ERROR, then XView calls its default error handler, prints an error message
to stderr, and exits with a status of 1.

24.4 Advanced Error Handling

If you wish to examine in detail an XView error within your error handling procedure or are
implementing your own XView package, the following sections may be useful. Each section
addresses the error attributes and their associated values. Using the information described
here along with Section 25.2, “Internal Attribute-Value Lists,” in Chapter 25, XView Inter-
nals, you can construct a call to xv_error() and parse an error list passed to your error
handling function.

24.4.0.1 Error types

The header file <xview/xv_error.h> contains the definitions of the types and functions used
by the error package. These error types are used as parameters to xv_error() and from
there to your error handling routine. The following list of attributes should be used if you are
going to be calling xv_error() or if you wish to parse the Attr_avlist from the error
handling routine.

ERROR_BAD_ATTR

An attribute was specified that is not defined by XView. If the calling function for-
gets to terminate a list with a NULL, this is most likely the error value passed.

ERROR_BAD_VALUE

A bad value was provided for an attribute. This includes out of range values, and so
on. If you think the value given is correct, check its type. Passing floats when in
fact they are read as doubles may cause this problem.

ERROR_CANNOT_GET

xv_get() was used on an ungettable attribute.

ERROR_CANNOT_SET

xv_set() was used on an unsettable attribute.

ERROR_CREATE_ONLY

xv_set() was used to set an attribute that is only valid using xv_create().

570 XView Programming Manual

ERROR_INVALID_OBJECT

The object parameter to the routine is invalid. Either the object was uninitialized
or the object had been (or is in the process of being) destroyed.

ERROR_LAYER

The layer of software that detected the error. Possible error layers are the operating
system, the X server, the XView Toolkit, and the application.

ERROR_PKG

The toolkit package that detected the error.

ERROR_SERVER_ERROR

The error detected by the server; takes an XErrorEvent * as a value.

ERROR_SEVERITY

The severity of the error detected. Its value is of type Error_severity. This is
an enumerated type whose values may be ERROR_RECOVERABLE or
ERROR_NON_RECOVERABLE. Unrecoverable errors should definitely cause the pro-
gram to exit, whereas recoverable errors can cause an exit if you so desire.

ERROR_STRING

Used by the calling function to xv_error() to give a description of the error if
necessary. Trailing newlines are stripped.

24.4.1 Calling xv_error()

If you are trying to write your own XView package or add an extension to an existing pack-
age, you may need to call xv_error(). Calling it is similar to calling xv_set(); the first
parameter is a handle to an XView object followed by a NULL-terminated attribute-value list
consisting of the above attributes. It takes the form:

int
xv_error(object, attrs)

Xv_object object;

object is the object for which the offending call had taken place. If the programmer called
xv_set() on a frame object and the attributes passed were invalid, then you would call
xv_error(), passing the frame as the object and a set of ERROR_ attribute-value pairs
from the above list.

For example, the following call assumes the calling function tried to set an invalid attribute
in the FRAME package. (Note that this is only an example, since the FRAME package does not
do this.)

switch (attribute) {
case FRAME_FOREGROUND :

/* ... */
break;

case FRAME_OLD_RECT :
xv_error(frame,

ERROR_STRING, "You cannot set this attribute.",
ERROR_CANNOT_SET, attribute,
ERROR_PKG, FRAME,

Error Recovery

Error Recovery 571

NULL);
break;

/* ... */
}

As you can see, unless you are implementing the internals of an XView package,
xv_error() may be of limited use. However, this example demonstrates how
xv_error() can be called internally by XView.

24.4.1.1 Error severity

In the above example, the reason to call xv_error() is not a serious one, at least not one
that should terminate the program. By default, calling xv_error() is a recoverable error,
so in order to specify a non-recoverable error, the call to xv_error() should pass the attri-
bute, ERROR_SEVERITY, and the value ERROR_NON_RECOVERABLE. Unrecoverable errors
generally terminate using exit() with a non-zero exit status. However, abort() may be
used instead to generate a core image used for debugging.

In any event, if the error handler is called, it should print a warning message and either con-
tinue or exit accordingly. If you install your own error routine, the choice is yours. Example
24-1 in the next section, shows how the error severity can be evaluated and acted upon
accordingly.

24.4.2 Revisiting the Error Handler

Advanced usage of the ERROR package provides us with the ability to scan the attribute list in
search of the causes of the error. With this information, you can print out more useful error
messages or display them in a manner other than printing to stderr.

Recall that there are two parameters passed to the function:

error_proc(object, avlist)
Xv_object object;
Attr_avlist avlist;

object is the object in which the xv_* call failed to operate. You can get the type of ob-
ject by calling:

Xv_pkg *pkg = (Xv_pkg *)xv_get(object, XV_TYPE);

If the error itself pertains to the object, then getting the type of the object may generate
another error. You should not attempt to get the package until you test the error code in the
Attr_avlist to be sure the error is not with the object parameter. If the error is not due
to the object itself, the package returned by xv_get() indicates to which XView package
the object belongs. This value matches the same argument as the second parameter to
xv_create(). For example, the package returned may be MENU, CANVAS, PANEL_

BUTTON, SERVER, etc.

572 XView Programming Manual

The Attr_avlist may be scanned for the ERROR attributes. Example 24-1 shows how
this is done. This is a very simplistic example and is for demonstration purposes only. A
more complete example may be found in the function xv_error_format() in the XView
source code.

Example 24-1. Example error parsing function

int
my_error_handler(object, avlist)
Xv_object object;
Attr_avlist avlist;
{

Attr_avlist attrs;
Error_layer layer;
Error_severity severity = ERROR_RECOVERABLE;
int n = 0;
char strs[64][7];

for (attrs = avlist; *attrs && n < 5; attrs = attr_next(attrs)) {
switch ((int) attrs[0]) {

case ERROR_BAD_ATTR:
sprintf(strs[n++], "bad attribute %s",

attr_name(attr[1]));
break;

case ERROR_BAD_VALUE:
sprintf(strs[n++],

"bad value (0x%x) for attribute %s", attrs[1],
attr_name(attrs[2]));

break;
case ERROR_INVALID_OBJECT:

sprintf(strs[n++], "invalid object (%s)",
(char *) attrs[1]);

break;
case ERROR_STRING:

sprintf(strs[n++], "%s", (char *) attrs[1]);
break;

case ERROR_PKG:
sprintf(strs[n++], "Package: %s",

((Xv_pkg *)attrs[1])->name);
break;

case ERROR_SEVERITY:
severity = attrs[1];

}
}
strcpy(strs[n++], "Core dump?");
strs[n] = 0;
if (notice_prompt(base_frame, (Event *)NULL,

NOTICE_MESSAGE_STRINGS_ARRAY_PTR, strs,
NOTICE_BUTTON_YES, "Yes",
NOTICE_BUTTON_NO, "No",
NULL) == NOTICE_YES)

abort();
if (severity == ERROR_NON_RECOVERABLE)

exit(1);
return XV_OK;

}

Error Recovery

Error Recovery 573

This error handling routine sets a set of error messages in an array of buffers. A notice is
used to display the messages and prompt the user to generate a core image of the program for
debugging. Selecting “Yes” causes abort() to be called. The program exits if the severity
is non-recoverable, and continues otherwise.

One particular note of interest is the use of the routine attr_name(). This is a hypotheti-
cal routine that you would have to write to convert the actual enumerated attribute-values
into strings that make sense to read. If you write your own XView package with new attri-
butes, you will have to write a routine equivalent to attr_name(). The routine should
return a static char * describing the attribute. If the attribute has no corresponding string
(e.g., it is an unknown attribute), it should return a string indicating the integer or hexade-
cimal value.

574 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

25
XView Internals

This chapter discusses the internal mechanisms that XView uses to implement the existing
object classes. The information in this chapter should give you the ability to build your own
objects that are “extensible” or are extensions of other existing classes. By writing exten-
sions to XView classes, you can modify their appearance or functionality. By creating new
classes, you can create objects that go beyond what the existing XView library provides.

However, you should be forewarned that building XView extensions is not intended to be a
solution to every problem. You are strongly encouraged to implement the type of object or
enhancements you need using the facilities provided by XView and the existing XView
objects. Furthermore, this chapter should be used as an introductory resource. It does not
contain enough information to fully explain how all the internal XView objects work, nor
does it give you the ability to build an entire library of user interface objects.

If OPEN LOOK compliance is important in your applications, you should be sure that you
fully understand the OPEN LOOK specifications before attempting to build new objects or
modify existing ones. Because the XView internals do not enforce user interface policy, you
could build non-OPEN LOOK-compliant user interface code. However, the existing XView
objects were written to conform to OPEN LOOK as much as possible. While you are strongly
encouraged to examine the XView source as a model, this chapter only acts as a guide to that
model and may not address all issues involved with all XView packages.

In Chapter 2, The XView Programmer’s Model, we introduced and discussed the hierarchy of
XView objects and the use of the basic functions intrinsic to XView: xv_create(),
xv_set(), xv_get(), xv_find(), and xv_destroy(). We will now take a closer
look at how that model is utilized by XView internals.

We are going to start with a general discussion of the concepts that XView uses as a frame-
work. The methods described are intrinsic to all XView packages. After that, we examine
how attributes and their associated “values” interact with XView and its packages. Once
these issues have been addressed, we illustrate how to write your own XView packages and
extensions using these concepts.

The Logo package is a simple package that displays an X logo in the middle of a window.
The Bitmap package is similar, but it allows the programmer to display an arbitrary bitmap in
a window. The Image package is used to demonstrate how to write an extension to an exist-
ing XView package. In this case, it is an extension from the server image package found in

XView
 Internals

XView Internals 579

Chapter 15, Nonvisual Objects. Finally, the Wizzy package shows how to write a panel item
extension. Note that the PANEL package provides several special attributes that should only
be used by panel item extension writers.

25.1 Methods

The intrinsics layer of XView is the mechanism that defines and controls the class inheri-
tance model; in other words, it establishes parent/child relationships among XView classes.
The XView intrinsics handle the creation, modification, query, and destruction of actual
instances of object classes. Each object class contains a method (as it is called in object-ori-
ented programming terminology) to respond to any XView-intrinsic request. A method is a
function that is written and compiled into the executable program to perform the designated
task.

For example, when the programmer calls xv_create() to create an instance of a particular
class, the XView intrinsics invokes the initialize method from that class. For xv_set(), it
invokes the set method, and so on. The XView intrinsics define the methods while the actual
classes provide the functions that perform them.

Each class is represented programmatically by declaring a data structure consisting of point-
ers to functions that correspond to each of the methods. When the programmer calls
xv_get(), the intrinsics de-reference the pointer to the get method and call it as a function.

25.1.0.1 Static subclassing

You recall from Chapter 2, The XView Programmer’s Model, that XView classes are sub-
classed from one another starting from the generic class. This class contains basic informa-
tion about the object such as its x,y position, its geometry specification, its reference count
(how many other objects refer to it in some way), what server and display the object is asso-
ciated with and so on. Most classes share this information and are therefore subclassed from
the generic class.

From the generic class, new subclasses are created to describe more specifics about that par-
ticular class’s appearance, functionality, or other attributes. Subclassing causes each new
class to inherit everything from its parent class, so the child class does not need to be rede-
fined or reinitialized. New subclasses define their own methods so that the intrinsics can uti-
lize the parts of new classes that differentiate them from their parent classes. When the pro-
grammer calls xv_create() to create an instance from a particular class, the intrinsics call
the initialize method for each subclass in the hierarchy in succession.

To implement this using the C language, each class is physically defined by a data structure
that contains pointers to functions previously written for that class. All this information must
be compiled into the XView library (or at least linked with the rest of the object modules at

580 XView Programming Manual

compile time). Because the functions and data structures are pre-written, the subclasses are
static—they cannot be changed during the execution of the program.* In sum, XView uses
static subclassing.

25.1.1 Order of Methods

As discussed in Chapter 2, The XView Programmer’s Model, whenever an object is created,
the XView intrinsics initialize each class from top to bottom. Thus, the generic class is first
instantiated by calling its initialize method, followed by the next subclass, all the way down
until the class of the type requested is instantiated. When completed, an instance of the class
has been created with all the default properties of the classes set.

However, the initialization sequence does not stop there. As Figure 25-1 shows, the initiali-
zation sequence consists of three phases.

set

Init
xv_create()

(end of init)

Get Destroy Find

Figure 25-1. Calling order for init, set, get, destroy, and find

After the initialization methods are called for each of the packages, XView calls the set
methods to handle any attribute-value pairs specified in the programmer’s call to xv_
create(). This is done even if there were no attributes specified. This phase is executed
in the reverse order of the initialize method, moving from the bottom up.

The final phase of the initialization sequence calls the set function again, but in the original
order (e.g., from the top down). Here, the set method is called with only one attribute,
XV_END_CREATE. This is the only time that the set method is called from the top down. This
final phase indicates that the creation phase is over and that the class should resolve any un-
finished work. Prior to this point, be careful not to use xv_set() on the object being creat-
ed. During this final phase, you may use xv_set() on the object being created. Each
phase of this operation is discussed in more detail in later sections.

*Limitations of the C language prevent the ability to do dynamic subclassing.

XView
 Internals

XView Internals 581

25.2 Internal Attribute-value Lists

Each of the methods introduced above (with the exception of the destroy method) must deal
with attributes and attribute-value lists. Before we begin to discuss the details of how the
methods work, the fundamentals of attributes must be understood. This includes the nature
of attributes, how their internal values are constructed, the nature of the values associated
with attributes, package IDs, and so on.

25.2.1 Attribute Values

The semantics of the term value can be confusing. There are two values that are used when
referring to attributes. The type most commonly used is the value associated with the attri-
bute. That is, “brown” is the value associated with the attribute PANEL_ITEM_COLOR. How-
ever, PANEL_ITEM_COLOR is declared as an enumerated type that has a “value” just as C vari-
ables have values.

The value of an attribute variable contains information about the type of attribute it is, the
package it belongs to, how many “value” parameters are associated with it, and the types of
those “values.” This is all accomplished by setting particular bits within segments of the
32-bit data type, Attr_attribute.

The breakdown of the bits in the attribute is shown in Figure 25-2.

(package ID)

Attr_attribute

(Ordinal Value) (Type of Attribute)

0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Figure 25-2. The bits in an attribute

All this is done via macros defined in <xview/attrs.h> along with a complete listing of all the
different types of attributes that may be used.

Let’s examine a real attribute, XV_RECT. This attribute can be used to set or get the bounding
box of an XView object (e.g., x and y, width and height). The attribute is declared in
<xview/generic.h> as:

XV_RECT = XV_ATTR(ATTR_RECT_PTR, 74)

582 XView Programming Manual

The value of XV_RECT expands to a long value set by the macros XV_ATTR and
ATTR_RECT_PTR. These are macros whose values are used as masks that can identify the at-
tribute later. The value of 74 is a unique number with respect to the other attributes in the
package.

Thus, when the internals of an XView procedure want to determine the value of XV_RECT,
they know that the “value” that the programmer specified must be a Rect *. Furthermore,
it is known that xv_get() should return the same type. This loose type-checking is by no
means enforced. It is used for various reasons, including the ability of the programmer to
identify the type of value a particular attribute should take.

The attribute’s “type” is also used to determine how many programmer-supplied “values” are
associated with it. For example, the attribute PANEL_CHOICE_STRINGS indicates that the
value associated with it is a NULL-terminated list of char pointers. We can check this by
looking at the value of the attribute in <xview/panel.h>:

PANEL_CHOICE_STRINGS =
PANEL_ATTR(ATTR_LIST_INLINE(ATTR_NULL, ATTR_STRING), 22)

Here, the use of PANEL_ATTR shows that the attribute is part of the PANEL package. The
macro ATTR_LIST_INLINE shows that the value associated with the attribute is a NULL-
terminated list. The macro ATTR_STRING shows that it is a list of strings or char pointers.

The list of possible types of attributes is in <xview/attr.h>.

25.2.2 Creating Attribute Lists

When functions that take attribute-value lists are called, XView internally converts the entire
list into an array of Attr_attribute values. The size of the array cannot exceed
ATTR_STANDARD_SIZE. This array of attributes and values is assigned the type,
Attr_avlist.

The array is created and the actual variable argument list of attributes and values is stored in
the array using the function attr_create_list().

Any function whose interface is called with a variable argument list has a corresponding (in-
ternal) function that takes the Attr_avlist parameter rather than the variable argument
list. This is due to the fact that variable argument lists cannot be passed to subsequent func-
tions reliably. XView overcomes this problem by converting the entire list of attributes and
values into the Attr_attribute array and passing it around to functions.

25.2.2.1 Attribute lists within attribute lists

Sometimes, the same attribute-value list is used in multiple calls to xv_create() or
xv_set(). Specifying the same list all the time is wasteful since it requires the same pro-
cessing for each call. In order to optimize and simplify this problem, XView provides an in-
terface for both the XView programmer and the package implementor by introducing the at-
tribute, ATTR_LIST.

XView
 Internals

XView Internals 583

The value to the ATTR_LIST attribute is an Attr_avlist, the same type returned by
attr_create_list(). The following code fragment shows how this can be used:

...
Canvas canvas1, canvas2, canvas3;
Attr_avlist attr_list;

attr_list = attr_create_list(
WIN_CMS, cms,
WIN_EVENT_PROC, my_event_proc,
XV_WIDTH, 100,
NULL);

canvas1 = xv_create(frame, CANVAS,
ATTR_LIST, attr_list,
WIN_BACKGROUND_COLOR, 1,
NULL);

canvas2 = xv_create(frame, CANVAS,
ATTR_LIST, attr_list,
WIN_BACKGROUND_COLOR, 2,
NULL);

canvas3 = xv_create(frame, CANVAS,
ATTR_LIST, attr_list,
WIN_BACKGROUND_COLOR, 3,
NULL);

free(attr_list);
...

The only restriction on the use of ATTR_LIST is that it must be the first attribute specified in
the call to xv_create(), xv_set() or any other xv_* routine that accepts attribute-val-
ue lists. Be sure that ATTR_LIST is the first attribute specified when you use it. There are
cases when ATTR_LIST may appear to be the first attribute specified, but it is actually not the
first attribute. This occurs when you use a macro. For panels, the following are macros:
PANEL_CHOICE_STACK, PANEL_CHECK_BOX, and PANEL_TOGGLE. These macros expand to
PANEL_CHOICE objects with several associated attributes that will not be visible. These attri-
butes displace ATTR_LIST as the first attribute. These and similar cases should be avoided if
you use ATTR_LIST.

Lastly, since attr_create_list() allocates memory, the list should be freed when it is
no longer needed.

25.2.3 Interpreting Attributes

When a routine is passed an Attr_avlist, it needs to scan the list looking for attributes of
interest. The function may not be interested in all the attributes, so when scanning the list, it
needs to skip ahead to successive attributes for evaluation. To facilitate this task, XView
provides the macro attr_next() to make scanning Attr_avlist easier. This macro
looks at a particular attribute and, by the nature of the attribute itself, knows how many items
to scan ahead for the next one. The macro returns a pointer to that next attribute.

584 XView Programming Manual

The first thing to do when scanning the Attr_avlist is to set a pointer to the beginning of
the list and then advance forward until you reach the NULL attribute indicating the end of the
attribute-value pairs.

function(param1, param2, avlist)
Xv_opaque param1;
Xv_opaque param2;
Attr_avlist avlist;
{

Attr_avlist attrs;
for (attrs = avlist; attrs[0]; attrs = attr_next(attrs)) {

switch ((int) attrs[0]) {
...

}
}
...

}

The for() loop initializes the attrs variable to the beginning of the list and tests for the
NULL attribute. Upon each iteration of the loop, the variable is set to the next attribute in the
list. For this to work, attrs should never be moved in either direction in the list. To look at
the value of a particular index into the attribute list, you should index that position relative to
the current value of attrs. This is precisely what is done in the switch() statement
within the loop.

attr_next() looks at the “type” of the attribute to determine how many, if any, value
parameters are associated with the attribute. For attributes that take lists such as PAN-

EL_CHOICE_STRINGS, it knows to look ahead for the next NULL-valued index in the array.
This is why lists may not contain the value NULL or 0 as elements in the list. Once a NULL or
0 is found, attr_next() returns the element following the terminating NULL.*

The switch looks at index 0 of the attrs pointer for the attribute to evaluate. Each case
in the switch statement handles the value that pertains specifically to the package in ques-
tion. For example, the set routine for the CANVAS package has the following code fragment:

Attr_avlist attr;
for (attr = avlist; attr[0]; attr = attr_next(avlist)) {

switch ((int) attr[0]) {
case CANVAS_WIDTH:

if (canvas->width != (int) attr[1]) {
width = (int) attr[1];
new_paint_size = TRUE;

}
break;

case CANVAS_HEIGHT:
if (canvas->height != (int) attr[1]) {

height = (int) attr[1];
new_paint_size = TRUE;

}
break;

*For portability reasons, NULL should always be used rather than 0 to terminate a list.

XView
 Internals

XView Internals 585

/* */
default:

*status = xv_check_bad_attr(&xv_canvas_pkg, attr);
}

}

For each attribute, the case statement knows what to interpret as the value parameter in the
attribute list. The CANVAS_WIDTH case sets the width variable to the value set in attr[1]
and assumes it is an int.

25.2.4 Checking for Bad Attributes

When the attribute being evaluated in the switch statement falls to the default case, there
may or may not be something wrong with the attribute. Since the switch statement should
have had a case for all the known attributes to the package, it is assumed that the attribute
that had fallen through probably belongs to another package.

To check for this, the function xv_check_bad_attr() is used. The form of the function
is:

int
xv_check_bad_attr(pkg, attr)

Xv_pkg *pkg;
Attr_attribute attr;

The function checks to see if the attribute in the second parameter belongs to the package
specified in the first parameter. If the attribute does belong to the package, then an error mes-
sage is printed and the function returns XV_OK. Otherwise, the function does nothing and re-
turns XV_ERROR. Yes, this is counter-intuitive, but this value is utilized more appropriately
by the get method. Details are discussed in Section 25.8.3, “The Bitmap Get Method.”

An unknown attribute does not indicate that an error has been made. Remember that pack-
ages can be subclassed from other packages, so an attribute may apply to another level of the
class hierarchy and will be dealt with at another time by another function.

25.2.4.1 Searching for specific attributes

Rather than scanning the entire Attr_avlist looking for one particular attribute, XView
provides the convenience function, attr_find(). This function takes an Attr_avlist
and an Attr_attribute as parameters and returns the location within the list where the
attribute was found.

586 XView Programming Manual

Here is its implementation:

Attr_avlist
attr_find(attrs, attr)
register Attr_avlist attrs;
register Attr_attribute attr;
{

for (; *attrs; attrs = attr_next(attrs)) {
if (*attrs == (Xv_opaque) attr)

break;
}
return (attrs);

}

25.2.5 Consuming Attributes

Once an attribute has been evaluated, it should be consumed so that no other functions may
see it. Consuming attributes should not be done if multiple packages (or functions) care to
examine the same attribute. The attr_skip() macro knows to skip over attributes (and
their associated values) that have been consumed.

Attribute consumption is done with the ATTR_CONSUME() macro.*

25.3 Customizable Attributes

New attributes that are introduced when you create extensions to XView can be made cus-
tomizable, via the X resource database, with the function xv_add_custom_attrs().
The format of xv_add_custom_attrs() is:

void
xv_add_custom_attrs(pkg, va_alist)

Xv_pkg *pkg;
va_dcli va_alist; /* var args list */

The argument pkg is the XView package to which the customizable attributes belong.
va_alist is a NULL-terminated list of pairs using the following format:

<customizable attribute, attribute resource name>

*While the pre-built XView packages should consume attributes, few of them actually do. This will change in later
releases of XView.

XView
 Internals

XView Internals 587

The type of “customizable attribute” is Attr_attribute. The type of attribute resource
name is char*. For example,

xv_add_custom_attrs(pkg,
<attribute1, attribute1 resource name>,
<attribute2, attribute2 resource name>,
<attribute3, attribute3 resource name>,
<attribute4, attribute4 resource name>,
...
NULL);

The attribute resource name is used to construct the key for database lookup when the attri-
bute is used with XV_USE_DB.

xv_add_custom_attrs() must be called before any of the customizable attributes are
used. A good place to call xv_add_custom_attrs() would be immediately following
xv_init().

For example, you can use xv_add_custom_attrs() to make attributes customizable for
the package extension called LOGO (see Section 25.5, “The Logo Package,” in this chapter.)
Make the new attributes LOGO_WIDTH and LOGO_HEIGHT customizable with the following
call:

xv_add_custom_attrs(LOGO,
LOGO_WIDTH, "logo_width",
LOGO_HEIGHT, "logo_height",
NULL);

The attributes LOGO_WIDTH and LOGO_HEIGHT can then be customized as in the following
example:

logo = xv_create(owner, LOGO,
XV_USE_DB

LOGO_HEIGHT, 300,
LOGO_WIDTH, 250,
NULL,

...
NULL);

The resource names constructed for database lookup for LOGO_HEIGHT and LOGO_WIDTH will
be:

CONCAT_INSTANCE_NAME.logo_height
CONCAT_INSTANCE_NAME.logo_width

where CONCAT_INSTANCE_NAME is the concatenation of instance names of all objects in the
current object’s lineage.

If such entries did exist in the X resource database, then their values will be used for
LOGO_HEIGHT and LOGO_WIDTH. Otherwise, LOGO_HEIGHT will default to 300, and
LOGO_WIDTH to 250.

Currently, support for customizable attributes is provided only for attributes of type long,
int, boolean, char, and string (char *). See Section 22.3, “Object Layout and Cus-
tomization,” in Chapter 22, Internationalization , for more details on customizable attributes.

588 XView Programming Manual

25.4 XView Packages

Earlier, we introduced the concept of XView methods and how they are used to define the in-
teraction between a particular class and the XView intrinsics. These methods, along with a
set of attributes, macros, types, and functions, collectively make up an XView package. The
XView library is made up of statically subclassed (pre-built) packages representing user in-
terface objects.

25.4.1 The Xv_pkg Type

Packages (and thus, classes) are declared by creating a global variable of type Xv_pkg. This
package is defined in <xview/pkg_public.h> as:

typedef struct _xview_pkg {
char *name;
Attr_attribute attr_id;
unsigned size_of_object;
struct _xview_pkg *parent_pkg;
int (*init)();
Xv_opaque (*set)();
Xv_opaque (*get)();
int (*destroy)();
Xv_object (*find)();

} Xv_pkg;

The fields of the Xv_pkg type are declared and used as follows:

name The name of the package is a unique, descriptive string. This is useful
for debugging the ERROR package, and it may also be used in the fu-
ture to implement resource handling from the resource database.
Therefore, it should not contain whitespace or dots (periods). Under-
scores and hyphens are allowed, but should be avoided for aesthetic
reasons. A combination of uppercase and lowercase letters should be
used to imply multi-word names (e.g., “DigitalClock”).

attr_id This is the ID of the package. It is set to a unique number and is used
in attributes’ values to associate them with the corresponding pack-
age. For XView extensions (packages you write), the value should lie
between the value for ATTR_PKG_UNUSED_FIRST and the value for
ATTR_PKG_UNUSED_LAST.

size_of_object This is the size of the public part of the object. XView objects are
broken down into a public part and a private part. XView is responsi-
ble for allocating the public part, while the initialize method is re-
sponsible for allocating the private part. The value of the
size_of_object field is used by the XView intrinsics to know
how much space to allocate when creating a new instance of the pub-
lic part from this class.

parent_pkg This is a pointer to package’s parent (the package above the object in
the object hierarchy).

XView
 Internals

XView Internals 589

init This is the initialize method for the package. It is a pointer to a func-
tion that returns an error status (XV_OK or XV_ERROR) depending on
whether the initialization process was successful in creating an in-
stance of the object.

set This is the set method. This is a pointer to a function that is called
when the programmer calls xv_set(). The function typically re-
turns an error status (XV_OK or XV_ERROR) but may return an opaque
data type if it chooses.

get This is the get method. This is a pointer to a function that is called
when the programmer calls xv_get(). The function returns the val-
ue of the attribute specified in the call to xv_get(). A status value
may be set indicating an error.

destroy This is the destroy method; it is a pointer to a function that is called
when the object is destroyed via xv_destroy() or when the win-
dow manager invokes it in a “save yourself” operation (discussed lat-
er). When an object is being destroyed, the function frees any allocat-
ed fields of the private data structure. The function returns either
XV_OK or XV_ERROR.

find The find method is a pointer to a function that returns a handle to an
existing instance of the package specified to xv_find(). If no in-
stances of the package with the specified attributes can be found,
NULL is returned and XView may call the initialize routine depending
on the value of XV_AUTO_CREATE.

Details about the form of the functions listed above are given later in Section 25.5.2, “The
Implementation File.”

25.4.2 Public and Private Data

In XView, the object that is made available to the programmer writing XView applications is
a public data type defined in the public header file for the package. The only information this
type contains is a handle to two data types: the object’s parent-data type and the private data.
The public data type is what xv_create() returns to the user. Its nature will become clear
in the sample XView package we create later.

The parent data is the public data type of the parent package (the superclass). The private
data type is used by the implementation of the XView class. In it, there is a pointer to an ob-
ject that contains specific information about the object itself. This may include a window,
boolean variables, other data structures, and so on. It also contains a pointer back to the pub-
lic data type.

The initialize routine allocates and initializes the fields within the private data type. The ini-
tialize routine is also responsible for setting the handles of the public and private data types
to one another. Once this double-linking occurs, an instance of the class is complete and the
XView intrinsics return a handle to the public type. This is discussed in detail later in Sec-
tion 25.5.4, “The Initialize Method.”

590 XView Programming Manual

25.5 The Logo Package

This section presents an implementation for a simple package utilizing the concepts intro-
duced so far. This example may help explain some of the more confusing concepts for those
still unsure of the material presented.

The example package is called logo. All this object does is draw the X logo in the middle of
a window. To do this, we require a window, the Pixmap containing the X logo, and a GC to
specify the colors to use when rendering the pixmap. Creating a window is a very compli-
cated task; there’s so much to worry about with colormaps, visuals, displays, and screens.
Since the XView WINDOW package already handles this, the logo class is subclassed from it to
take advantage of the WINDOW package’s capabilities. That package can handle all the win-
dow-related details without intervention from the logo package. More generic attributes such
as the geometry and position of the object are handled by the GENERIC package.

The only thing the logo package needs to concern itself with is providing the data for the bit-
map showing the X logo. Once we have that, all we need to do is render it to the window
when repaint or Expose events take place.

25.5.1 Header Files

Packages usually contain two header files (or include files): one that is included by applica-
tions that intend to use the package, and another that is included by the source code that im-
plements the package itself.

25.5.1.1 The public header file

The file logo.h is the public header file for the logo package.

/* logo.h -- public header file for the logo XView class. */
#include <xview/xview.h>
#include <xview/window.h>

extern Xv_pkg logo_pkg;

#define LOGO &logo_pkg

typedef Xv_opaque Logo;

typedef struct {
Xv_window_struct parent_data;
Xv_opaque private_data;

} Logo_public;

Since the logo package is subclassed from the WINDOW package, we must include <xview/win-
dow.h>. We can’t include that file unless we include <xview/xview.h> first. You’ll find that
most packages include at least the basic XView header files.

Next, we declare the logo_pkg object as an external variable of type Xv_pkg *. This is a
global variable that we must declare later in the implementation source file where the private
data is declared. The LOGO definition refers to the address of this global variable. The Logo

XView
 Internals

XView Internals 591

type is a typedef of Xv_opaque. This is basically a convenience type for the benefit of the
programmer and follows the style of the other XView packages.

With the #define of LOGO and the declaration of the Logo type, the necessary types are
available to make it possible for the programmer to create an instance of the logo object:

Logo logo;

logo = xv_create(parent, LOGO, NULL);

For the simple logo package, this is all that is necessary to declare in the public header file.
There are no attributes specific to the logo package. Had we wanted to provide attributes,
their declarations would be here in the public header file. We’ll add attributes to the logo
package later in the chapter.

The parent parameter in the call to xv_create() for a logo object must be a Frame be-
cause the logo is subclassed from the WINDOW package. This is because the FRAME package is
the only one that manages subwindow layout.

Finally, the last thing declared in the public header file is the public data type, Logo_
public. This is the actual object returned by xv_create(). Since the programmer has
no need to reference fields in this data type, an opaque data type is sufficient. Therefore, the
programmer uses the Logo type.

The Logo_public structure has the two fields discussed earlier: a handle to the parent ob-
ject and a pointer to the private data. The parent handle is a public data type similar to the
logo’s public data type. In this case, the public data type for the parent object is Xv_
window_struct. We use the real data type for this rather than the opaque type, Xv_
Window, because XView needs to reference internal fields within it.

The private_data field is a pointer to the actual data structure used by the internals of
the logo object. But in the spirit of true object-oriented programming, this type is hidden
from the programmer by declaring it to be Xv_opaque.

25.5.1.2 The private header file

The primary purpose of the private header file is to declare the private data structure men-
tioned above. This file is named with the _impl.h suffix implying that it is used by the code
that implements the logo object methods. Here is the logo_impl.h file for the logo package:

/* logo_impl.h -- implementation-dependent header file for the
* logo XView class.
*/
#include "logo.h"

typedef struct {
Xv_object public_self; /* pointer back to self */
GC gc; /* GC to render logo */
Pixmap bitmap; /* xlogo bitmap */

} Logo_private;

#define LOGO_PUBLIC(item) XV_PUBLIC(item)
#define LOGO_PRIVATE(item) XV_PRIVATE(Logo_private, Logo_public, item)

592 XView Programming Manual

The public header file is always included in the private header file since it has all the neces-
sary declarations specific to the package and it includes other header files that may be need-
ed.

The private logo structure is declared next. The first field in all private data structures is a
handle back to the public data structure. Again, when the initialize routine for the package is
called, an instance of the private data type is allocated and its public_self field is set to
the public data type passed. This is shown in Section 25.5.4, “The Initialize Method.”

The rest of the fields in the private data structure are those that are specific to the aspects of
the logo package that vary from instance to instance. This includes a handle to a Pixmap
(which is the X logo bitmap) and a GC. When multiple instances of the object are created,
each instance uses a discrete pixmap and GC since each instance of the class may have differ-
ent window attributes. That is, the programmer may create a logo on a color window and an-
other logo for a monochrome window.

A general rule of thumb is that there should be few, if any, global variables in the implemen-
tation of a package. These variables should almost always be declared as fields within the
private data type. Therefore, all variables that are needed by the package and that may have
different values depending on the instance are declared as fields within the logo’s private
data structure.

The last two lines of the private header file are:

#define LOGO_PUBLIC(item) XV_PUBLIC(item)
#define LOGO_PRIVATE(item) \

XV_PRIVATE(Logo_private, Logo_public, item)

These macros are used to facilitate the task of cross referencing to and from the public and
private data types. Because these types are declared as Xv_opaque, typecasting is neces-
sary to coerce the type into a data type needed. They utilize the two XView macros,
XV_PUBLIC and XV_PRIVATE. These macros are defined in <xview/pkg.h> as:

#define XV_PRIVATE(private_type, public_type, obj) \
((private_type *)((public_type *) (obj))->private_data)

#define XV_PUBLIC(obj) ((obj)->public_self)

These macros are used frequently in source files that implement an XView package.

25.5.2 The Implementation File

The next task is to declare the logo package and to implement all the methods. This may be
done in one or more source files. For maintenance, it is much easier to declare as much as
possible in one file and declare all functions as static. This is to insure that the functions
used by the package are used only by the package. However, in the event that more than one
file is used to contain all the functions necessary to implement a package, it is impossible to
restrict the scope of a function in this manner. XView, therefore, introduces two reserved
types that can be used to declare functions for either internal (private) use or public use.

XView
 Internals

XView Internals 593

The types Xv_public and Xv_private are both defined to be extern to indicate that
they may be called from outside of the files they are declared in. However, the meaning of
these types indicates the intended use of the function. Programmers should never call “pri-
vate” functions, whereas they are allowed to call the public ones. It is assumed that the pri-
vate functions are those that aid in the implementation of the package. Again, functions
should be declared as static whenever possible.

25.5.3 The Package Declaration

A package is declared by initializing a global variable of type Xv_pkg. All the fields of the
data structure are initialized to identify the package. The logo package is declared by creat-
ing a logo_pkg variable of this type.*

Xv_pkg logo_pkg = {
"Logo", /* package name */
ATTR_PKG_UNUSED_FIRST, /* package ID */
sizeof(Logo_public), /* size of the public struct */
WINDOW, /* subclassed from the WINDOW package */
logo_init,
logo_set,
logo_get,
logo_destroy,
NULL /* disable the use of xv_find() */

};

The package ID is set to ATTR_PKG_UNUSED_FIRST because it is assumed that this is the first
unused package in the XView library. In short, a package ID only needs to be distinct from
the IDs of parent and child packages. While this is the only requirement imposed by XView,
it is still recommended that all packages have unique package IDs. The value of the package
ID must fall within the range ATTR_PKG_UNUSED_FIRST through ATTR_PKG_UNUSED_LAST.

The size_of_public field of the logo_pkg is set to the size of the public structure us-
ing the C macro sizeof(). The XView intrinsics initialize the public structure before cal-
ling the initialize method by allocating the number of bytes set by this field.

The parent package from which the logo package is subclassed is set in the parent_pkg
field. This field is initialized to the WINDOW package. You may recall that this is a macro that
refers to the address of the WINDOW package’s global variable: xv_window_pkg (implying
that the two are interchangeable).

The rest of the fields in the logo_pkg structure are initialized to the pointers to the appro-
priate functions. Notice, however, that the find method is disabled by having its field initial-
ized to NULL. Any routine that does not apply to a particular package may be set to NULL;
XView will not try to invoke NULL methods.

*This declaration may be done in the file that contains the package implementation. However, for systems with
shared libraries, it is advantageous to put this variable declaration and initialization in a file by itself so that the com-
piler can link it in with the shared libraries. You should consult your compiler and operating system documents for
instructions on how to create shared libraries.

594 XView Programming Manual

The xv_find() routine is unset for the logo package because it doesn’t make sense to be
able to reuse an instance of a logo object. That is, because the logo package is subclassed
from the WINDOW package, it is impossible to render a window in more than one place on the
screen at a time. It is only possible to create multiple instances of this type of object even
though the package may display the same logo image.*

This is contrary to the way the font package works, for example. Fonts can be rendered any-
where and they do not contain windows, so referencing the same font instance is reasonable.
However, the scope of availability for fonts is restricted to each server. Not all fonts may ex-
ist on all servers, and even if they do, they do not share the same XIDs. Thus, you cannot
render a string using a font in a window that resides on a server other than the server from
which the font was obtained.

The find method is discussed in detail in Section 25.9, “The Find Method,” later in this chap-
ter.

25.5.4 The Initialize Method

The initialize method is responsible for allocating an instance of the private_data struc-
ture and linking the private and public structures together. Once the public and private struc-
tures have been initialized and linked, an instance of the class has been created. However, it
is incomplete because none of the attributes of the class have been set in the new instance.
This may be done in the initialize routine and in the set routine, called later.

The function takes the following form:

int
init_func(owner, package_public, avlist)

Xv_opaque owner;
Xv_opaque *package_public;
Attr_avlist avlist;

The owner parameter is the object passed as the owner to the call to xv_create. It is de-
clared as Xv_opaque here because its actual type varies from package to package. How-
ever, the type of the owner is also a public data type. For the logo package, the owner is a
Frame since frames are used to manage subwindow layout (and the logo package is sub-
classed from the WINDOW package).

The package_public parameter is a pointer to the public data type declared in the public
header file. For the logo package, this type is Logo_public. The XView intrinsics have
allocated this data type before calling the routine.

The avlist parameter contains the attribute-value pairs specified in the call to xv_
create(). These may or may not be evaluated from within the initialize routine depending
on the nature of the attribute. We’ll get to this in a moment.

*It is possible to share the same logo image, if not the entire logo object. This can be accomplished using the Bitmap
package discussed next.

XView
 Internals

XView Internals 595

The function returns XV_OK or XV_ERROR depending on whether it was successful allocating
and initializing the necessary resources. If there is an error of any kind that should prevent
the object from being instantiated, all allocated resources should be freed and the function
should return XV_ERROR. If there is an error during any phase of the initialize method,
XView calls the destroy method for each package (except for the package whose initialize
routine actually returned XV_ERROR). The op parameter passed has the value DESTROY_

CLEANUP. See Section 25.5.7, “The Destroy Method,” for details.

The following is a listing of the initialize function for the logo package:

static int
logo_init(owner, logo_public, avlist)
Xv_opaque owner;
Logo_public *logo_public;
Attr_avlist avlist; /* ignored here */
{

Logo_private *logo_private = xv_alloc(Logo_private);
Display *dpy;
Window win;

if (!logo_private)
return XV_ERROR;

dpy = (Display *)xv_get(owner, XV_DISPLAY);
win = (Window)xv_get(logo_public, XV_XID);

/* link the public to the private and vice-versa */
logo_public->private_data = (Xv_opaque)logo_private;
logo_private->public_self = (Xv_opaque)logo_public;
/* create the 1-bit deep pixmap of the X logo */
if ((logo_private->bitmap = XCreatePixmapFromBitmapData(dpy, win,

xlogo32_bits, xlogo32_width, xlogo32_height,
1, 0, 1)) == NULL) {
free(logo_private);
return XV_ERROR;

}
/* set up event handlers to get resize and repaint events */
xv_set(logo_public,

WIN_NOTIFY_SAFE_EVENT_PROC, logo_redraw,
WIN_NOTIFY_IMMEDIATE_EVENT_PROC, logo_redraw,
NULL);

return XV_OK;
}

The first thing this function does is allocate the private data structure for the logo object us-
ing the xv_alloc() macro. This macro is defined to be:

#define xv_alloc(t) ((t *)xv_calloc((unsigned)1, (unsigned)sizeof(t)))

Because xv_calloc() is used, the entire private data structure is allocated and all the
fields are initialized to NULL or 0 (thus the analogy to calloc()). The fields of the logo
data structure that must be initialized are the bitmap and the GC.

The bitmap is the X logo, a Pixmap created by XCreatePixmapFromBitmapData().
In order to create the pixmap, XCreatePixmapFromBitmapData() requires a pointer
to the Display and an X window, both of which can be obtained from the window part of

596 XView Programming Manual

the logo object. Since the initialize phase of XView initializes classes from the generic pack-
age down through subclasses, we know the logo’s parent (the WINDOW package) has already
been initialized and we can use its XID.

While we have initialized the logo’s pixmap to use, we cannot initialize the GC for the logo
because we do not know the ultimate foreground and background colors of the window.
These pixel values are extracted from the window’s colormap segment, and although the
window for the logo has been created and initialized, its cms has not been assigned yet. This
is not done until the window’s set routine is called. Since the WINDOW package does not eval-
uate the WIN_CMS attribute in its initialize routine, the logo package cannot attempt to read it
from the logo package’s initialize routine. This must be done later, after the WINDOW pack-
age’s set routine has had a chance to set the window’s cms.

Providing a practical example, consider the following code fragment:

cms = xv_create(NULL, CMS,
CMS_SIZE, 2,
CMS_NAMED_COLORS, "blue", "red", NULL,
NULL);

logo = xv_create(frame, LOGO,
WIN_CMS, cms,
NULL);

Here, the programmer intended the logo to be rendered in red with a blue background. This
is accomplished by creating a colormap segment with two colors: blue and red. During the
initialization phase of object creation, the WINDOW package creates its window, but only as-
signs a default colormap segment. It is only during the set phase that the window is assigned
the colormap segment from the WIN_CMS attribute. Since the set phase is done in reverse or-
der (e.g., the logo’s set routine is called before its parent’s set routine), the logo package can-
not query its window’s colors until later. The only opportunity for the logo package to get
the window’s colors is during the extra call to the set routine in which XV_END_CREATE is
passed. The set routine in this case is called in ascending order (top down) and the logo can
now query its window’s colormap segment.

It is true that if the programmer specifies attribute-value pairs in the call to xv_create(),
those pairs are passed to the initialize function in the avlist parameter. However, since the
logo package has no attributes of its own for the user to specify, the avlist is ignored in
favor of allowing the other packages to deal with attributes. While we could have looked in
this attribute list for a WIN_CMS attribute and captured the pixel values from it, a parent pack-
age can override or change its mind about which attributes it actually decides to use. Al-
though this may be unlikely, the XView design allows for it to happen and, therefore, XView
packages should be written with this possibility in mind.

A general rule of thumb is that packages should not test for attributes from other packages
through the avlist. Instead, the preferred method is to use xv_get() to allow the pack-
age that is responsible for the attribute to return whatever value it deems appropriate. Note
that this is not always true—there are some cases where packages not only look for attributes
that don’t belong to them, but they override them. The PANEL package, for example, does not
allow the programmer to change the foreground and background colors on its window by in-
tercepting or modifying certain color-related attributes. The PANEL package does this in or-
der to prevent the programmer from violating OPEN LOOK.

XView
 Internals

XView Internals 597

On the other hand, let’s suppose we wanted to restrict the colors used by the logo window to
black and white. In this case, we would want to override the WIN_CMS specification if the
programmer provided one. We would do this by consuming the WIN_CMS attribute (and
presumably the WIN_CMS_NAME attribute) from the avlist using the ATTR_CONSUME()
macro (see Section 25.2.5, “Consuming Attributes”). The attribute may be consumed here in
the initialize routine or later in the set routine. If the WINDOW package chose to consume
these attributes, it could have done so before we got to them. However, by consuming them
in the logo’s initialize routine, we can prevent the WINDOW package from consuming them in
its set routine called later. If an attribute that is consumed is just done to prevent another
package from evaluating it, chances are that this attribute should not have been set by the
programmer. In such a case, a warning should be dispatched via xv_error().

Finally, the last thing done in logo_initialize() is setting the event handlers for the
window. This is not intended to track events generated by the user, but to track
WIN_REPAINT (Expose) and WIN_RESIZE (ConfigureNotify) events for the logo’s
window. This is done to determine when and where the logo should be drawn.

The method used to track these events is by using the specified attributes:

xv_set(logo_public,
WIN_NOTIFY_SAFE_EVENT_PROC, logo_redraw,
WIN_NOTIFY_IMMEDIATE_EVENT_PROC, logo_redraw,
NULL);

These are private attributes (e.g., not for general programmer use) from the WINDOW package
specifically for the purpose of having the internals of XView packages be able to specify
event handlers that do not conflict with or get overridden by the programmer. The program-
mer, as you may recall, uses the attribute, WIN_EVENT_PROC to handle events destined for the
window. In fact, this attribute will continue to work as expected despite the use of the
WIN_NOTIFY_* attributes listed above.

These two private attributes are similar to the Notifier’s notify_set_event_func()
function. The programmer can interpose on the logo’s event function just as described in
Chapter 20, The Notifier, as usual. In this case, the programmer’s interposing functions are
called ahead of the logo_redraw() function (by design).

25.5.4.1 The logo_redraw() function

The logo_redraw() function itself does not have anything to do with XView internals or
package implementation. However, it is described here so as to keep the continuity of the
discussion.

This function simply renders the logo in the object’s window. It uses XCopyPlane() to
render the logo because the logo Pixmap is known to be one-bit deep whereas the logo’s
window can be any depth. This is done for the last in a possible series of Expose events as
shown:

logo_redraw(logo_public, event)
Logo_public *logo_public;
Event *event;
{

Logo_private *logo_private = LOGO_PRIVATE(logo_public);

598 XView Programming Manual

XEvent *xevent = event_xevent(event);

if (xevent->xany.type == Expose && xevent->xexpose.count == 0) {
Display *dpy = (Display *)xv_get(logo_public, XV_DISPLAY);
Window window = (Window)xv_get(logo_public, XV_XID);
int width = (int)xv_get(logo_public, XV_WIDTH);
int height = (int)xv_get(logo_public, XV_HEIGHT);
int x = (width - xlogo32_width)/2;
int y = (height - xlogo32_height)/2;

XCopyPlane(dpy, logo_private->bitmap, window, logo_private->gc,
0, 0, xlogo32_width, xlogo32_height, x, y, 1L);

} else if (xevent->xany.type == ConfigureNotify)
XClearArea(xv_get(logo_public, XV_DISPLAY),

xv_get(logo_public, XV_XID), 0, 0,
xevent->xconfigure.width, xevent->xconfigure.height, True);

}

The ConfigureNotify event is tested to see if the window resized. If it did, the window
needs to be cleared and the logo redrawn in the new center of the window. The window is
cleared using XClearArea() and passing True as the last parameter indicating that an
Expose event should be generated. When the event is delivered, logo_redraw() is
called again, and the logo is redrawn.

25.5.5 The Set Method

After the initialize routines for all the classes have been called, the set method is invoked in
reverse order (from the bottom up). That is, the generic package’s set routine is called last
and the logo’s set routine is called first.

The form of the set routine is:

Xv_opaque
set_func(pkg_public, avlist)

Xv_opaque *pkg_public;
Attr_avlist avlist;

The first parameter is a handle to the public data type representing the package. The
avlist parameter is a list of the attributes and values that have not been consumed by the
initialize routine or previously called set routines from other packages. In this routine,
package-specific attributes are scanned and evaluated, modifying the private data type ac-
cording to the attributes’ values.

Most applications ignore the return value of xv_set(), so it is usually sufficient to return
XV_OK. However, you can return anything you like. For example, your own package may
wish to return the previous value of an attribute if xv_set() was used to change it. This
may not be clearly defined, as xv_set() can be called to set many attributes.

Here is the set routine for the logo package:

logo_set(logo_public, avlist)
Logo_public *logo_public;
Attr_avlist avlist;
{

XView
 Internals

XView Internals 599

Logo_private *logo_private = LOGO_PRIVATE(logo_public);
Attr_attribute *attrs;

for (attrs = avlist; *attrs; attrs = attr_next(attrs))
switch ((int) attrs[0]) {

case XV_END_CREATE : {
/* this stuff *must* be here rather than in the "init"
* routine because the CMS is not loaded into the
* window object until the "set" routines are called.
*/
Cms cms = xv_get(logo_public, WIN_CMS);
XGCValues gcvalues;
Display *dpy =

(Display *)xv_get(logo_public, XV_DISPLAY);
gcvalues.foreground =

x(unsigned long)v_get(cms, CMS_FOREGROUND_PIXEL);
gcvalues.background =

(unsigned long)xv_get(cms, CMS_BACKGROUND_PIXEL);
gcvalues.graphics_exposures = False;
logo_private->gc = XCreateGC(dpy,

xv_get(logo_public, XV_XID),
GCForeground|GCBackground|GCGraphicsExposures,
&gcvalues);

}
default :

xv_check_bad_attr(LOGO, attrs[0]);
break;

}

return XV_OK;
}

A handle to the logo’s private data structure is needed since the set routine changes the value
of fields within that structure. The LOGO_PRIVATE() macro is used to get a pointer to the
private data from the public object.

Since the logo package has no attributes, there is no need to scan for attributes specific to the
logo package or any other package. Recall, however, that we still need to initialize the GC
for the logo. Therefore, we scan for the XV_END_CREATE attribute.

NOTE

The set routine must return XV_OK when XV_END_CREATE is in the avlist.
Any other return value causes XView to assume that there was an error in initial-
ization.

At this point in time, the WINDOW package has initialized itself completely and we can there-
fore get the colors from the window’s colormap segment. We use xv_get() and ask for its
WIN_CMS.

The example Bitmap package goes into more detail about the set routine.

600 XView Programming Manual

25.5.6 The Get Method

The get method is simple: it basically returns the value of the attribute specified in the pro-
grammer’s call to xv_get(). The form of the get function is:

Xv_opaque
get_func(pkg_public, status, attr, avlist)

pkg_public *pkg_public;
int *status;
Attr_attribute attr;
Attr_avlist avlist;

The attr parameter is the attribute for which the programmer wants the value.* However,
there are some attributes used by xv_get() that take an additional parameter. For example,
when using CANVAS_NTH_VIEW, an additional int parameter is required to indicate which
view to return. For such cases, the additional parameter(s) is in the avlist.

The status parameter must be set by the get routine to XV_ERROR if there is an error.

The calling sequence for the get method is from the bottom up—that is, the specific packages
are called first followed by each parent up the chain to the generic object. Each class in the
chain is called until one of them sets the status parameter to XV_OK.

If an unknown attribute is requested, status should be set to XV_ERROR, but the function
should return XV_OK. This tells XView that the attribute requested does not belong to this
package and that it should try the next package in the chain.

Here is the get function for the logo object:

logo_get(logo_public, status, attr, args)
Logo_public *logo_public;
int *status;
Attr_attribute attr;
Attr_avlist args;
{

*status = xv_check_bad_attr(LOGO, attr);
return (Xv_opaque)XV_OK;

}

Since the logo object has no attributes, it sets the status parameter and returns. As noted
earlier, since there are no attributes specific to the logo package, this routine is unnecessary;
we could have declared the function pointer as NULL in the Xv_pkg data structure causing
the get method for this package to be unused.

A more detailed discussion of the get method, including a discussion on
xv_check_bad_attr(), is given in the example Bitmap package.

*Remember, xv_get() can only be used to get the value of one attribute.

XView
 Internals

XView Internals 601

25.5.7 The Destroy Method

When the programmer calls xv_destroy() or if XView decides to destroy objects or
classes externally, the destroy method for the package is called. The calling sequence for the
destroy method is from the bottom up, as it is for the get method.

The main task of the destroy routine is to free the private data type and any other cleanup that
may accompany it. This includes freeing allocated data, closing open file descriptors, unlink-
ing temp files, and so on. However, this is not the only reason the destroy method is called;
in fact, there are four different reasons or conditions in which the function may be invoked.

The form of the destroy function is:

int
destroy_func(pkg_public, status)

Xv_opaque *pkg_public;
Destroy_status status;

As with all the methods, the first parameter is a handle to the public data type for the pack-
age. The status parameter is of type Destroy_status. It describes the condition for
which the function has been called. This is the same situation as the destroy_func() de-
scribed in Section 20.9.5, “Modifying a Frame’s Destruction.”

For the logo object, we need to destroy the allocated pixmap and free the allocated GC. The
logo’s destroy function is:

logo_destroy(logo_public, status)
Logo_public *logo_public;
Destroy_status status;
{

Logo_private *logo_private = LOGO_PRIVATE(logo_public);

if (status == DESTROY_CLEANUP) {
XFreePixmap(xv_get(logo_public, XV_DISPLAY),

logo_private->bitmap);
XFreeGC(xv_get(logo_public, XV_DISPLAY), logo_private->gc);
free(logo_private);

}

return XV_OK;
}

Unless the status is DESTROY_CLEANUP, nothing is freed. This assures that the instance of the
logo object remains intact in case the destroy method was invoked for other reasons. Please
consult Chapter 20, The Notifier, and Chapter 4, Frames, for details on how to handle the oth-
er conditions possible for the destroy function.

602 XView Programming Manual

25.6 Example Program Listing

At this point, we have discussed everything necessary to implement the logo object except
for a main application that creates an instance of a logo object.

Writing this application is really no different from the way it is done for any other XView
package, as you can see from Example 25-1.

Example 25-1. The logo.c program

/* logo.c -- demonstrate the use of the logo package. */
#include <xview/xview.h>
#include <xview/cms.h>
#include "logo.h"

main(argc, argv)
char *argv[];
{

Frame frame;
Cms cms;
Logo logo;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME, NULL);
cms = xv_create(NULL, CMS,

CMS_SIZE, 2,
CMS_NAMED_COLORS, "blue", "red", NULL,
NULL);

logo = xv_create(frame, LOGO,
XV_WIDTH, 100,
XV_HEIGHT, 100,
WIN_CMS, cms,
NULL);

window_fit(frame);
xv_main_loop(frame);

}

All the pieces are in play—the logo variable is of type Logo, the call to xv_create()
has LOGO as the package name, and the owner of the logo is the frame object. The program
allocates a colormap segment that has the colors red and blue to demonstrate that colors can
be assigned to the logo through the WINDOW package attributes. However, if this application
is run on a monochrome screen, the output is rendered in black and white, as in Figure 25-3.
The frame may be resized by the user and the logo is always redrawn in the middle of its win-
dow. This is the task of the logo_redraw() routine registered by the logo object in its
initialize routine.

The entire logo implementation module is listed in Appendix F, Example Programs.

XView
 Internals

XView Internals 603

Figure 25-3. Output of logo.c

25.7 Compiling an Implementation File

This is a brief overview of how to compile a file or set of files to implement an XView pack-
age. If the package is used only by a particular application that you are writing, you can add
the source and object files to your own Makefile or Imakefile just as you would for the
sources in your main application. However, if you want to build an XView object and add it
to the base XView library for general use, then there are several steps you need to take. You
should consult your system manuals for details specific to your system.

First, you should compile your program to generate an object file:

cc -c Logo.c

You may require additional compilation flags depending on your environment. The include
files are presumed to be in the same directory as the source file. If you install them anywhere
else, you should change the #include directives at the top of the source files to use a
different syntax. If you installed the header files in the default XView location (for example,
/usr/include/xview), the #include directives should say:

#include <xview/logo.h>

Anywhere else should have the line:

#include <logo.h>

If this is the case, your compile line options should include the -I parameter.

cc -c -I<include_path> Logo.c

Once Logo.c (the package implementation file) has been compiled, you may compile logo.c
(the sample application) and link all of them with the default XView library:

% cc –c Logo.c
% cc –c logo.c
% cc logo.o Logo.o –lxview –lolgx –lX11 –o logo

604 XView Programming Manual

25.8 The Bitmap Package

The logo package is a very simplistic one since it does virtually nothing but render the X
logo in the middle of its window. There are no attributes specific to the logo package to
make the package configurable by the programmer. The next example package, the Bitmap
package, demonstrates how attributes are defined and used in XView packages.

The Bitmap package is similar to the logo package in that it just displays a bitmap in the
middle of a window. However, the Bitmap package provides the programmer with the ability
to specify the file containing the bitmap: the create- and set-only attribute, BITMAP_FILE.
To provide the programmer with the ability to get the pixmap, the attribute BITMAP_PIXMAP

is available as a get-only attribute.

We cannot get BITMAP_FILE because the filename is not retained. Once the bitmap has been
loaded, the programmer can get it with the BITMAP_PIXMAP attribute. Clearly, the code can
easily be modified to support the ability to get the filename or to set the pixmap directly.

The first thing to do is declare these attribute types in the public header file, bitmap.h:

#include <xview/xview.h>
#include <xview/window.h>

extern Xv_pkg bitmap_pkg;

#define BITMAP &bitmap_pkg

typedef Xv_opaque Bitmap;

#define ATTR_PKG_BITMAP ATTR_PKG_UNUSED_FIRST
#define BITMAP_ATTR(type, ordinal) ATTR(ATTR_PKG_BITMAP, type, ordinal)

typedef enum {
BITMAP_FILE = BITMAP_ATTR(ATTR_STRING, 1),
BITMAP_PIXMAP = BITMAP_ATTR(ATTR_OPAQUE, 2), /* get-only */

};

typedef struct {
Xv_window_struct parent_data;
Xv_opaque private_data;

} Bitmap_public;

There are several new aspects to the header file that are used to support the new attributes.
First, we define a new macro, BITMAP_ATTR(). It is defined as:

#define BITMAP_ATTR(type, ordinal) \
ATTR(ATTR_PKG_BITMAP, type, ordinal)

This macro aids in the initialization of the bitmap attribute values by setting the package ID
portion of the attribute to be the bitmap package.

Following the macro definitions, the attributes for the bitmap package are defined in the
enumerated type definition. BITMAP_FILE is declared with ATTR_STRING indicating that the
programmer-specified value associated with the attribute is a string. The 1 is a unique num-

XView
 Internals

XView Internals 605

ber to the attributes within the bitmap package, so we start at 1 for the first attribute and in-
crement this number by one for each new attribute.

The private data is declared for the bitmap object in the implementation-specific header file,
bitmap_impl.h. As you can see, the only changes are new fields used to support the new
method of specifying a bitmap filename:

#include "bitmap.h"

typedef struct {
Xv_object public_self; /* pointer back to self */
GC gc; /* GC to render logo */
Pixmap bitmap;
int width, height; /* ...of pixmap */

} Bitmap_private;

#define BITMAP_PUBLIC(item) XV_PUBLIC(item)
#define BITMAP_PRIVATE(item) XV_PRIVATE(Bitmap_private, Bitmap_public, item)

The width and height fields are introduced because these are needed to calculate how to
center the bitmap on the window. These are fields rather than global variables because their
values are unique on a per-instance basis. However, even though these are fields in the pri-
vate data structure, this does not mean that there have to be corresponding attributes.

25.8.1 The Bitmap Initialize Method

The initialization routine does not initialize any fields of the private data since the set rou-
tine, which is eventually called, handles the attributes adequately. The basic initialize func-
tionality of allocating the private data and linking the public and private structures together is
still done:

bitmap_init(owner, bitmap_public, avlist)
Xv_opaque owner;
Bitmap_public *bitmap_public;
Attr_avlist avlist; /* ignored here */
{

Bitmap_private *bitmap_private = xv_alloc(Bitmap_private);

if (!bitmap_private)
return XV_ERROR;

/* link the public to the private and vice-versa */
bitmap_public->private_data = (Xv_opaque)bitmap_private;
bitmap_private->public_self = (Xv_opaque)bitmap_public;

/* set up event handlers to get resize and repaint events */
xv_set(bitmap_public,

WIN_NOTIFY_SAFE_EVENT_PROC, bitmap_redraw,
WIN_NOTIFY_IMMEDIATE_EVENT_PROC, bitmap_redraw,
NULL);

return XV_OK;
}

606 XView Programming Manual

As you can see, the event handling function is declared and used the same way as for the logo
object.

25.8.2 The Bitmap Set Method

The set method looks for the BITMAP_FILE attribute and, when given, reads in the corre-
sponding bitmap file. Since the BITMAP_PIXMAP attribute is a get-only attribute, if given, the
programmer is warned of the error via xv_error().

bitmap_set(bitmap_public, avlist)
Bitmap_public *bitmap_public;
Attr_avlist avlist;
{

Bitmap_private *bitmap_private = BITMAP_PRIVATE(bitmap_public);
Attr_attribute *attrs;

for (attrs = avlist; *attrs; attrs = attr_next(attrs))
switch ((int) attrs[0]) {

case BITMAP_FILE : {
int val, x, y;
Display *dpy =

(Display *)xv_get(bitmap_public, XV_DISPLAY);
Window window =

(Window)xv_get(bitmap_public, XV_XID);
Pixmap old = bitmap_private->bitmap;
if (XReadBitmapFile(dpy, window, attrs[1],

&bitmap_private->width, &bitmap_private->height,
&bitmap_private->bitmap, &x, &y) != BitmapSuccess)

{
xv_error(bitmap_public,

ERROR_STRING, "Unable to load bitmap file",
ERROR_PKG, BITMAP,
NULL);

bitmap_private->bitmap = old;
}
break;

}
case BITMAP_PIXMAP :

xv_error(bitmap_public,
ERROR_CANNOT_SET, attrs[0],
ERROR_PKG, BITMAP,
NULL);

break;
case XV_END_CREATE : {

/* this stuff *must* be here rather than in the "init"
* routine because the CMS is not loaded into the
* window object until the "set" routines are called.
*/
Cms cms = xv_get(bitmap_public, WIN_CMS);
XGCValues gcvalues;
Display *dpy =

(Display *)xv_get(bitmap_public, XV_DISPLAY);
gcvalues.foreground =

(unsigned long)xv_get(cms, CMS_FOREGROUND_PIXEL);
gcvalues.background =

XView
 Internals

XView Internals 607

(unsigned long)xv_get(cms, CMS_BACKGROUND_PIXEL);
gcvalues.graphics_exposures = False;
bitmap_private->gc =

XCreateGC(dpy, xv_get(bitmap_public, XV_XID),
GCForeground|GCBackground|GCGraphicsExposures,
&gcvalues);

}
default :

xv_check_bad_attr(BITMAP, attrs[0]);
break;

}
return XV_OK;

}

25.8.3 The Bitmap Get Method

The get method supports the BITMAP_PIXMAP attribute by returning a handle to the actual
Pixmap used by the bitmap object. The BITMAP_FILE attribute cannot be gotten, but rather
than producing an error message—we could do so—instead we just fall through to the default
case and set the status parameter to the value returned by xv_check_
bad_attr().

bitmap_get(bitmap_public, status, attr, args)
Bitmap_public *bitmap_public;
int *status;
Attr_attribute attr;
Attr_avlist args;
{

Bitmap_private *bitmap_private = BITMAP_PRIVATE(bitmap_public);

switch ((int) attr) {
case BITMAP_PIXMAP :

return (Xv_opaque)bitmap_private->bitmap;
case BITMAP_FILE : /* can’t get this attribute */
default :

*status = xv_check_bad_attr(BITMAP, attr);
return (Xv_opaque)XV_OK;

}
}

As you may recall, xv_check_bad_attr() checks that the attribute given is part of the
package specified in the first parameter. If so, xv_error() is called, warning that the attri-
bute was not handled. This is an error because attribute does apply to the package and should
have been evaluated appropriately. This happens to be the case in the above scenario; the
BITMAP_FILE attribute belongs to the Bitmap package, but we have not handled the attri-
bute. Thus, a warning is printed saying:

XView Warning: Bitmap attribute not allowed.

Since the bitmap package does not allow the programmer to use xv_get() for the BITMAP_
FILE attribute, this is an appropriate warning.

608 XView Programming Manual

The status variable is set to the return value of xv_check_bad_attr() because this is
the same value needed by the internals to XView—that is, the function that called this get
routine. Recall that the get routine for each package is called until one of them returns
XV_OK in the *status parameter. This is the indicator that the attribute passed applies to
that particular package and that the sequence of calling the packages’ get functions should
cease. Since BITMAP_FILE does apply to the Bitmap package, *status is set to XV_OK.
Thus, when the function returns XV_OK, the get method stops and returns to the programmer.

As an opposite case, consider what happens when an attribute that does not apply to the Bit-
map package is evaluated. Let’s say the programmer called:

int width = (int)xv_get(bitmap, XV_WIDTH);

In this case, the switch would fall through to the default case and call
xv_check_bad_attr(). This time, however, the attribute does not belong to the Bitmap
package (it belongs to the generic package) and an error message is not printed.
xv_check_bad_attr() returns XV_ERROR indicating that the get method should con-
tinue on to the next package in the class hierarchy. Thus, *status is set correctly.

This interface for xv_check_bad_attr() may seem confusing, but if you follow a
simple rule of thumb, it can be made easy. Always have the default case in a switch state-
ment set the status variable to the return value of xv_check_bad_attr(), and always
return XV_OK from the function itself.

There still exists one problem, but there is no way to overcome it in the current XView API.
That is, if the program that called xv_get() ever passes a bad or invalid attribute, the func-
tion returns XV_OK and it is impossible to determine if that value is a legitimate return value.
Fortunately, this type of error should be worked out before it ever gets to the end user, so ap-
plication developers should pay close attention to the error messages printed to stderr.

25.8.4 Creating a Bitmap Instance

The rest of the implementation for the Bitmap package may be seen in Appendix F, Example
Programs. The destroy method is the same as the logo’s destroy method and there is no find
method for the Bitmap package. In this section, we show a small example program that dem-
onstrates how an application might create an instance from the bitmap package.

Example 25-2. The bitmap.c program

/* bitmap.c -- demonstrate the use of the Bitmap package. */
#include <xview/xview.h>
#include <xview/cms.h>
#include "bitmap.h"

main(argc, argv)
char *argv[];
{

Frame frame;
Cms cms;
Bitmap bitmap;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

XView
 Internals

XView Internals 609

Example 25-2. The bitmap.c program (continued)

if (argc <= 1)
puts("Specify bitmap filename"), exit(1);

frame = (Frame)xv_create(NULL, FRAME, NULL);
cms = xv_create(NULL, CMS,

CMS_SIZE, 2,
CMS_NAMED_COLORS, "blue", "red", NULL,
NULL);

bitmap = xv_create(frame, BITMAP,
XV_WIDTH, 100,
XV_HEIGHT, 100,
WIN_CMS, cms,
BITMAP_FILE, argv[1],
NULL);

window_fit(frame);
xv_main_loop(frame);

}

25.9 The Find Method

One aspect of the XView intrinsics that we have not yet addressed is the method for retriev-
ing handles to objects of a particular class that already have been created. It is not appropri-
ate to do this for the logo object because it is a window-based object. The need for a pro-
grammer to use xv_find() to retrieve an existing object stems from the ability to reuse the
object in more than one instance.

Window-based objects cannot be rendered in more than one location on the screen, so the
find method is not appropriate for packages subclassed from the WINDOW package. The most
common example of objects that use a find method are those that have no windows associat-
ed with them. Fonts, for example, can be rendered anywhere as they are just handles to a
type of information. Colormap segments can be shared by different windows, so it is pos-
sible to find existing colormap segments and reuse them.

25.9.0.1 To find or not to find

When choosing whether or not you should provide a find method to a package that you are
writing, you should consider whether or not it makes sense to be able to share the same in-
stance of the object in multiple places. If your XView object is application-specific (i.e., it
cannot be used in a general way by “any” application), then you should probably reconsider
whether you should make an XView object or try to implement it using existing XView ob-
jects or other methods.

Allowing the programmer to use xv_find() for a package helps the application keep down
its use of system resources, such as memory. It also aids in performance, since the objects are
shared among the entire application.

610 XView Programming Manual

25.9.1 Conceptual Implementation

When the programmer calls xv_find(), the find method for the package specified (second
parameter) is called. The purpose of this function is to cycle through all the objects that have
been created of the package’s type and find the one that matches the attributes specified. Re-
call that xv_find() may work just like xv_create() (see Chapter 2, The XView Pro-
grammer’s Model).

In order to cycle through a list of objects of a particular package, that list must be created and
updated every time an object is created or destroyed. That is, each time an object is created,
the new object is added to the list, whereas each time an object is destroyed, it is removed
from the list. The next issue is where to store this list.

It cannot reside within the package’s private data since each instance of the object would
have to be updated every time a new instance is created or another destroyed. Instead, we
must choose a central location where the list can be obtained directly by the find and initial-
ize procedures. We could choose a global, but private, variable representing the head of the
list, but this would cause problems for packages that must have separate lists according to
various constraints.

With fonts, for example, each server has unique font IDs and font objects cannot be shared
among different servers. So, a list of font objects that have been created could be attached to
the server object associated with the font. For colormap segments, since they are dependent
upon colormaps, there has to be a separate list of available colormap segments for each avail-
able screen on a server (a cms associated with a color screen won’t work very well with a
cms assigned to a monochrome screen).

For all the XView objects that currently exist and that support xv_find(), you may find a
different choice of implementation. If you design an XView object that is not unique to each
server, you may very well wish not to attach the data to the server object. On the other hand,
if the object depends on the unique qualities of the screen within the server (for which there
can be many), then you may wish to attach the list head to the screen object associated with a
server. Still, your XView object may not even depend on any X- or XView-related informa-
tion in which case you needn’t attach the list to any XView object at all. It may very well be
a global variable that you access directly.

If you decide to follow the methods that some of the existing XView packages use, you may
wish to attach lists to XView objects directly. Chapter 7, Panels, describes these methods,
including XV_KEY_DATA. We can attach a list of objects from a particular package to another
XView object (such as a Xv_Server object) using the attribute XV_KEY_DATA with the
package identifier (ID) as the key* and the head of the list as the data type for the key.

*We don’t have to use the package ID as the key, but since it tends to be distinct from the other package IDs, it is a
good choice.

XView
 Internals

XView Internals 611

25.9.1.1 Scope of list availability

Wherever you decide to attach the list of your XView objects, remember that the list is re-
stricted to the application. It is impossible for xv_find() to retrieve an instance of an
XView object that was created on a separate application that happens to be running on the
same machine. Also, note that while there is one server that may support many applications
running concurrently, XView creates an instance of a server object on a per-application ba-
sis, so attaching lists to a server or screen object does not imply that the list is available out-
side your application’s context.

25.9.2 Actual Implementation

When the programmer calls xv_find(), XView starts with the package specified and
works its way to the GENERIC package until it calls that package’s find procedure, if avail-
able. If a package returns an object, then XView terminates the calling sequence and returns
the object found. If no object is actually returned, XView may automatically create the ob-
ject by invoking the initialize method just as if the programmer called xv_create() rather
than xv_find(). It will only do this if the attribute XV_AUTO_CREATE is TRUE (the de-
fault). If the programmer sets this attribute to FALSE, then xv_find() returns NULL and the
programmer doesn’t get an object.

Because of the sequence that XView uses to call the find method for classes, package-specif-
ic attributes are considered first, followed by the more generic ones. If the programmer calls
xv_find() and passes only one attribute-value pair, such as XV_WIDTH,100 then if no ob-
jects of the package type requested is found, the more generic (parent) packages’ find meth-
ods are called until one returns an object that happens to have a width of 100 pixels.

25.10 The Image Package

Server images (a front end for Pixmaps), like fonts, can be rendered anywhere on the screen
(in windows, in other server images, and so on), under certain constraints (e.g., window depth
and so on). So it is possible to find and reuse instances of server images. However, the cur-
rent implementation of the server image package does not support a find method. So, we are
going to demonstrate how to implement the find method by creating an extension to the
server image package that does nothing but support the call to xv_find(). The new pack-
age is called Image and does not have any package-specific attributes.

There are three routines that provide the functionality of the find method: the initialize rou-
tine, the destroy routine, and the find routine itself. The initialize routine is responsible for
creating the list or, if it already exists, adding the newly created object to the list. The des-
troy routine is responsible for removing the instance of the object being destroyed from the
list. Lastly, the find routine is responsible for checking the list for matching attribute-value
pairs and returning the matching object.

612 XView Programming Manual

25.10.0.1 The public image header file

The public header file for the image package is fairly simple:

#include <xview/xview.h>
#include <xview/svrimage.h>

extern Xv_pkg image_pkg;

#define IMAGE &image_pkg

typedef Xv_opaque Image;

#define ATTR_PKG_IMAGE ATTR_PKG_UNUSED_FIRST+1

typedef struct {
Xv_server_image parent_data;
Xv_opaque private_data;

} Image_public;

The parent_data field of the public image structure is Xv_server_image because the
image package is subclassed from Server_image.

25.10.0.2 The private image header file

The private header file is equally simple:

#include <stdio.h> /* for BUFSIZ */
#include "image.h"

typedef struct _image {
Xv_object public_self; /* pointer back to self */
char *filename; /* for get/find */
Xv_Screen screen; /* need to retain for list */
struct _image *next; /* linked list for find */

} Image_private;

#define IMAGE_PUBLIC(item) XV_PUBLIC(item)
#define IMAGE_PRIVATE(item) XV_PRIVATE(Image_private, Image_public, item)

The private data structure contains several fields that enable the image package to allow the
find method to work. The filename field is used to save the filename specified as the value
to the SERVER_IMAGE_BITMAP_FILE attribute. Because the server image implementation
does not save this data, the image package does. The next field is used to create a linked
list of these objects to attach to the screen object set in the screen field. This is the list that
the find method uses to find existing objects from a call to xv_find().

XView
 Internals

XView Internals 613

25.10.0.3 The image package declaration

The package is initialized in the following way:

Xv_pkg image_pkg = {
"Image", /* package name */
ATTR_PKG_IMAGE, /* package ID */
sizeof(Image_public), /* size of the public struct */
SERVER_IMAGE, /* subclassed from the server image */
image_init,
image_set,
image_get,
image_destroy,
image_find

};

25.10.1 The Image Initialize Method

The task of the initialize routine for the image class is primarily to initialize the private data
of the image object and to create and/or add to the linked list of the private data types. The
routine is defined as follows:

image_init(owner, image_public, avlist)
Xv_Screen owner;
Image_public *image_public;
Attr_avlist avlist; /* ignored here */
{

Attr_attribute *attrs;
Image_private *image_private = xv_alloc(Image_private);
Image_private *list; /* linked list of image instances */
Xv_Screen screen = owner? owner : xv_default_screen;

if (!image_private || !screen)
return XV_ERROR;

/* link the public to the private and vice-versa */
image_public->private_data = (Xv_opaque)image_private;
image_private->public_self = (Xv_opaque)image_public;

for (attrs = avlist; *attrs; attrs = attr_next(attrs))
if (attrs[0] == SERVER_IMAGE_BITMAP_FILE)

/* you might also want to check that image_private->filename is NULL*/
image_private->filename =

strcpy(malloc(strlen(attrs[1])+1), attrs[1]);

image_private->next = (Image_private *)NULL;
image_private->screen = screen;

/* get the list of existing images from the screen */
if (list = (Image_private *)xv_get(screen,

XV_KEY_DATA, ATTR_PKG_IMAGE)) {
/* follow list till the end */
while (list->next)

list = list->next;
/* assign new image object to end of list */

614 XView Programming Manual

list->next = image_private;
} else {

/* no image objects on this screen -- create a new list */
xv_set(screen,

XV_KEY_DATA, ATTR_PKG_IMAGE, image_private,
NULL);

}
return XV_OK;

}

The owner for the image object is an Xv_Screen object just as with the Server_image
object. Once the private data is allocated and the public and private structures are linked to
one another, the fields are initialized. The avlist is scanned, checking for SERVER_

IMAGE_BITMAP_FILE. If the programmer called xv_create(), passing that attribute, then
we need to find out what its value is so we can store it for later retrieval. Remember, we must
do this because the Server_image package does not.

Next, the screen object is queried to see if there have been any other Image objects stored.
The list returned, if any, is the actual linked list of objects. We need this list in order to ap-
pend the new instance to the end of it. If the list does not exist, the instance created here is
set as the head of the list and is stored in the screen object via XV_KEY_DATA. The package
ID is used as the key identifier and the new instance is used as the head of the list.

25.10.2 The Image Set Method

The only purpose for the Image’s set method is to test to see if the programmer is changing
the image’s pixmap. If so, that would invalidate the value for SERVER_IMAGE_

BITMAP_FILE, if set. If not set, then nothing is done.

image_set(image_public, avlist)
Image_public *image_public;
Attr_avlist avlist;
{

Attr_attribute *attrs;
Image_private *image_private = IMAGE_PRIVATE(image_public);

/* loop thru attrs looking for anything that would invalidate
* the fact that the filename is set to a valid file. If the
* programmer is assigning a new pixmap or data to this server
* image, the filename that was originally associated with the
* object is no longer valid. Disable for later get/find calls.
*/
if (image_private->filename)

for (attrs = avlist; *attrs; attrs = attr_next(attrs))
if (attrs[0] == SERVER_IMAGE_PIXMAP ||

attrs[0] == SERVER_IMAGE_BITS ||
attrs[0] == SERVER_IMAGE_X_BITS) {

free(image_private->filename);
image_private->filename = NULL;

}

return (Xv_opaque)XV_OK;
}

XView
 Internals

XView Internals 615

25.10.3 The Image Get Method

The get routine for the Image package provides the ability to return values for SERVER_
IMAGE_BITMAP_FILE and XV_SCREEN. The filename is stored in the Image’s private data
structure, so we return this value, if set. The function is as follows:

image_get(image_public, status, attr, args)
Image_public *image_public;
int *status;
Attr_attribute attr;
Attr_avlist args;
{

Image_private *image_private = IMAGE_PRIVATE(image_public);

switch ((int) attr) {
case SERVER_IMAGE_BITMAP_FILE :

return (Xv_opaque)image_private->filename;
case XV_SCREEN :

return (Xv_opaque)image_private->screen;
default :

*status = xv_check_bad_attr(IMAGE, attr);
return (Xv_opaque)XV_OK;

}
}

25.10.4 The Image Destroy Method

When an instance of the Image class is destroyed, the destroy procedure is called with the
status of DESTROY_CLEANUP. The first parameter to the destroy function is a handle to the
object being destroyed. The task of the destroy function for the Image package is to remove
the item from the list of items attached to the screen object and free it. Once the object has
been freed, all references to the object become invalid. And of course, once the object has
been removed from the screen’s list, then xv_find() will fail to find it.

image_destroy(image_public, status)
Image_public *image_public;
Destroy_status status;
{

Image_private *image_private = IMAGE_PRIVATE(image_public);
Image_private *list; /* linked list of image instances */
Xv_Screen screen = image_private->screen;

if (status == DESTROY_CLEANUP) {
/* get the list of existing images from the screen */
list = (Image_private *)xv_get(screen,

XV_KEY_DATA, ATTR_PKG_IMAGE);
if ((Image)XV_PUBLIC(list) == (Image)image_public)

xv_set(screen,
XV_KEY_DATA, ATTR_PKG_IMAGE, list->next,
NULL);

for (; list->next; list = list->next)
if ((Image)XV_PUBLIC(list->next) == (Image)image_public) {

list->next = list->next->next;

616 XView Programming Manual

break;
}

if (list->filename)
free(list->filename);

free(list);
}

return XV_OK;
}

25.10.5 The Image Find Method

The find procedure is the main purpose of the Image package. Its purpose is to find an exist-
ing Image object whose attributes match those specified to the programmer’s call to
xv_find(). If there is more than one matching object, the find routine usually returns the
first one found because it is simpler to implement it that way. However, this is not required
and the object returned may be arbitrary provided that the specified attributes match.

image_find(owner, pkg, avlist)
Xv_Screen owner;
Xv_pkg *pkg;
Attr_avlist avlist; /* ignored here */
{

Image_private *list; /* linked list of image instances */
/* this is what the server image package does */
Xv_Screen screen = owner? owner : xv_default_screen;
Attr_attribute *attrs;
/* consider all the attrs we allow "find" to match on */
int width = -1, height = -1, depth = -1;
Pixmap pixmap = (Pixmap)NULL;
char *filename = NULL;

/* get the list of existing images from the screen */
list = (Image_private *)xv_get(screen,

XV_KEY_DATA, ATTR_PKG_IMAGE);

if (!list)
return NULL;

/* loop thru each attribute requested and save the value
* associated with it. Later, we’ll loop thru the existing
* objects looking for the object that has the same values.
*/
for (attrs = avlist; *attrs; attrs = attr_next(attrs))

switch ((int)attrs[0]) {
case XV_WIDTH :

width = (int)attrs[1];
break;

case XV_HEIGHT :
height = (int)attrs[1];
break;

case SERVER_IMAGE_DEPTH :
depth = (int)attrs[1];
break;

XView
 Internals

XView Internals 617

case SERVER_IMAGE_PIXMAP :
pixmap = (Pixmap)attrs[1];
break;

case SERVER_IMAGE_BITMAP_FILE :
filename = (char *)attrs[1];
break;

case SERVER_IMAGE_BITS :
case SERVER_IMAGE_X_BITS :
case SERVER_IMAGE_COLORMAP :
case SERVER_IMAGE_SAVE_PIXMAP :
default :

return NULL; /* you can’t "find" for these attrs */
}

/* Now loop thru each object looking for those whose
* value that match those specified above.
*/
for (; list; list = list->next) {

/* If it doesn’t match, continue to the next object in
* the list. Repeat for each requested attribute.
*/
if (width > -1 &&

(width != (int)xv_get(XV_PUBLIC(list), XV_WIDTH)))
continue;

if (height > -1 &&
(height != (int)xv_get(XV_PUBLIC(list), XV_HEIGHT)))
continue;

if (depth > -1 && (depth != (int)xv_get(XV_PUBLIC(list),
SERVER_IMAGE_DEPTH)))

continue;
if (pixmap && (pixmap != (Pixmap)xv_get(XV_PUBLIC(list),

SERVER_IMAGE_PIXMAP)))
continue;

if (filename &&
(!list->filename || strcmp(filename, list->filename)))
continue;

/* all matches seemed to be successful, return this object */
return XV_PUBLIC(list);

}
/* nothing found */
return NULL;

}

A find procedure can be implemented in many ways; the one provided above is just one way.

25.10.6 The Image.c Program

Example 25-3 demonstrates one way that the image package can be used. It creates a pixmap
based on the bitmap filename given on the command line (a filename must be given). Then it
uses xv_find() to find the same object first by the same bitmap filename and then again by
using the Pixmap associated with the image.

While the program functionally does very little, it is intended to demonstrate how multiple
server images can be shared in an application via the new Image package.

618 XView Programming Manual

Example 25-3. The image.c program

/* image.c -- demonstrate the use of the image package. */
#include <xview/xview.h>
#include "image.h"

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Image image1, image2;
Pixmap pixmap;

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

if (argc < 2)
puts("specify filename"), exit(1);

/* frame = (Frame)xv_create(NULL, FRAME, NULL); */
if (!(image1 = xv_create(NULL, IMAGE,

XV_WIDTH, 100,
XV_HEIGHT, 100,
SERVER_IMAGE_BITMAP_FILE, argv[1],
NULL)))
puts("unsuccessfully created image1"), exit(1);

if (!(image2 = xv_find(NULL, IMAGE,
SERVER_IMAGE_BITMAP_FILE, argv[1],

NULL)))
puts("unsuccessfully created image2"), exit(1);

printf("image1 %s image2\n",
(image2 != image1)? "matched" : "didn’t match");

pixmap = (Pixmap)xv_get(image1, SERVER_IMAGE_PIXMAP);
if (!(image2 = xv_find(NULL, IMAGE,

SERVER_IMAGE_PIXMAP, pixmap,
NULL)))

puts("unsuccessfully created image2"), exit(1);
printf("image1 %s image2\n",
(image2 != image1)? "matched" : "didn’t match");

/* window_fit(frame); */
/* xv_main_loop(frame); */

}

XView
 Internals

XView Internals 619

25.11 The Wizzy Package—A Panel Item Extension

This section presents an implementation for a panel item extension. This package is called
the Wizzy package; this example does not actually do anything but is presented to show how
to make extensions to the existing PANEL package. A panel item extension could be used to
define a new panel item. For example, using the methods described in this section, you could
implement a slider item that selects a range of values, rather than a single value. For this ex-
ample, you need to be familiar with the previous examples presented in this chapter and you
should also read Section 7.3.2, “Panel Item Layout,” in Chapter 7, Panels.

25.11.1 The Public Wizzy Header File

The public wizzy.h header file is defined as follows:

/* wizzy.h -- public header file for the Wizzy Xview class. */

#include <xview/xview.h>
#include <xview/panel.h>

extern Xv_pkg xv_panel_wizzy_pkg;

#define WIZZY &xv_panel_wizzy_pkg;

typedef Xv_panel_extension_item Wizzy;

#define ATTR_PKG_WIZZY ATTR_PKG_UNUSED_FIRST
#define WIZZY_ATTR (type, ordinal) ATTR(ATTR_PKG_WIZZY, type, ordinal)

typedef enum {
WIZZY_OFFSET = WIZZY_ATTR(ATTR_INT, 1),
WIZZY_FLAG = WIZZY_ATTR(ATTR_BOOLEAN, 2)

} Wizzy_attr;

25.11.2 The Private Wizzy Header File

The private data is declared for the Wizzy object in the implementation-specific header file,
wizzy_impl.h.

/* wizzy_impl.h -- private header file for the Wizzy Xview class. */

#include "wizzy.h"

typedef struct {
Panel_item public_self; /* pointer back to self */
Rect block; /* a rect this item’s panel value */
GC gc; /* a GC for this item */
int offset; /* an offset for block */
Panel panel; /* Panel that this item is owned by */
int flag; /* some boolean value */

#ifdef WIZZY_CAN_ACCEPT_KBD_FOCUS

620 XView Programming Manual

int has_kbd_focus; /* TRUE or FALSE */
#endif WIZZY_CAN_ACCEPT_KBD_FOCUS
} Wizzy_private;

#define WIZZY_PUBLIC(item) XV_PUBLIC(item)
#define WIZZY_PRIVATE(item) XV_PRIVATE(Wizzy_private, Wizzy, item)

#define BLOCK_WIDTH 16
#define BLOCK_HEIGHT 12
#define INITIAL_OFFSET 10

The only entry required for the Wizzy_private structure is public_self. All other en-
tries illustrate how you could implement the private data structure; they should be replaced
with your item’s private data requirements.

25.11.3 The Wizzy Package Declaration

The package is initialized in the following way:

#include <xview/wizzy.h>

extern Xv_pkg xv_panel_item_pkg;

Pkg_private int wizzy_init();
Pkg_private Xv_opaque wizzy_set_avlist();
Pkg_private Xv_opaque wizzy_get_attr();
Pkg_private int wizzy_destroy();

Xv_pkg xv_panel_wizzy_pkg = {
"Wizzy Item",
ATTR_PKG_WIZZY,
sizeof(Wizzy),
&xv_panel_item_pkg,
wizzy_init,
wizzy_set_avlist,
wizzy_get_attr,
wizzy_destroy,
NULL /* no find proc */

};

25.11.4 The Implementation Files

The implementation file for the Wizzy package is similar to the previous packages. It in-
cludes an initialize method, a set method, a get method, a destroy method, and an additional
panel operations vector table. Panel item handler procedures need to be defined by the pack-
age and placed in the panel operations vector table (see the description of panel item handler
procedures in Section 25.11.9, “Panel Item Handler Procedures”). XView defines the order
of procedures in the panel operations vector table. If you do not define a particular function,
you should place NULL in the appropriate position for the function. There are fifteen proce-
dures, with one additional procedure reserved for future use. Once these procedures are

XView
 Internals

XView Internals 621

declared, they can be specified in the Panel_ops table. The declaration for panel-item
handler procedures for the Wizzy Package follow:

static void wizzy_begin_preview();
static void wizzy_update_preview();
static void wizzy_accept_preview();
static void wizzy_cancel_preview();
static void wizzy_accept_menu();
static void wizzy_accept_key();
static void wizzy_clear();
static void wizzy_paint();
static void wizzy_resize();
static void wizzy_remove();
static void wizzy_restore();
static void wizzy_layout();
static void wizzy_accept_kbd_focus();
static void wizzy_yield_kbd_focus();

The panel item operations table itself is declared as follows:

static Panel_ops ops = {
panel_default_handle_event, /* handle_event() */
wizzy_begin_preview, /* begin_preview() */
wizzy_update_preview, /* update_preview() */
wizzy_cancel_preview, /* cancel_preview() */
wizzy_accept_preview, /* accept_preview() */
wizzy_accept_menu, /* accept_menu() */
wizzy_accept_key, /* accept_key() */
wizzy_clear, /* clear() */
wizzy_paint, /* paint() */
wizzy_resize, /* resize() */
wizzy_remove, /* remove() */
wizzy_restore, /* restore() */
wizzy_layout, /* layout() */

#ifdef WIZZY_CAN_ACCEPT_KBD_FOCUS
wizzy_accept_kbd_focus, /* accept_kbd_focus() */
wizzy_yield_kbd_focus, /* yield_kbd_focus() */

#else
NULL, /* accept_kbd_focus() */
NULL, /* yield_kbd_focus() */

#endif WIZZY_CAN_ACCEPT_KBD_FOCUS
NULL /* reserved for future use */

};

The Section 25.11.9, “Panel Item Handler Procedures,” provides a complete explanation of
each panel item handler procedure.

25.11.5 The Wizzy Initialize Method

The task of the initialize routine for the Wizzy class is primarily to initialize the private data
of the Wizzy object and set any create-only attributes.

Pkg_private int
wizzy_init(panel, item, avlist)

Panel panel; /* parent */

622 XView Programming Manual

Panel_item item; /* this object */
Attr_avlist avlist; /* attribute-value pair list */

{
Wizzy_public *item_object = (Wizzy_public *)item; /* this item */
Display *display;
Wizzy_private *dp;
XGCValues gcvalues;
XID xid;
Attr_attribute *attrs;

dp = xv_alloc(Wizzy_private);

/* link the public to the private, link the private to the public */

item_object->private_data = (Xv_opaque)dp;
dp->public_self = item;

/* initialize any non-zero private data members */

display = (Display *)XV_DISPLAY_FROM_WINDOW(panel);
xid = (XID)xv_get(panel, XV_XID);
gcvalues.foreground = BlackPixel(display, 0);
dp->gc = XCreateGC(display, xid, GCForeground, &values);
dp->offset = INITIAL_OFFSET;
dp->panel = panel;

/* Process any create-only attributes from avlist */

for (attrs = avlist; *avlist; attrs = attr_next(attrs)) {
switch ((int)attrs[0]) {

/* case <create_only_attr>: */

default:
break;

}
}

xv_set(item, PANEL_OPS_VECTOR, &ops,
#ifdef WIZZY_CAN_ACCEPT_KBD_FOCUS

PANEL_ACCEPT_KEYSTROKE, TRUE,
#endif WIZZY_CAN_ACCEPT_KBD_FOCUS

NULL);

return XV_OK;

}

Once the private data is allocated and the public and private structures are linked to one an-
other, the private data fields are initialized. Then the avlist is scanned for any create-only
attributes.

Next, xv_set is used to store the address of the panel operations vector table and allow the
Wizzy package to accept keyboard input as specified.

XView
 Internals

XView Internals 623

25.11.6 The Wizzy Set Method

The code for the set method is as follows:

Pkg_private Xv_opaque
wizzy_set_avlist(item, avlist)

Panel_item item; /* this object */
Attr_avlist avlist; /* attribute list */

{

Wizzy_private *dp = WIZZY_PRIVATE(item);
Xv_opaque result;
Rect value_rect;
Attr_attribute *attrs;

/* Parse panel item generic attributes before parsing Wizzy
* specific attributes and prevent panel_redisplay_item() from
* being called in item_set_avlist()
*/

if (*avlist != XV_END_CREATE) {
xv_set(dp->panel, PANEL_NO_REDISPLAY_ITEM, TRUE, NULL);
result = xv_super_avlist(item, &xv_wizzy_panel_pkg, avlist);
xv_set(dp->panel, PANEL_NO_REDISPLAY_ITEM, FALSE, NULL);

if (result != XV_OK)
return (result);

}

for (attrs = avlist; *avlist; attrs = attr_next(attrs)) {
switch ((int)attrs[0]) {

case WIZZY_OFFSET:
dp->offset = attrs[1];
break;

case WIZZY_FLAG:
dp->flag = attrs[1];
break;

case XV_END_CREATE:
value_rect = *(Rect *)xv_get(item, PANEL_ITEM_VALUE_RECT);

rect_construct(&dp->block,
value_rect.r_left + dp->offset,
value_rect.r_top,
BLOCK_WIDTH, BLOCK_HEIGHT);

value_rect = rect_bounding(&value_rect, &dp->block);

/* Note: setting the value rect will cause the item
* item rect to be recalculated as the enclosing rect
* containing both the label and value rects.
*/

xv_set(item, PANEL_ITEM_VALUE_RECT, &value_rect,

624 XView Programming Manual

NULL);
break;

default:
break;

}
}

return XV_OK; /* return XV_ERROR if something went very wrong */

}

The purpose of the set method is to set any of the attributes defined in the public header file
by storing the corresponding value in the private data structure. In the case of the Wizzy
package, WIZZY_OFFSET and WIZZY_FLAG are the only attributes and they correspond to
offset and flag, respectively.

However, before parsing attributes specific to the Wizzy object, it is necessary to parse any
attributes generic to Panel. This is done by a call to xv_super_avlist(). It is also nec-
essary to prevent the parent panel from redisplaying while these attributes are being set. This
is taken care of by setting the attribute PANEL_NO_REDISPLAY_ITEM to TRUE for the parent
panel and then resetting it to FALSE.

After all attributes are handled, the value rectangle value_rect is constructed and the
item rectangle is recalculated since it encloses both the label and value rectangles.

25.11.7 The Wizzy Get Method

The get routine for the Wizzy package provides the ability to return values for
WIZZY_OFFSET and WIZZY_FLAG.

Pkg_private Xv_opaque
wizzy_get_attr(item, status, which_attr, avlist)

Panel_item item;
int *status;
Attr_attribute which_attr;
va_list avlist;

{

Wizzy_private *dp = WIZZY_PRIVATE(item);

switch ((int)which_attr) {
case WIZZY_OFFSET:

return (Xv_opaque)dp->offset;
break;

case WIZZY_FLAG:
return (Xv_opaque)dp->flag;
break;

default:

XView
 Internals

XView Internals 625

*status = xv_check_bad_attr(WIZZY, attr);
return (Xv_opaque)XV_OK;

}
}

25.11.8 The Wizzy Destroy Method

When an instance of the Wizzy class is destroyed, the destroy procedure is called. The first
parameter to the destroy function is a handle to the panel item being destroyed. The second
parameter is the destroy status (see Chapter 20, The Notifier, for more information on des-
troy_status). The task of the destroy function for the Wizzy package is to remove the
item from the list of items attached to the panel object and free it. Once the object has been
freed, all references to the object become invalid.

Pkg_private int
wizzy_destroy(item, status)

Panel_item item;
Destroy_status status;

{

Wizzy_private *dp = WIZZY_PRIVATE(item);

if ((status==DESTROY_CHECKING) || (status==DESTROY_YOURSELF))
return XV_OK;

#ifdef WIZZY_CAN_ACCEPT_KBD_FOCUS
wizzy_remove(item);

#endif WIZZY_CAN_ACCEPT_KBD_FOCUS

free(dp);

return XV_OK;

}

25.11.9 Panel Item Handler Procedures

25.11.9.1 The handle event function

The handle event function allows the application writer to specify a notify procedure for the
panel item.

626 XView Programming Manual

25.11.9.2 The begin preview function

The begin preview function is called when SELECT-down has been detected. Highlight the
item to show active feedback but don’t actually take any action yet. Private data may be ac-
cessed as necessary. The function has the form:

static void
wizzy_begin_preview (item, event)

Panel_item item;
Event *event;

25.11.9.3 The update preview function

The update preview function is called when the pointer has been dragged within the item af-
ter begin preview was detected. Adjust highlighting to reflect the new position of the pointer
and update the appropriate private data. The function has the form:

static void
wizzy_update_preview (item, event)

Panel_item item;
Event *event;

25.11.9.4 The cancel preview function

The cancel preview function is called when the pointer has been dragged out of the item after
begin preview was detected. Remove the active feedback (i.e., de-highlight) and clean up any
private data. The function has the form:

static void
wizzy_cancel_preview (item, event)

Panel_item item;
Event *event;

25.11.9.5 The accept preview function

The accept preview function is called when the SELECT button has been released over the
item. Remove the active feedback (i.e., de-highlight), paint the busy feedback, perform the
action associated with the item, and then remove the busy feedback. Also update any private
data as necessary. The function has the form:

static void
wizzy_accept_preview (item, event)

Panel_item item;
Event *event;

XView
 Internals

XView Internals 627

25.11.9.6 The accept menu function

The accept menu function is called when the MENU button has been pressed over the item.
Show the menu item attached to the item, if any. The function has the form:

static void
wizzy_accept_menu (item, event)

Panel_item item;
Event *event;

25.11.9.7 The accept key function

The accept key function is called when a keyboard event has been detected. Process the key
and update the data and/or display as necessary. The function has the form:

static void
wizzy_accept_key (item, event)

Panel_item item;
Event *event;

25.11.9.8 The clear function

The clear function is called whenever the item’s rectangle needs to be cleared. Clear the
item rectangle and update any private data as needed. An example of this function would be:

static void
wizzy_clear (item, event)

Panel_item item;
Event *event;

{

panel_default_clear_item(item);

}

25.11.9.9 The paint function

The paint function is called when the panel needs to be repainted. Do everything necessary
to paint the entire item but do not go outside of the rectangle describing the boundaries of the
item. An example of this function would be:

static void
wizzy_paint(item)

Panel_item item;

Display *display;
Wizzy_info *dp = WIZZY_PRIVATE(item);
Panel_paint_window *ppw; /* ptr to Panel_paint_window structure */
Xv_Window pw; /* paint window */
XID xid;

628 XView Programming Manual

/* Paint the label */
panel_paint_label(item);

/* Paint the value.
* In this wizzy example, we paint something into dp->block.
*/
display = (Display *) XV_DISPLAY_FROM_WINDOW(dp->panel);
for (ppw = (Panel_paint_window *)

xv_get(dp->panel, PANEL_FIRST_PAINT_WINDOW);
ppw;
ppw = ppw->next) {

pw = ppw->pw; /* pw = the actual window to paint in */
xid = (XID) xv_get(pw, XV_XID);
XFillRectangle(display, xid, dp->gc, dp->block.r_left,

dp->block.r_top, dp->block.r_width, dp->block.r_height);
}

}

25.11.9.10 The resize function

The resize function is called when the panel has been resized. Recalculate any extend-to-
edge dimensions. The function has the form:

static void
wizzy_resize (item)

Panel_item item;

25.11.9.11 The remove function

The remove function is called when the item has been made hidden via xv_set(item,
XV_SHOW, FALSE). An example function might be:

static void
wizzy_remove(item)

Panel_item item;
{

#ifdef WIZZY_CAN_ACCEPT_KBD_FOCUS
Wizzy_info *dp = WIZZY_PRIVATE(item);
Panel_status *panel_status;

/*
* Only reassign the keyboard focus to another item
* if the panel isn’t being destroyed.
*/
panel_status = (Panel_status *) xv_get(dp->panel, PANEL_STATUS);
if (!panel_status->destroying &&

xv_get(dp->panel, PANEL_CARET_ITEM) == item)
(void) panel_advance_caret(dp->panel);

#endif WIZZY_CAN_ACCEPT_KBD_FOCUS
}

XView
 Internals

XView Internals 629

25.11.9.12 The restore function

The restore function is called when the item has been made visible via xv_set(item,
XV_SHOW, TRUE). An example function might look like:

static void
wizzy_restore(item)

Panel_item item;
{

#ifdef WIZZY_CAN_ACCEPT_KBD_FOCUS
Wizzy_info *dp = WIZZY_PRIVATE(item);

/* If no item has the keyboard focus, then give this item the focus */
if (!xv_get(dp->panel, PANEL_CARET_ITEM))

xv_set(dp->panel, PANEL_CARET_ITEM, item, 0);
#endif WIZZY_CAN_ACCEPT_KBD_FOCUS
}

25.11.9.13 The layout function

The layout function is called when the item has been moved. Adjust the coordinates. An ex-
ample function might look like:

static void
wizzy_layout(item, deltas)

Panel_item item;
Rect *deltas;

{
Wizzy_info *dp = WIZZY_PRIVATE(item);

dp->block.r_left += deltas->r_left;
dp->block.r_top += deltas->r_top;

}

25.11.9.14 Accept keyboard focus function

The accept keyboard focus function is called when the keyboard focus has been set to this
item. Change the keyboard focus feedback to active, and update private data as necessary.
An example function might look like:

static void
wizzy_accept_kbd_focus(item)

Panel_item item;
{

Wizzy_info *dp = WIZZY_PRIVATE(item);
Frame frame;
int x;
int y;

dp->has_kbd_focus = TRUE;
frame = xv_get(dp->panel, WIN_FRAME);
if (xv_get(dp->panel, PANEL_LAYOUT) == PANEL_HORIZONTAL) {

630 XView Programming Manual

xv_set(frame, FRAME_FOCUS_DIRECTION, FRAME_FOCUS_UP, 0);
x = dp->block.r_left +

(dp->block.r_width - FRAME_FOCUS_UP_WIDTH)/2;
y = dp->block.r_top + dp->block.r_height - FRAME_FOCUS_UP_HEIGHT/2;

} else {
xv_set(frame, FRAME_FOCUS_DIRECTION, FRAME_FOCUS_RIGHT, 0);
x = dp->block.r_left - FRAME_FOCUS_RIGHT_WIDTH/2;
y = dp->block.r_top +

(dp->block.r_height - FRAME_FOCUS_RIGHT_HEIGHT)/2;
}
if (x < 0)

x = 0;
if (y < 0)

y = 0;
panel_show_focus_win(item, frame, x, y);

}

25.11.9.15 The yield keyboard focus function

The yield keyboard focus function is called when the keyboard focus has been removed from
this item. Change the keyboard focus back to inactive and update private data as necessary.
An example function might look like:

static void
wizzy_yield_kbd_focus(item)

Panel_item item;
{

Wizzy_info *dp = WIZZY_PRIVATE(item);
Xv_Window focus_win;
Frame frame;

dp->has_kbd_focus = FALSE;
frame = xv_get(dp->panel, WIN_FRAME);
focus_win = xv_get(frame, FRAME_FOCUS_WIN);
xv_set(focus_win, XV_SHOW, FALSE, 0);

}

25.11.10 Panel Item Extension Attributes

Table 25-1 lists the attributes for use with Panel Item extensions. This information is de-
scribed fully in the XView Reference Manual.

Table 25-1. Panel Item Extension Attributes

PANEL_ACCEPT_KEYSTROKE
PANEL_BUSY
PANEL_CURRENT_ITEM
PANEL_FIRST_PAINT_WINDOW
PANEL_FOCUS_PW
PANEL_GINFO
PANEL_ITEM_CREATED

XView
 Internals

XView Internals 631

Table 25-1. Panel Item Extension Attributes (continued)

PANEL_ITEM_DEAF
PANEL_ITEM_LABEL_RECT
PANEL_ITEM_VALUE_RECT
PANEL_ITEM_WANTS_ADJUST
PANEL_ITEM_WANTS_ISO
PANEL_ITEM_X_POSITION
PANEL_ITEM_Y_POSITION
PANEL_NO_REDISPLAY_ITEM
PANEL_OPS_VECTOR
PANEL_PRIMARY_FOCUS_ITEM
PANEL_STATUS

632 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

A
The Selection Service

This appendix describes the compatibility procedures and attributes that support the XView
Selection Service. If you are creating a new application that uses selections, refer to Chapter
18, Selections. This appendix is provided only for those who need to use the selection ser-
vice for compatibility reasons. It contains the text on selections that was found in older ver-
sions of this book. XView still supports the procedures and attributes described in this
appendix. Details on these procedures and attributes may be found in appendices in the
XView Reference Manual.

The X Window System provides several methods for separate applications to exchange infor-
mation with one another. One of these methods is the use of the selection service. A
selection transfers arbitrary information between two clients. An in-depth discussion of the
selection mechanism that X provides is discussed in Volume One, Xlib Programming Man-
ual. This chapter addresses XView’s programmatic interface to the selection service pro-
vided by the X server.

While XView provides all the functions for applications to set and get selections of various
sorts, OPEN LOOK applications must follow the conventions outlined in the OPEN LOOK GUI
Specification Guide. All XView packages that have interactive text entry support the ability
to make selections and to get selections from the server. In OPEN LOOK, you select objects in
basically the same way that you select windows or icons—using the SELECT and ADJUST
mouse buttons. OPEN LOOK describes three functions that operate on selected objects: CUT,
COPY, and PASTE. These are core functions that are accessed from the keyboard.* CUT,
COPY, and PASTE operations use the clipboard to keep track of selected objects. The clip-
board temporarily stores items selected via the selection service; it does not store selected
windows or icons since these are not considered selectable objects by the selection service.

*The function keys that are bound to these functions vary from keyboard to keyboard depending on the make and
model of the computer.

The Selection
Service

The Selection Service 635

Table A-1 summarizes text selection for the OPEN LOOK GUI.

Table A-1. Selecting Text

Action Off Selection On Selection

Click
SELECT

Insert point is set at the pointer loca-
tion.

When SELECT is released, insert point
is set at pointer location and selection
is cleared.

Drag
SELECT

Text is highlighted as pointer is
dragged (wipe-through selection).

Text move pointer is displayed.
When you release SELECT, text is
moved to pointer location if that loca-
tion is outside the highlighted area.

Click
ADJUST

Extends the highlighting to the
pointer location extending either the
beginning or the end of the current
selection.

Moves the end of the highlighting to
the pointer location. Beginning of
selection is preserved.

Drag
ADJUST

Adjusts an existing selection as the
pointer is dragged (wipe-through).
Beginning of selection is anchored at
insert point.

Adjusts an existing selection as
pointer is dragged (wipe-through).
Beginning of selection is anchored at
insert point.

Note that although OPEN LOOK specifies the selection of graphic objects, no XView objects
currently support selection of graphical objects. A possible implementation is to have a can-
vas object, which has graphic objects displayed in it, set selections based on the event
sequences outlined in Table A-1. A draw application might consider a drawn geometric
shape as a graphic object, whereas a paint application might consider the pixels in an arbi-
trary area as the graphical object.

A.1 The XView Selection Model

The XView selection model is based upon the requestor/owner model of peer-to-peer com-
munications. The owner has the data representing the value of its selection, and the reques-
tor receives it.

In the X environment, all data transferred between an owner and a requestor must transfer via
the server. An X client cannot assume that another client can open the same files or even
communicate directly. Such assumptions might result in an application that does not work in
all network configurations or across heterogeneous computer architectures.

X makes provisions for selections and therefore generates certain events such as Proper-
tyNotify when a selection is acquired. For XView to implement its selection service,
XView tracks all events that might be generated from selections. Because of this, you cannot
use any of the selection mechanisms provided by Xlib. If you do, you will generate events
that you will not be able to receive and that XView will be confused about.

636 XView Programming Manual

The XView selection library deals with four discrete ranks under the general term selection.
Those ranks are: primary, secondary, shelf, and caret. Most familiar is the primary selection,
which is normally indicated on the screen by inverting (highlighting) its contents. Selections
made while a function key is held down (usually indicated with an underscore under the
selection) are considered secondary selections.* These selections are used when the primary
selection must be left undisturbed. The shelf (or clipboard) selection is used by the CUT and
COPY operations to load the selection, while the PASTE operation retrieves the selection.
Finally, the caret (the insertion point for interactive text objects) is also treated as a selection
even though it has no contents.

When a user interface element, such as a text subwindow, wants to allow the user to make a
selection, it must have a selection client. Through this client, the text subwindow can acquire
a selection rank (primary, secondary, etc) and provide it with data (text). An application can
have many such clients, but there is typically one client per XView object. Each selection
rank is associated with each client—a separate client need not be created just to utilize other
selection ranks. However, only one client can be the holder of a particular selection rank at
any one time. If a client wishes to acquire the selection, the current selection holder must
yield the selection to the new requestor. The client becomes the new holder of the selection
and might provide any data it chooses.

A.2 Using the Selection Service

It is not necessary to create a selection service client just to query the holder of a selection or
to get its contents. Since this is the most common usage, most of this chapter is dedicated to
explaining this level of functionality. Creating a selection is typically used internally by
packages in the XView library or by applications that wish to create their own objects that
need to communicate via the selection service. Doing this is generally very intricate and
complicated and is beyond the scope of this manual.

Nevertheless, to understand how to create a selection service client, it is best to learn how to
request information from an existing client. Once you understand what to expect from a
selection, you can understand how to create a client that provides information from other
requests. Therefore, the bulk of the chapter addresses the process of querying for selections
already provided by XView packages or other X-based applications.

OPEN LOOK assigns to function keys the special functions COPY, CUT, and PASTE. The
function keys generate and correspond to the XView events ACTION_CUT, ACTION_COPY,
and ACTION_PASTE. An OPEN LOOK application checks the state of these keys and modifies
the selection rank accordingly. Note that it is the responsibility of the XView application
(more specifically, each XView package) to set the state of the server’s selection rank
according to the state of some function keys. Unless you are writing your own XView pack-
age (a topic that this book does not address), you need not concern yourself about it.

*Which function key depends on your particular computer. By default the L6 function key should work for Sun
Workstations or the F6 key for other computers.

The Selection
Service

The Selection Service 637

Even though XView packages might query for the state of function keys, this does not inter-
fere with normal event processing. All events that your application has registered to receive
are not affected by the selection service. Note, however, that while the selection service
might react to the state of these function keys, any action you take as a result of these keys
might result in a dual action and might confuse the user. For example, if your application is
coded to change the font of a text subwindow in the event of an L8-up event, you will not
only get that event, but the selection service also gets it and will PASTE the contents of the
shelf selection.

Whenever using the selection service either as a client or to query the selection from another
client, application code must include the header file <xview/seln.h>. This file includes the
files <xview/sel_svc.h> and <xview/sel_attrs.h>, which provide external declarations of
available functions and data types.

A.3 Getting the Current Selection

Determining the current selection involves two steps: determining the holder of the current
selection and getting the actual selection data from the holder. To determine who is holding
the selection of a specified rank:

Seln_holder
selection_inquire(server, rank)

Xv_Server server;
Seln_rank rank;

The returned holder is used in other selection routines that allow you to access selection
data for that rank. For example, the call selection_ask() asks for the data held by the
holder of the selection. The form of the call is:

Seln_request *
selection_ask(server, holder, attrs)

Xv_Server server;
Seln_holder *holder;
<attribute-value list> attrs

The holder in this case is the address of the holder returned from the call to
selection_inquire().

The server is important to all the selection service routines because it identifies the X server
in which the selection is associated. Because X applications can communicate with more
than one server, specifying different servers can result in getting different selections.

The Seln_rank specifies which selection type you want. Its value corresponds with the
four selection ranks outlined in the beginning of the chapter. However, there are six legal
values in this enumerated data type:

SELN_UNKNOWN This is an error value, not a value you would use as a parameter or
a legal or known rank.

SELN_CARET The caret selection is used with text subwindows and text panel
items. It is usually used to describe where the insertion point is
within the corresponding text stream of the object so there is no

638 XView Programming Manual

data associated with the caret selection. This selection type is not
very widely used.

SELN_PRIMARY The primary selection is the most widely used and is usually the
default type in most user interfaces and applications.

SELN_SECONDARY As noted earlier, the secondary selection is only used if the pri-
mary selection must not be removed or lost—or if it must remain
clearly visible (visually selected) on the screen.

SELN_SHELF The selection buffers are stored in files. Clients of the selection
service do not access these files; the selection service just uses
them as temporary storage for data. As noted, this is not a good
place to hold selections.

SELN_UNSPECIFIED When this rank is used, either the primary or the secondary
selection is used depending on the state of the appropriate function
keys. This is usually passed as the rank parameter to
selection_inquire().

selection_ask() returns a pointer to a Seln_request data structure. The function
goes out and asks the server for the selection associated with the rank described in the
holder parameter. All the information about the selection is held in this data structure.
The attribute-value list following the holder parameter describes the attributes of the
selection you are interested in.

Before we go on, let’s show an example program that illustrates what we have covered so far.
The simple program in Example A-1 has a panel button that prints the current primary
selection to the standard output. The selection can be held by any client on the server.

Example A-1. The simple_seln.c program

/*
* simple_seln.c -- print the primary selection by pressing the panel
* button. The selection may have originated from any window or
* application on the server.
*/
#include <stdio.h>
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/server.h>
#include <xview/seln.h>

Xv_Server server;

main(argc, argv)
char *argv[];
{

Frame frame;
Panel panel;
void exit();
int print_seln();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

The Selection
Service

The Selection Service 639

Example A-1. The simple_seln.c program (continued)

frame = (Frame) xv_create(NULL, FRAME,
FRAME_LABEL, argv[0],
NULL);

panel = (Panel)xv_create(frame, PANEL,
WIN_WIDTH, WIN_EXTEND_TO_EDGE,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Print Selection",
PANEL_NOTIFY_PROC, print_seln,
NULL);

window_fit(panel);
window_fit(frame);

server = (Xv_Server)xv_get(xv_get(frame, XV_SCREEN), SCREEN_SERVER);

xv_main_loop(frame);
}

/*
* Get the selection using selection_ask(). Note that if the
* selection is bigger than about 2K, the whole selection will
* not be gotten with one call, thus this method of getting
* the selection may not be sufficient for all situations.
*/
int
print_seln(item, event)
Panel_item item;
Event *event;
{

Seln_holder holder;
Seln_request *response;
char text[BUFSIZ];

/* get the holder of the primary selection */
holder = selection_inquire(server, SELN_PRIMARY);
response = selection_ask(server, &holder,

SELN_REQ_CONTENTS_ASCII, NULL,
NULL);

strcpy(text, response->data + sizeof (SELN_REQ_CONTENTS_ASCII));
printf("–––selection–––\n%s\n–––end seln–––\n", text);

return XV_OK;
}

selection_ask() does not return until it has contacted the server and gotten a response
back from it. This implies that if the server does not respond, the application blocks until
either a time-out occurs or the selection is received. The attribute-value pair that is passed
(SELN_REQ_CONTENTS_ASCII, NULL) indicates that we are interested in the ASCII con-
tents of the selection. Whether the selection is successful or not, a pointer to a
Seln_request structure is returned. If there was an error, the status field of the

640 XView Programming Manual

structure will indicate so. If it succeeded, then the selection contents will be in the data
field of the structure. All this is clarified in the next section.

A.3.1 The Seln_request Structure

The Seln_request data structure returned from selection_ask() contains informa-
tion about the selection requested. The pointer returned points to static data that is overwrit-
ten on each call. Thus, if you need to save any of this data, it should be copied. The
Seln_request structure is defined as follows:

typedef struct {
Seln_replier_data *replier;
Seln_requester requester;
char *addressee;
Seln_rank rank;
Seln_result status;
unsigned buf_size;
char data[SELN_BUFSIZE];

} Seln_request;

If there is no selection or if the selection fails in any way, the status field in the data struc-
ture is set to one of the values in the enumerated type Seln_result. If status is set to
SELN_FAILED, then the data field should not be examined as it will not contain any reliable
values.

On the other hand, if selection_ask() returns successfully, the same attributes that
were passed into the function are copied into the data byte array along with the new values
(see Figure A-1).

Seln_request *request;

...

request = selection_ask(server, &holder,
SELN_REQ_FIRST, NULL,
SELN_REQ_LAST, NULL,
SELN_REQ_CONTENTS_ASCII, NULL,
NULL);

Figure A-1 shows what is returned assuming that the selection contained the string
“Now is the time for all ” The data field contains all the attributes passed in to
selection_ask(), but the attributes and the values are all aligned to 4-byte boundaries.
This includes the string returned from the selection. If the selection string is not a multiple of
4, then it is NULL-padded. The NULL-terminating byte of the string is required—if the last
character of the string aligns to a 4-byte boundary, the NULL-terminator pushes it into the
next 4-byte block and three more NULLs are required to align to the next boundary.

The value of buf_size is the number of bytes in the data array that is used by attribute-
value pairs including the text selection and alignment padding. The attributes
SELN_REQ_FIRST and SELN_REQ_LAST return the first and last indices into the object in
which the selection resides.*

*Currently, the text subwindow is the only XView object that responds to these requests—panel text items do not.

The Selection
Service

The Selection Service 641

null padding to
align to next
4-byte boundary

null terminator
for string
(required)

value of attribute (first)

value of attribute (last)

SELN_REQ_FIRST

SELN_REQ_CONTENTS_ASCII

SELN_REQ_LAST

4 bytes

buf_size in bytes

ATTR VAL ATTR VAL ATTR Now UNDEFINEDis t he t ime for all. ..ØØ

Figure A-1. Byte stream after selection_ask() returns the current text selection

To further demonstrate the use of the selection service, we will examine another program (see
Example A-2) that is a little more intricate but that still follows the same principles outlined
in the first program. The new program, text_seln.c, also helps explain some of the new con-
cepts introduced in this section.

text_seln.c contains a text subwindow in which selections can be made. A panel button that
prints the current primary selection is also provided. If the selection is made in the text
subwindow provided, information is printed about the relationship between the selected text
and the rest of the subwindow. The program makes more extensive use of the selection_
ask() function.

Example A-2. The text_seln.c program

/*
* text_seln.c -- print the primary selection from the server. If the
* selection is in a text subwindow, also print information about
* the line number(s) the selection spans and the indexes of
* the bytes within the textsw’s buffer.
*/
#include <stdio.h>
#include <xview/xview.h>
#include <xview/textsw.h>
#include <xview/panel.h>
#include <xview/server.h>
#include <xview/seln.h>

Xv_Server server;
Textsw textsw;

char *get_selection();

main(argc, argv)
char *argv[];
{

Frame frame;

642 XView Programming Manual

Example A-2. The text_seln.c program (continued)

Panel panel;
void exit();
int print_seln();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);
frame = (Frame)xv_create(NULL, FRAME,

FRAME_LABEL, argv[0],
NULL);

panel = (Panel)xv_create(frame, PANEL,
WIN_WIDTH, WIN_EXTEND_TO_EDGE,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Get Selection",
PANEL_NOTIFY_PROC, print_seln,
NULL);

window_fit(panel);

textsw = (Textsw)xv_create(frame, TEXTSW,
WIN_X, 0,
WIN_BELOW, panel,
WIN_ROWS, 10,
WIN_COLUMNS, 80,
TEXTSW_FILE_CONTENTS, "/etc/passwd",
NULL);

window_fit(frame);

server = (Xv_Server)xv_get(xv_get(frame, XV_SCREEN), SCREEN_SERVER);

xv_main_loop(frame);
}

int
print_seln()
{

char *text = get_selection();

if (text)
printf("–––selection–––\n%s\n–––end seln–––\n", text);

return XV_OK;
}

/*
* Get the selection using selection_ask(). Note that if the
* selection is bigger than about 2K, the whole selection will
* not be gotten with one call, thus this method of getting the
* selection may not be sufficient.
*/
char *
get_selection()
{

long sel_lin_num, lines_selected;

The Selection
Service

The Selection Service 643

Example A-2. The text_seln.c program (continued)

Textsw_index first, last;
Seln_holder holder;
Seln_result result;
int len;
Seln_request *response;
static char selection_buf[BUFSIZ];
register char *ptr;

/* get the holder of the primary selection */
holder = selection_inquire(server, SELN_PRIMARY);

/* If the selection occurs in the text subwindow, print lots of
* info about the selection.
*/
if (seln_holder_same_client(&holder, textsw)) {

/* ask for information from the selection service */
response = selection_ask(server, &holder,

/* get index of the first and last chars in the textsw */
SELN_REQ_FIRST, NULL,
SELN_REQ_LAST, NULL,
/* get the actual selection bytes */
SELN_REQ_CONTENTS_ASCII, NULL,
/* Now fool the textsw to think entire lines are selected */
SELN_REQ_FAKE_LEVEL, SELN_LEVEL_LINE,
/* Get the line numbers of beginning and ending of the
* selection */
SELN_REQ_FIRST_UNIT, NULL,
SELN_REQ_LAST_UNIT, NULL,
NULL);

/* set the ptr to beginning of data -- SELN_REQ_FIRST */
ptr = response->data;
/* "first" is data succeeding SELN_REQ_FIRST -- skip attr */
first = *(Textsw_index *)(ptr += sizeof(SELN_REQ_FIRST));
ptr += sizeof(Textsw_index); /* skip over value of "first" */
/* "last" is data succeeding SELN_REQ_LAST -- skip attr */
last = *(Textsw_index *)(ptr += sizeof(SELN_REQ_LAST));
ptr += sizeof(Textsw_index); /* skip over value of "last" */

/* advance pointer past SELN_REQ_CONTENTS_ASCII */
ptr += sizeof(SELN_REQ_CONTENTS_ASCII);
len = strlen(ptr); /* length of string in response */
(void) strcpy(selection_buf, ptr);
/*
* advance pointer past length of string. If the string length
* isn’t aligned to a 4-byte boundary, add the difference in
* bytes -- then advance pointer passed "value".
*/
if (len % 4)

len = len + (4 – (len % 4));
ptr += len + sizeof(Seln_attribute); /* skip over "value" */

/* advance pointer past SELN_REQ_FAKE_LEVEL, SELN_LEVEL_LINE */
ptr += sizeof(SELN_REQ_FAKE_LEVEL) + sizeof(SELN_LEVEL_LINE);

sel_lin_num = *(long *)(ptr += sizeof(SELN_REQ_FIRST_UNIT));
ptr += sizeof(long);

644 XView Programming Manual

Example A-2. The text_seln.c program (continued)

lines_selected = *(long *)(ptr += sizeof(SELN_REQ_LAST_UNIT));
ptr += sizeof(long);

/* hack to workaround bug with SELN_REQ_LAST_UNIT always
* returning -1. Count the lines explicitly in the selection.
*/
if (lines_selected < 0) {

register char *p;
lines_selected++;
for (p = selection_buf; *p; p++)

if (*p == ’\n’)
lines_selected++;

}
printf("index in textsw: %d–%d, line number(s) = %d–%d\n",

first+1, last+1, sel_lin_num+1,
sel_lin_num + lines_selected + 1);

} else {
/* the selection does not lie in our text subwindow */
response = selection_ask(server, &holder,

SELN_REQ_CONTENTS_ASCII, NULL,
NULL);

if (response->status != SELN_SUCCESS) {
printf("selection_ask() returns %d\n", response–>status);
return NULL;

}
(void) strcpy(selection_buf,

response->data + sizeof(SELN_REQ_CONTENTS_ASCII));
}
return selection_buf;

}

There are several points of interest here. In the function get_selection(), once the
holder of the client has been obtained, it is tested to see if the holder is the text subwindow
using seln_holder_same_client(). If so, selection_ask() is called requesting
information specific to the text subwindow. If the text subwindow is not the holder of the
selection, then selection_ask() is called requesting only the ASCII contents. If there is
no selection, then the status field of the structure is set to SELN_FAILED.

In the case where the holder is the text subwindow, we ask it for the first and last indices of
the selection relative to the beginning of the text stream. Note that we might not be able to
request this information from any object. For example, if the selection were inside an xterm,
then this information would not be available and the xterm’s selection client would not
respond to such requests.

The next attribute (SELN_REQ_CONTENTS_ASCII) requests the ASCII contents of the
selection actually made. Following that, the attribute-value pair:

SELN_REQ_FAKE_LEVEL, SELN_LEVEL_LINE

fools the text subwindow into thinking that the user selected an entire line of text (in
OPEN LOOK, this would have meant a triple-click with the SELECT mouse button). Had this
attribute-value pair been listed before the request for ASCII contents, the text returned by the
request would have contained the entire line of text on which the selection occurred regard-
less of whether the selection began at the beginning of the line.

The Selection
Service

The Selection Service 645

The reason we fake the text window into thinking the entire line has been selected is: the
attributes SELN_REQ_FIRST_UNIT and SELN_REQ_LAST_UNIT request the line numbers that
the selection spans. As the names of the attributes imply, the request is for the first and last
units selected. Setting the SELN_REQ_FAKE_LEVEL attribute to SELN_LEVEL_LINE indicates
that the unit type should be line. Note that we fake the fact that the selection unit is set to
line just to get the start and end line numbers of the selection. If we wanted to actually set
the level, we would have used SELN_REQ_SET_LEVEL.

After selection_ask() returns a pointer to a Seln_request structure, the values of
the requested attributes are found in data, the byte stream. As demonstrated in Example
A-2 above, the way to retrieve these values is by moving a pointer along the array:

Seln_request *response;
char *ptr;
long value;
...
response = selection_ask(server, &holder,

ATTR1, NULL,
ATTR2, NULL,
...
NULL);

...
/* set the ptr to beginning of data response -- first attribute */
ptr = response->data;
/* value is data succeeding first attribute -- skip over attr */
value = *(long *)(ptr += sizeof(Seln_attribute));
ptr += sizeof(long); /* skip over the size of the type of value */

There is no need to test the attributes as you scan data; they are the same attributes that you
used in selection_ask() and they remain in the same order. The values you get back
are almost always long.* The exception to this is the text string returned when
SELN_REQ_CONTENTS_ASCII is specified. However, the text string is padded to a 4-byte
boundary to make sure that the alignment is correct. text_seln.c demonstrates how this is
done.

A.4 Using selection_query()

One problem with using selection_ask() is handling large selections. In this context,
“large” means a text string that is long enough so that it, along with all its attributes and val-
ues, does not fit in the data byte-stream. Of course, the fewer attributes that are requested,
the more text is returned from the selection.

In this case, the problem is that there is an upper limit to the number of bytes that can be
retrieved from the selection. There is no guarantee that the user is not going to select a large
number of bytes from some arbitrary application on the screen. However, there is another
way to get the selection, regardless of how large it is, by using selection_query():

*Architectures whose int type does not equal its long type must be sure to compensate for this.

646 XView Programming Manual

Seln_result
selection_query(server, holder, reader, context, attrs)

Xv_Server server;
Seln_holder *holder;
Seln_result (*reader)();
char *context;
<attribute-value list> attrs

The primary feature of this routine is that you provide it with a pointer to a function that does
the scanning of the data array in the Seln_request structure, as demonstrated earlier.
Your reader function is called by selection_query(), and it gets the
Seln_request structure as the sole parameter to your function. Your function takes the
form of:

Seln_result
reader(request)

Seln_request *request;

Your function should return SELN_SUCCESS provided that you encountered no problems with
scanning request->data. selection_query() returns the same Seln_result
that your reader function returns. Your reader function is called by
selection_query() for each chunk of data in the selection.* The flowchart in Figure
A-2 shows the sequence of operations.

The program in Example A-3 demonstrates the use of selection_query(). It is similar
to text_seln.c, but this new program also provides for selections from one of three selection
ranks. The user chooses the selection rank from the panel choice item. When the Get
Selection button is pressed, the current selection from that selection rank is displayed.

The point of the program is to demonstrate the flow of control between
selection_query() and the client-installed reader procedure. The text subwindow in
the application loads the file /etc/termcap . When a selection is made,
selection_query() is called, which in turn calls the reader procedure. You can make
an arbitrarily large selection to show how read_proc is called many times. Start by ini-
tializing the selection and then scrolling the window and extending the selection by using the
ADJUST mouse button on later text. Select the Get Selection panel button and the output is
directed to stdout. Because the selection size can be large, the output text is truncated to
the first 20 characters of the selection.

Example A-3. The long_seln.c program

/*
* long_seln.c shows how to get an arbitrarily large selection by
* providing a reading procedure to selection_query(). The panel
* items allow the user to choose between 3 selection ranks.
*/
#include <xview/xview.h>
#include <xview/textsw.h>
#include <xview/panel.h>
#include <xview/seln.h>

*A chunk is the largest text string that will fit in the data field of the Seln_request structure.

The Selection
Service

The Selection Service 647

return-value
(Seln-result)

Yes

reader(Seln_request)

SELN_SUCCESS

SELN_???? (error)

No

(return-value)

More
selection
to read?

Error
reading
request?

No

Yes

selection_query()

Figure A-2. How selection_query() is used

Example A-3. The long_seln.c program (continued)

extern char *malloc();

Seln_rank seln_type = SELN_PRIMARY;

#define FIRST_BUFFER 0
#define NOT_FIRST_BUFFER !FIRST_BUFFER

char *seln_bufs[3]; /* contents of each of the three selections */

Seln_result read_proc(); /* supplied to selection_query() as reader */

Textsw textsw; /* select from this textsw */
Xv_Server server;
char *get_selection();

void
change_selection(item, value)

648 XView Programming Manual

Example A-3. The long_seln.c program (continued)

Panel_item item;
int value;
{

if (value == 0)
seln_type = SELN_PRIMARY;

else if (value == 1)
seln_type = SELN_SECONDARY;

else
seln_type = SELN_SHELF;

}

main(argc, argv)
char *argv[];
{

Frame frame;
Panel panel;
void print_seln(), exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);
frame = (Frame) xv_create(NULL, FRAME,

FRAME_LABEL, argv[0],
NULL);

panel = (Panel)xv_create(frame, PANEL,
WIN_WIDTH, WIN_EXTEND_TO_EDGE,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Get Selection",
PANEL_NOTIFY_PROC, print_seln,
NULL);

(void) xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Selection Type",
PANEL_CHOICE_STRINGS, "Primary", "Secondary", "Shelf", NULL,
PANEL_NOTIFY_PROC, change_selection,
NULL);

window_fit(panel);

textsw = (Textsw)xv_create(frame, TEXTSW,
WIN_X, 0,
WIN_BELOW, panel,
WIN_ROWS, 10,
WIN_COLUMNS, 80,
TEXTSW_FILE_CONTENTS, "/etc/termcap",
NULL);

window_fit(frame);
server = (Xv_Server)xv_get(xv_get(frame, XV_SCREEN), SCREEN_SERVER);
xv_main_loop(frame);

}

void
print_seln()

The Selection
Service

The Selection Service 649

Example A-3. The long_seln.c program (continued)

{
char *text = get_selection();

if (text)
printf("–––seln–––\n%.*s [...]\n–––end seln–––\n", 20, text);

}

/*
* return the text selected in the current selection rank. Use
* selection_query() to guarantee that the entire selection is
* retrieved. selection_query() calls our installed routine,
* read_proc() (see below).
*/
char *
get_selection()
{

Seln_holder holder;
Seln_result result;
Seln_request *response;
char context = FIRST_BUFFER;

holder = selection_inquire(server, seln_type);
printf("selection type = %s\n",

seln_type == SELN_PRIMARY? "primary" :
seln_type == SELN_SECONDARY? "secondary" : "shelf");

/* result is based on the return value of read_proc() */
result = selection_query(server, &holder, read_proc, &context,

SELN_REQ_BYTESIZE, NULL,
SELN_REQ_CONTENTS_ASCII, NULL,
NULL);

if (result == SELN_FAILED) {
puts("couldn’t get selection");
return NULL;

}

return seln_bufs[seln_type];
}

/*
* Called by selection_query for every buffer of information received.
* Short messages (under about 2000 bytes) will fit into one buffer.
* For larger messages, read_proc is called for each buffer in the
* selection. The context pointer passed to selection_query is
* modified by read_proc so that we know if this is the first buffer
* or not.
*/
Seln_result
read_proc(response)
Seln_request *response;
{

char *reply; /* pointer to the data in the response received */
long seln_len; /* total number of bytes in the selection */
static long seln_have_bytes;

/* number of bytes of the selection
* which have been read; cumulative over all calls for

650 XView Programming Manual

Example A-3. The long_seln.c program (continued)

* the same selection (it is reset when the first
* response of a selection is read)
*/

printf("read_proc status: %s (%d)\n",
response->status == SELN_FAILED? "failed" :
response->status == SELN_SUCCESS? "succeeded" :
response->status == SELN_CONTINUED? "continued" : "???",
response->status);

if (*response->requester.context == FIRST_BUFFER) {
reply = response->data;

/* read in the length of the selection -- first attribute.
* advance "reply" passed attribute to point to actual data.
*/
reply += sizeof(SELN_REQ_BYTESIZE);
/* set seln_len to actual data now. (bytes selected) */
seln_len = *(int *)reply;
printf("selection size is %ld bytes\n", seln_len);
/* advance "reply" to next attribute in list */
reply += sizeof(long);

/* create a buffer large enough to store entire selection */
if (seln_bufs[seln_type] != NULL)

free(seln_bufs[seln_type]);
if (!(seln_bufs[seln_type] = malloc(seln_len + 1))) {

puts("out of memory");
return(SELN_FAILED);

}
seln_have_bytes = 0;

/* move "reply" passed attribute so it points to contents */
reply += sizeof(SELN_REQ_CONTENTS_ASCII);
*response->requester.context = NOT_FIRST_BUFFER;

} else {
/* this is not the first buffer, so the contents of the
* response is just more of the selection
*/
reply = response->data;

}

/* copy data from received to the seln buffer allocated above */
(void) strcpy(&seln_bufs[seln_type][seln_have_bytes], reply);
seln_have_bytes += strlen(reply);

return SELN_SUCCESS;
}

The Selection
Service

The Selection Service 651

A.5 Selection Package Summary

Table A-2 lists the procedures and macros in the Selection Service. Table A-3 lists the
Selection Service Attributes.

Table A-2. Selection Service Procedures

Selection Procedures

selection_acquire() selection_inform()

selection_ask() selection_init_request()

selection_clear_functions() selection_inquire()

selection_create() selection_inquire_all()

selection_destroy() selection_query()

selection_done() selection_report_event()

selection_figure_response() selection_request()

selection_hold_file() selection_yield_all()

Table A-3. Selection Service Attributes

Selection Attributes Advanced Selection Attributes

SELN_REQ_BYTESIZE SELN_REQ_COMMIT_PENDING_DELETE

SELN_REQ_CONTENTS_ASCII SELN_REQ_CONTENTS_PIECES

SELN_REQ_DELETE SELN_REQ_FAKE_LEVEL

SELN_REQ_END_REQUEST SELN_REQ_FIRST

SELN_REQ_FILE_NAME SELN_REQ_FIRST_UNIT

SELN_REQ_YIELD SELN_REQ_LAST

SELN_REQ_LAST_UNIT

SELN_REQ_LEVEL

SELN_REQ_RESTORE

SELN_REQ_SET_LEVEL

652 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

B
The notice_prompt Function

This section describes the XView compatibility procedure notice_prompt(). If you
need to create a new notice, use the NOTICE package described in Chapter 12, Notices. The
information in this chapter describes the old notice interface that is supported for compatibil-
ity with older XView versions.

A notice is a pop-up window that notifies the user of a problem or asks a question that
requires an immediate response. The notice grabs the entire screen so no other windows or
applications can receive input until the user responds to the notice.

Notices are implemented using the FULLSCREEN package to grab the keyboard and pointer
events from the server. (The FULLSCREEN package is described in Chapter 15, Nonvisual
Objects.) The notice window, which owns the fullscreen object, is a nonrectangular transient
X window with the X-window attribute override_redirect* set. When the notice is
created, the notice window is immediately displayed. When the user responds to one of the
available choices, the notice session ends.

B.1 Creating and Displaying Notices

To use the NOTICE package in applications, the header file <xview/notice.h> must be
included. Notices are special XView objects because they are not created via
xv_create(). Also, they cannot be modified using xv_set(). Notices are created using
the special procedure notice_prompt():

int
notice_prompt(owner, event, attrs)

Xv_Window owner;
Event *event;
attributes ...

When creating a notice, the owner must be a valid XView object that has a window associ-
ated with it. This can be a panel or a frame, but it is typically the window that causes the
notice to be created. If the user tries to type in a read-only text subwindow, a notice might
appear from that window informing the user of the error. The event might be NULL if you
are not using NOTICE_TRIGGER (see Section 12.1.2, “Notice Triggers”).

*override_redirect tells the window manager to not provide window decorations.

The notice_prom
pt

Function

The notice_prompt Function 655

Because the notice window is not a part of any other XView package and it does not allow
window-specific attributes, you cannot use any generic, common or window attributes to
configure the notice window; you can only use NOTICE_* attributes.

Notice windows are explicitly specified by OPEN LOOK and cannot be modified. If you wish
to create a notice-type interface that is not OPEN LOOK compliant (which is not recom-
mended), you need to learn more about the fullscreen object described in Chapter 15, Non-
visual Objects.

Your application has control over the messages that are displayed in the notice window as
well as the choices available to the user as responses. notice_prompt() creates a win-
dow, grabs the server, waits for the user to make a selection on one of the available button
choices, then destroys the window. You never have a handle to the notice object itself—only
the resulting choice made by the user. The result is the return value of the
notice_prompt() function.

A very simple case of a notice prompt is demonstrated in Example B-1.

Example B-1. The simple_notice.c program

/*
* simple_notice.c -- Demonstrate the use of notices.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/notice.h>

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Xv_opaque my_notify_proc();

/*
* Initialize XView, create a frame, a panel and one panel button.
*/
xv_init(XV_INIT_ARGS, argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, my_notify_proc,
NULL);

/* make sure everything looks good */
window_fit(panel);
window_fit(frame);

/* start window event processing */
xv_main_loop(frame);

}

/*

656 XView Programming Manual

Example B-1. The simple_notice.c program (continued)

* my_notify_proc() -- called when the user selects the Quit button.
* The notice appears as a result of notice_prompt(). Here
* the user must chooses YES or NO to confirm or deny quitting.
*/
Xv_opaque
my_notify_proc(item, event)
Panel_item item;
Event *event;
{

int result;

result = notice_prompt(panel, NULL,
NOTICE_FOCUS_XY, event_x(event), event_y(event),
NOTICE_MESSAGE_STRINGS, "Do you really want to quit?", NULL,
NOTICE_BUTTON_YES, "Yes",
NOTICE_BUTTON_NO, "No",
NULL);

if (result == NOTICE_YES)
exit(0);

}

The program simple_notice.c contains a panel with a Quit button. When the user selects the
Quit button, a notice pops up to prompt the user for confirmation. What the user sees is
shown in Figure B-1. If the user presses “Yes,” the program exits.

Figure B-1. Output of simple_notice.c while the notice is up

The position from which the notice shadow emanates is described by the attribute
NOTICE_FOCUS_XY. This value defaults to the current mouse position when the application
calls notice_prompt(). As shown in simple_notice.c , the point from which the notice
shadow emanates appears to be the same position as the location where the panel button was

The notice_prom
pt

Function

The notice_prompt Function 657

selected. Due to possible delays with the X server, by the time the notice_prompt()
routine gets called, the location of the mouse may have moved from the place where the
panel button was selected. To be sure that the notice prompt appears to emanate from the
original mouse-down location, we use the coordinates of the mouse position from the event
structure. The values for NOTICE_FOCUS_XY are relative to the origin of the window passed
as the first parameter to notice_prompt().

B.1.1 Response Choices and Values

Two responses are normally present whenever a notice appears: “Yes” and “No.” These are
defined for convenience in <xview/notice.h>:

#define NOTICE_YES 1
#define NOTICE_NO 0

These are the return values that notice_prompt() might return that correspond directly
to the attributes NOTICE_BUTTON_YES and NOTICE_BUTTON_NO. As shown in
simple_notice.c , these are the only two choices made available to the user.

These two choices are special in another way: they respond to accelerator keys. That is, the
RETURN key can be used instead of selecting the NOTICE_BUTTON_YES button with the
pointer, and the STOP key can be used instead of selecting NOTICE_BUTTON_NO.

Also, when these choices are used, the cursor is immediately bound to the button associated
with NOTICE_BUTTON_YES because this is the default response to the notice. As a hint to the
programmer, it is always desirable to word all questions so the default answer is “Yes.”

It is quite common for the application to have more than one appropriate response to some
kind of notice prompt. Suppose that your application is an editor of some kind. If the user
selects the Quit button and there have been changes to the file that have not been accounted
for, you might wish to inform the user and allow more than one response: quit, updating
changes; quit, ignoring changes; or cancel the quit all together. To implement these new
choices, use the NOTICE_BUTTON attribute to define the choices available:

result = notice_prompt(panel, NULL,
NOTICE_MESSAGE_STRINGS,

"There have been modifications since your last update",
"Would you like to quit or continue editing?",
NULL,

NOTICE_BUTTON, "Quit, Update changes", 101,
NOTICE_BUTTON, "Quit, Ignore changes", 102,
NOTICE_BUTTON, "Continue Editing", 103,
NULL);

The NOTICE_BUTTON attribute takes two parameters: the button label* and the return value if
that button is selected. In this case, the possible return values for the call to
notice_prompt are 101, 102 and 103 (in addition to possible error return values). The
application should make its decision on how to proceed based on the return value.

*The button can display text only; no graphic images can be displayed.

658 XView Programming Manual

Because the NOTICE_BUTTON attribute is used, there is no default choice and no accelerators
associated with the notice; the user must use the pointer to select one of the available
choices.

B.1.2 Notice Triggers

If you want to assign accelerators to notice buttons, or if you find it necessary to give the user
the choice of using mouse buttons or keyboard events to respond to a notice, you can identify
triggers that cause the notice to return. The value returned in this case is
NOTICE_TRIGGERED, and the event that caused the trigger will be in the Event * passed in
the call to notice_prompt(). When triggers are not used, the Event * can be NULL.

Example B-2 shows how one might use the NOTICE_TRIGGER to get a particular event:

Example B-2. The trigger_notice.c program

/*
* trigger_notice.c -- Demonstrate the use of triggers in notices.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/notice.h>

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Xv_opaque my_notify_proc();
extern void exit();

/*
* Initialize XView, create a frame, a panel and one panel button.
*/
xv_init(XV_INIT_ARGS, argc, argv, NULL);
frame = (Frame)xv_create(XV_NULL, FRAME, NULL);
panel = (Panel)xv_create(frame, PANEL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Move",
PANEL_NOTIFY_PROC, my_notify_proc,
NULL);

/* make sure everything looks good */
window_fit(panel);
window_fit(frame);

/* start window event processing */
xv_main_loop(frame);

}

The notice_prom
pt

Function

The notice_prompt Function 659

Example B-2. The trigger_notice.c program (continued)

/*
* my_notify_proc() -- called when the user selects the "Move"
* panel button. Put up a notice_prompt to get new coordinates
* to move the main window.
*/
Xv_opaque
my_notify_proc(item, event)
Panel_item item;
Event *event;
{

int result, x, y;
Panel panel = (Panel)xv_get(item, PANEL_PARENT_PANEL);
Frame frame = (Frame)xv_get(panel, XV_OWNER);

x = event_x(event), y = event_y(event);
printf("original click relative to panel: %d, %d0, x, y);
result = notice_prompt(panel, event,

NOTICE_FOCUS_XY, x, y,
NOTICE_MESSAGE_STRINGS,

"You may move the window to a new location specified by",
"clicking the Left Mouse Button somewhere on the screen",
"or cancel this operation by selecting
NULL,

NOTICE_BUTTON_YES, "cancel",
NOTICE_TRIGGER, MS_LEFT,
NOTICE_NO_BEEPING, TRUE,
NULL);

if (result == NOTICE_TRIGGERED) {
x = event_x(event) + (int)xv_get(frame, XV_X);
y = event_y(event) + (int)xv_get(frame, XV_Y);
printf("screen x,y: %d, %d0, x, y);
xv_set(frame, XV_X, x, XV_Y, y, NULL);

}
}

When this program is run and the user selects the Move panel button, a notice is displayed
instructing the user to select a new position for the application window. When the user
selects a new location, the window frame moves to that position. Note that the window man-
ager adds a title bar and other decorations around the frame; do not expect the upper-left cor-
ner of the frame to move to the new position. The real frame’s origin is moved to the new
position, and the frame’s decorations are moved as well but not aligned to the same values (it
will be somewhat higher).

When notice_prompt() returns, the Event structure that was passed to it contains the
event that triggered the notice to return. The x and y coordinates in the Event structure are
relative to the origin of the notice owner window.

To translate these coordinates to screen-specific coordinates, save the original event location
and add to that the (x, y) coordinates returned when notice_prompt() returns as well as
the current coordinates of the frame (main application).

660 XView Programming Manual

Before leaving trigger_notice.c , we should mention the attribute NOTICE_NO_BEEPING that
is used to prevent the notice from beeping when it is displayed. Beeping the screen is usually
done when there is an error condition you wish to alert the user about. In this example, there
is no error condition—it is a simple dialog with the user.

B.2 Another Example

In the previous example, we used many of the attributes covered in this section in addition to
using some generic and common attributes for the panel items. Example B-3 goes a little fur-
ther to demonstrate how the NOTICE package works in conjunction with the rest of XView. It
creates a frame, a panel with two panel buttons and a message item. Initially, only the Quit
button and the Commit button are displayed. When the user selects either button, a notice
pops up asking the user to confirm or cancel the proposed action. If the user confirms quit-
ting the program, the program quits. Otherwise, the result, either Confirmed or Canceled, is
displayed as the text of the message item.

Example B-3. The notice.c program

/*
* notice.c --
* This application creates a frame, a panel, and 3 panel buttons.
* A message button, a Quit button (to exit the program) and a
* dummy "commit" button. Extra data is attached to the panel
* items by the use of XV_KEY_DATA. The callback routine for the
* Quit and Commit buttons is generalized enough that it can apply
* to either button (or any arbitrary button) because it extracts
* the expected "data" (via XV_KEY_DATA) from whatever panel
* button might have called it.
*/
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/notice.h>

/*
* assign "data" to panel items using XV_KEY_DATA ... attach the
* message panel item, a prompt string specific for the panel
* item’s notice_prompt, and a callback function if the user
* chooses "yes".
*/
#define MSG_ITEM 10 /* any arbitrary integer */
#define NOTICE_PROMPT 11
#define CALLBACK_FUNC 12

main(argc,argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Panel_item msg_item;
Xv_opaque my_notify_proc();
extern int exit();

The notice_prom
pt

Function

The notice_prompt Function 661

Example B-3. The notice.c program (continued)

/*
* Initialize XView, and create frame, panel and buttons.
*/
xv_init(XV_INIT_ARGS, argc, argv, NULL);
frame = (Frame)xv_create(XV_NULL, FRAME,

FRAME_LABEL, argv[0],
NULL);

panel = (Panel)xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

msg_item = (Panel_item)xv_create(panel, PANEL_MESSAGE, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, my_notify_proc,
XV_KEY_DATA, MSG_ITEM, msg_item,
/*
* attach a prompt specific for this button used by
* notice_prompt()
*/
XV_KEY_DATA, NOTICE_PROMPT, "Really Quit?",
/*
* a callback function to call if the user answers "yes"
* to prompt
*/
XV_KEY_DATA, CALLBACK_FUNC, exit,
NULL);

/*
* now that the Quit button is under the message item,
* layout horizontally
*/
xv_set(panel, PANEL_LAYOUT, PANEL_HORIZONTAL, NULL);
(void) xv_create(panel, PANEL_BUTTON,

PANEL_LABEL_STRING, "Commit...",
PANEL_NOTIFY_PROC, my_notify_proc,
XV_KEY_DATA, MSG_ITEM, msg_item,
/*
* attach a prompt specific for this button used by
* notice_prompt()
*/
XV_KEY_DATA, NOTICE_PROMPT, "Update all changes?",
/*
* Note there is no callback func here, but one could be
* written
*/
NULL);

window_fit(panel);
window_fit(frame);
xv_main_loop(frame);

}

/*
* my_notify_proc()
* The notice appears as a result of notice_prompt().
* The "key data" associated with the panel item is extracted via

662 XView Programming Manual

Example B-3. The notice.c program (continued)

* xv_get(). The resulting choice is displayed in the panel
* message item.
*/
Xv_opaque
my_notify_proc(item, event)
Panel_item item;
Event *event;
{

int result;
int (*func)();
char *prompt;
Panel_item msg_item;
Panel panel;

func = (int(*)())xv_get(item, XV_KEY_DATA, CALLBACK_FUNC);
prompt = (char *)xv_get(item, XV_KEY_DATA, NOTICE_PROMPT);
msg_item = (Panel_item)xv_get(item, XV_KEY_DATA, MSG_ITEM);
panel = (Panel)xv_get(item, PANEL_PARENT_PANEL);
/*
* Create the notice and get a response.
*/
result = notice_prompt(panel, NULL,

NOTICE_FOCUS_XY, event_x(event), event_y(event),
NOTICE_MESSAGE_STRINGS,

prompt,
"Press YES to confirm",
"Press NO to cancel",
NULL,

NOTICE_BUTTON_YES, "YES",
NOTICE_BUTTON_NO, "NO",
NULL);

switch(result) {
case NOTICE_YES:

xv_set(msg_item, PANEL_LABEL_STRING, "Confirmed", NULL);
if (func)

(*func)();
break;

case NOTICE_NO:
xv_set(msg_item, PANEL_LABEL_STRING, "Cancelled", NULL);
break;

case NOTICE_FAILED:
xv_set(msg_item, PANEL_LABEL_STRING, "unable to pop-up",
NULL);

break;
default:

xv_set(msg_item, PANEL_LABEL_STRING, "unknown choice",
NULL);

}
}

The notice_prom
pt

Function

The notice_prompt Function 663

B.3 Notice Package Summary

Table B-1 lists the attributes, procedures and macros for the NOTICE package. This informa-
tion is described fully in the appendices of the XView Reference Manual.

Table B-1. Notice Attributes, Procedures, and Macros

Attributes Procedures and Macros

NOTICE_BUTTON notice_prompt()

NOTICE_BUTTON_NO

NOTICE_BUTTON_YES

NOTICE_FOCUS_XY

NOTICE_FONT

NOTICE_MESSAGE_STRINGS

NOTICE_MESSAGE_STRINGS_ARRAY_PTR

NOTICE_NO_BEEPING

NOTICE_TRIGGER

664 XView Programming Manual

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

C
Mouseless Model Keyboard Mappings

This appendix lists information for the Mouseless Model, including the following:

• Resource mappings for the Mouseless Model key bindings.

• Semantic actions for the Mouseless Model.

• SunView1 to Mouseless Model keyboard command mappings.

C.1 Mouseless Model Resources

Each action’s mapping is determined by the value of a resource. The name of the resource is:

OpenWindows.KeyboardCommand. XViewSemanticAction

XViewSemanticAction is the name of the XView semantic action, without the ACTION_ pre-
fix. For the resource names, the underscore naming paradigm is changed to the capitalized
paradigm (see example). Each value for a resource has the form:

mapping[,mapping...]

and each mapping is of the form:

KeysymName[+Modifier . . .]

In other words, each mapping is separated by a comma, and if the keysym is modified, then
each modifier is separated by a plus sign. A modifier is either “Shift,” “Ctrl,” “Alt,” or
“Meta.” Note that when giving alphabetic characters as keysyms, the case of the Keysym-
Name is pertinent. For uppercase characters, use the uppercase alpha keysym, for example
“L”, instead of the lowercase with a “Shift” modifier. When an alphabetic character is not
modified by shift, then use the lowercase alpha keysym (e.g., l+Meta). Unmodified ASCII
keyboard commands should not be listed.

M
ouseless M

odel
Keyboard M

appings

Mouseless Model Keyboard Mappings 667

C.1.1 SunView1 Mappings

The following keyboard mappings are always loaded regardless of the setting of OpenWin-
dows.KeyboardCommands.

C.1.1.1 Keyboard core functions

OpenWindows.KeyboardCommand.Stop: L1
OpenWindows.KeyboardCommand.Again: a+Meta,a+Ctrl+Meta,L2
OpenWindows.KeyboardCommand.Props: L3
OpenWindows.KeyboardCommand.Undo: u+Meta,L4
OpenWindows.KeyboardCommand.Copy: c+Meta,L6
OpenWindows.KeyboardCommand.Paste: v+Meta,L8
OpenWindows.KeyboardCommand.FindForward: f+Meta,L9
OpenWindows.KeyboardCommand.FindBackward: F+Meta,L9+Shift
OpenWindows.KeyboardCommand.Cut: x+Meta,L10
OpenWindows.KeyboardCommand.Help: Help
OpenWindows.KeyboardCommand.MoreHelp: Help+Shift
OpenWindows.KeyboardCommand.TextHelp: Help+Ctrl
OpenWindows.KeyboardCommand.MoreTextHelp: Help+Shift+Ctrl
OpenWindows.KeyboardCommand.DefaultAction: Return+Meta
OpenWindows.KeyboardCommand.CopyThenPaste: p+Meta
OpenWindows.KeyboardCommand.Translate: R2

C.1.1.2 Local navigation commands

OpenWindows.KeyboardCommand.Up: p+Ctrl,N+Ctrl,Up,R8,Up+Shift
OpenWindows.KeyboardCommand.Down: n+Ctrl,P+Ctrl,Down,R14,Down+Shift
OpenWindows.KeyboardCommand.Left: b+Ctrl,F+Ctrl,Left,R10,Left+Shift
OpenWindows.KeyboardCommand.Right: f+Ctrl,B+Ctrl,Right,R12,Right+Shift
OpenWindows.KeyboardCommand.JumpLeft: comma+Ctrl,greater+Ctrl
OpenWindows.KeyboardCommand.JumpRight: period+Ctrl
OpenWindows.KeyboardCommand.GoPageBackward: R9
OpenWindows.KeyboardCommand.GoPageForward: R15
OpenWindows.KeyboardCommand.GoWordForward: slash+Ctrl,less+Ctrl
OpenWindows.KeyboardCommand.LineStart: a+Ctrl,E+Ctrl
OpenWindows.KeyboardCommand.LineEnd: e+Ctrl,A+Ctrl
OpenWindows.KeyboardCommand.GoLineForward: apostrophe+Ctrl,R11
OpenWindows.KeyboardCommand.DataStart: Home,R7,Return+Shift+Ctrl,Home+Shift
OpenWindows.KeyboardCommand.DataEnd: End,R13,Return+Ctrl,End+Shift

C.1.1.3 Text editing commands

OpenWindows.KeyboardCommand.SelectFieldForward: Tab+Ctrl
OpenWindows.KeyboardCommand.SelectFieldBackward: Tab+Shift+Ctrl
OpenWindows.KeyboardCommand.EraseCharBackward: Delete,BackSpace
OpenWindows.KeyboardCommand.EraseCharForward: Delete+Shift,BackSpace+Shift
OpenWindows.KeyboardCommand.EraseWordBackward: w+Ctrl
OpenWindows.KeyboardCommand.EraseWordForward: W+Ctrl
OpenWindows.KeyboardCommand.EraseLineBackward: u+Ctrl
OpenWindows.KeyboardCommand.EraseLineEnd: U+Ctrl
OpenWindows.KeyboardCommand.MatchDelimiter: d+Meta

668 XView Programming Manual

OpenWindows.KeyboardCommand.Empty: e+Meta,e+Ctrl+Meta
OpenWindows.KeyboardCommand.IncludeFile: i+Meta
OpenWindows.KeyboardCommand.Insert: Insert
OpenWindows.KeyboardCommand.Load: l+Meta
OpenWindows.KeyboardCommand.Store: s+Meta

C.1.2 Basic Mappings

When the OpenWindows.KeyboardCommands resource is set to Basic or Full, the fol-
lowing keyboard mappings are loaded.

C.1.2.1 Local navigation commands

OpenWindows.KeyboardCommand.Up: Up
OpenWindows.KeyboardCommand.Down: Down
OpenWindows.KeyboardCommand.Left: Left
OpenWindows.KeyboardCommand.Right: Right
OpenWindows.KeyboardCommand.JumpUp: Up+Ctrl
OpenWindows.KeyboardCommand.JumpDown: Down+Ctrl
OpenWindows.KeyboardCommand.JumpLeft: Left+Ctrl
OpenWindows.KeyboardCommand.JumpRight: Right+Ctrl
OpenWindows.KeyboardCommand.PaneUp: R9
OpenWindows.KeyboardCommand.PaneDown: R15
OpenWindows.KeyboardCommand.PaneLeft: R9+Ctrl
OpenWindows.KeyboardCommand.PaneRight: R15+Ctrl
OpenWindows.KeyboardCommand.RowStart: Home,R7
OpenWindows.KeyboardCommand.RowEnd: End,R13
OpenWindows.KeyboardCommand.DataStart: Home+Ctrl,R7+Ctrl
OpenWindows.KeyboardCommand.DataEnd: End+Ctrl,R13+Ctrl

C.1.2.2 Text editing commands

OpenWindows.KeyboardCommand.SelectUp: Up+Shift
OpenWindows.KeyboardCommand.SelectDown: Down+Shift
OpenWindows.KeyboardCommand.SelectLeft: Left+Shift
OpenWindows.KeyboardCommand.SelectRight: Right+Shift
OpenWindows.KeyboardCommand.SelectJumpUp: Up+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectJumpDown: Down+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectJumpLeft: Left+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectJumpRight: Right+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectRowStart: Home+Shift,R7+Shift
OpenWindows.KeyboardCommand.SelectRowEnd: End+Shift,R13+Shift
OpenWindows.KeyboardCommand.SelectPaneUp: R9+Shift
OpenWindows.KeyboardCommand.SelectPaneDown: R15+Shift
OpenWindows.KeyboardCommand.SelectPaneLeft: R9+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectPaneRight: R15+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectDataStart: Home+Shift+Ctrl,R7+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectDataEnd: End+Shift+Ctrl,R13+Shift+Ctrl
OpenWindows.KeyboardCommand.SelectAll: End+Shift+Meta
OpenWindows.KeyboardCommand.SelectNextField: Tab+Meta
OpenWindows.KeyboardCommand.SelectPreviousField: Tab+Shift+Meta
OpenWindows.KeyboardCommand.ScrollUp: Up+Alt

M
ouseless M

odel
Keyboard M

appings

Mouseless Model Keyboard Mappings 669

OpenWindows.KeyboardCommand.ScrollDown: Down+Alt
OpenWindows.KeyboardCommand.ScrollLeft: Left+Alt
OpenWindows.KeyboardCommand.ScrollRight: Right+Alt
OpenWindows.KeyboardCommand.ScrollJumpUp: Up+Alt+Ctrl
OpenWindows.KeyboardCommand.ScrollJumpDown: Down+Alt+Ctrl
OpenWindows.KeyboardCommand.ScrollJumpLeft: Left+Alt+Ctrl
OpenWindows.KeyboardCommand.ScrollJumpRight: Right+Alt+Ctrl
OpenWindows.KeyboardCommand.ScrollRowStart: Home+Alt,R7+Alt
OpenWindows.KeyboardCommand.ScrollRowEnd: End+Alt,R13+Alt
OpenWindows.KeyboardCommand.ScrollPaneUp: R9+Alt
OpenWindows.KeyboardCommand.ScrollPaneDown: R15+Alt
OpenWindows.KeyboardCommand.ScrollPaneLeft: R9+Alt+Ctrl
OpenWindows.KeyboardCommand.ScrollPaneRight: R15+Alt+Ctrl
OpenWindows.KeyboardCommand.ScrollDataStart: Home+Alt+Ctrl,R7+Alt+Ctrl
OpenWindows.KeyboardCommand.ScrollDataEnd: End+Alt+Ctrl,R13+Alt+Ctrl
OpenWindows.KeyboardCommand.EraseCharBackward: Delete,BackSpace
OpenWindows.KeyboardCommand.EraseCharForward: Delete+Shift,BackSpace+Shift
OpenWindows.KeyboardCommand.EraseLine: Delete+Meta,BackSpace+Meta

C.1.3 Full Mouseless Mappings

When the OpenWindows.KeyboardCommands resource is set to Full, the following key-
board mappings are loaded.

C.1.3.1 Keyboard core functions

OpenWindows.KeyboardCommand.Adjust: Insert+Alt
OpenWindows.KeyboardCommand.Menu: space+Alt
OpenWindows.KeyboardCommand.InputFocusHelp: question+Ctrl
OpenWindows.KeyboardCommand.QuoteNextKey: q+Alt
OpenWindows.KeyboardCommand.SuspendMouseless: z+Alt
OpenWindows.KeyboardCommand.ResumeMouseless: Z+Alt
OpenWindows.KeyboardCommand.JumpMouseToInputFocus: j+Alt

C.1.3.2 Global navigation commands

OpenWindows.KeyboardCommand.NextElement: Tab+Ctrl
OpenWindows.KeyboardCommand.PreviousElement: Tab+Shift+Ctrl
OpenWindows.KeyboardCommand.NextPane: a+Alt
OpenWindows.KeyboardCommand.PreviousPane: A+Alt

670 XView Programming Manual

C.1.3.3 Miscellaneous navigation commands

OpenWindows.KeyboardCommand.PanelStart: bracketleft+Ctrl
OpenWindows.KeyboardCommand.PanelEnd: bracketright+Ctrl
OpenWindows.KeyboardCommand.VerticalScrollbarMenu: v+Alt
OpenWindows.KeyboardCommand.HorizontalScrollbarMenu: h+Alt
OpenWindows.KeyboardCommand.PaneBackground: b+Alt

C.2 Mouseless Model Keyboard Semantic Actions

The following semantic actions are defined to support the Mouseless Model.

#define ACTION_ACCELERATOR (XVIEW_FIRST+74) /* 31818 */

#define ACTION_DELETE_SELECTION (XVIEW_FIRST+75) /* 31819 */

#define ACTION_ERASE_LINE (XVIEW_FIRST+76) /* 31820 */

#define ACTION_HORIZONTAL_SCROLLBAR_MENU (XVIEW_FIRST+77) /* 31821 */

#define ACTION_INPUT_FOCUS_HELP (XVIEW_FIRST+78) /* 31822 */

#define ACTION_JUMP_DOWN (XVIEW_FIRST+79) /* 31823 */

#define ACTION_JUMP_MOUSE_TO_INPUT_FOCUS (XVIEW_FIRST+80) /* 31824 */

#define ACTION_JUMP_UP (XVIEW_FIRST+81) /* 31825 */

#define ACTION_MORE_HELP (XVIEW_FIRST+82) /* 31826 */

#define ACTION_MORE_TEXT_HELP (XVIEW_FIRST+83) /* 31827 */

#define ACTION_NEXT_ELEMENT (XVIEW_FIRST+84) /* 31828 */

#define ACTION_NEXT_PANE (XVIEW_FIRST+85) /* 31829 */

#define ACTION_PANE_BACKGROUND (XVIEW_FIRST+86) /* 31830 */

#define ACTION_PANE_LEFT (XVIEW_FIRST+87) /* 31831 */

#define ACTION_PANE_RIGHT (XVIEW_FIRST+88) /* 31832 */

#define ACTION_PANEL_START (XVIEW_FIRST+89) /* 31833 */

#define ACTION_PANEL_END (XVIEW_FIRST+90) /* 31834 */

#define ACTION_PREVIOUS_ELEMENT (XVIEW_FIRST+91) /* 31835 */

#define ACTION_PREVIOUS_PANE (XVIEW_FIRST+92) /* 31836 */

#define ACTION_QUOTE_NEXT_KEY (XVIEW_FIRST+93) /* 31837 */

#define ACTION_RESUME_MOUSELESS (XVIEW_FIRST+94) /* 31838 */

#define ACTION_SCROLL_DATA_END (XVIEW_FIRST+95) /* 31839 */

#define ACTION_SCROLL_DATA_START (XVIEW_FIRST+96) /* 31840 */

#define ACTION_SCROLL_DOWN (XVIEW_FIRST+97) /* 31841 */

#define ACTION_SCROLL_JUMP_DOWN (XVIEW_FIRST+98) /* 31842 */

#define ACTION_SCROLL_JUMP_LEFT (XVIEW_FIRST+99) /* 31843 */

#define ACTION_SCROLL_JUMP_RIGHT (XVIEW_FIRST+100) /* 31844 */

#define ACTION_SCROLL_JUMP_UP (XVIEW_FIRST+101) /* 31845 */

#define ACTION_SCROLL_LEFT (XVIEW_FIRST+102) /* 31846 */

#define ACTION_SCROLL_LINE_END (XVIEW_FIRST+103) /* 31847 */

#define ACTION_SCROLL_LINE_START (XVIEW_FIRST+104) /* 31848 */

#define ACTION_SCROLL_RIGHT (XVIEW_FIRST+105) /* 31849 */

#define ACTION_SCROLL_PANE_DOWN (XVIEW_FIRST+106) /* 31850 */

#define ACTION_SCROLL_PANE_LEFT (XVIEW_FIRST+107) /* 31851 */

#define ACTION_SCROLL_PANE_RIGHT (XVIEW_FIRST+108) /* 31852 */

M
ouseless M

odel
Keyboard M

appings

Mouseless Model Keyboard Mappings 671

#define ACTION_SCROLL_PANE_UP (XVIEW_FIRST+109) /* 31853 */

#define ACTION_SCROLL_UP (XVIEW_FIRST+110) /* 31854 */

#define ACTION_SELECT_ALL (XVIEW_FIRST+111) /* 31855 */

#define ACTION_SELECT_DATA_END (XVIEW_FIRST+112) /* 31856 */

#define ACTION_SELECT_DATA_START (XVIEW_FIRST+113) /* 31857 */

#define ACTION_SELECT_DOWN (XVIEW_FIRST+114) /* 31858 */

#define ACTION_SELECT_JUMP_DOWN (XVIEW_FIRST+115) /* 31859 */

#define ACTION_SELECT_JUMP_LEFT (XVIEW_FIRST+116) /* 31860 */

#define ACTION_SELECT_JUMP_RIGHT (XVIEW_FIRST+117) /* 31861 */

#define ACTION_SELECT_JUMP_UP (XVIEW_FIRST+118) /* 31862 */

#define ACTION_SELECT_LEFT (XVIEW_FIRST+119) /* 31863 */

#define ACTION_SELECT_LINE_END (XVIEW_FIRST+120) /* 31864 */

#define ACTION_SELECT_LINE_START (XVIEW_FIRST+121) /* 31865 */

#define ACTION_SELECT_RIGHT (XVIEW_FIRST+122) /* 31866 */

#define ACTION_SELECT_PANE_DOWN (XVIEW_FIRST+123) /* 31867 */

#define ACTION_SELECT_PANE_LEFT (XVIEW_FIRST+124) /* 31868 */

#define ACTION_SELECT_PANE_RIGHT (XVIEW_FIRST+125) /* 31869 */

#define ACTION_SELECT_PANE_UP (XVIEW_FIRST+126) /* 31870 */

#define ACTION_SELECT_UP (XVIEW_FIRST+127) /* 31871 */

#define ACTION_SUSPEND_MOUSELESS (XVIEW_FIRST+128) /* 31872 */

#define ACTION_TEXT_HELP (XVIEW_FIRST+129) /* 31873 */

#define ACTION_TRANSLATE (XVIEW_FIRST+130) /* 31874 */

#define ACTION_VERTICAL_SCROLLBAR_MENU (XVIEW_FIRST+131) /* 31875 */

C.3 SunView1 Mappings for the Mouseless Model

The following mappings are defined to map SunView1 keyboard commands to the Mouseless
Model keyboard semantic actions. This section covers the SunView1 keyboard commands
that have the same function in both SunView1 and in the XView Mouseless Model.

#define ACTION_CANCEL ACTION_STOP

#define ACTION_DATA_END ACTION_GO_DOCUMENT_END

#define ACTION_DATA_START ACTION_GO_DOCUMENT_START

#define ACTION_DEFAULT_ACTION ACTION_DO_IT

#define ACTION_DOWN ACTION_GO_COLUMN_FORWARD

#define ACTION_JUMP_LEFT ACTION_GO_WORD_BACKWARD

#define ACTION_JUMP_RIGHT ACTION_GO_WORD_END

#define ACTION_LEFT ACTION_GO_CHAR_BACKWARD

#define ACTION_LINE_END ACTION_ROW_END

#define ACTION_LINE_START ACTION_ROW_START

#define ACTION_PANE_DOWN ACTION_GO_PAGE_FORWARD

#define ACTION_PANE_UP ACTION_GO_PAGE_BACKWARD

#define ACTION_PARAGRAPH_DOWN ACTION_JUMP_DOWN

#define ACTION_PARAGRAPH_UP ACTION_JUMP_UP

#define ACTION_RIGHT ACTION_GO_CHAR_FORWARD

#define ACTION_ROW_END ACTION_GO_LINE_END

672 XView Programming Manual

#define ACTION_ROW_START ACTION_GO_LINE_BACKWARD

#define ACTION_SCROLL_CHAR_BACKWARD ACTION_SCROLL_LEFT

#define ACTION_SCROLL_CHAR_FORWARD ACTION_SCROLL_RIGHT

#define ACTION_SCROLL_COLUMN_BACKWARD ACTION_SCROLL_UP

#define ACTION_SCROLL_COLUMN_FORWARD ACTION_SCROLL_DOWN

#define ACTION_SCROLL_DOCUMENT_END ACTION_SCROLL_DATA_END

#define ACTION_SCROLL_DOCUMENT_START ACTION_SCROLL_DATA_START

#define ACTION_SCROLL_ROW_END ACTION_SCROLL_LINE_END

#define ACTION_SCROLL_ROW_START ACTION_SCROLL_LINE_START

#define ACTION_SCROLL_PARAGRAPH_DOWN ACTION_SCROLL_JUMP_DOWN

#define ACTION_SCROLL_PARAGRAPH_UP ACTION_SCROLL_JUMP_UP

#define ACTION_SCROLL_WORD_BACKWARD ACTION_SCROLL_JUMP_LEFT

#define ACTION_SCROLL_WORD_END ACTION_SCROLL_JUMP_RIGHT

#define ACTION_SELECT_CHAR_BACKWARD ACTION_SELECT_LEFT

#define ACTION_SELECT_CHAR_FORWARD ACTION_SELECT_RIGHT

#define ACTION_SELECT_COLUMN_BACKWARD ACTION_SELECT_UP

#define ACTION_SELECT_COLUMN_FORWARD ACTION_SELECT_DOWN

#define ACTION_SELECT_DOCUMENT_END ACTION_SELECT_DATA_END

#define ACTION_SELECT_DOCUMENT_START ACTION_SELECT_DATA_START

#define ACTION_SELECT_NEXT_FIELD ACTION_SELECT_FIELD_FORWARD

#define ACTION_SELECT_PREVIOUS_FIELD ACTION_SELECT_FIELD_BACKWARD

#define ACTION_SELECT_ROW_END ACTION_SELECT_LINE_END

#define ACTION_SELECT_ROW_START ACTION_SELECT_LINE_START

#define ACTION_SELECT_PARAGRAPH_DOWN ACTION_SELECT_JUMP_DOWN

#define ACTION_SELECT_PARAGRAPH_UP ACTION_SELECT_JUMP_UP

#define ACTION_SELECT_WORD_BACKWARD ACTION_SELECT_JUMP_LEFT

#define ACTION_SELECT_WORD_END ACTION_SELECT_JUMP_RIGHT

#define ACTION_UP ACTION_GO_COLUMN_BACKWARD

M
ouseless M

odel
Keyboard M

appings

Mouseless Model Keyboard Mappings 673

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

D
Version 3.2 and the File Chooser

The XView File Chooser is an implementation of the OPEN LOOK Application File Choosing
Specification. The Application File Choosing Specification supercedes the traditional
OPEN LOOK Style Guide on the subject of opening and saving files from an application,
without the use of the File Manager. The file chooser also lets the user easily navigate
through the file system. Note that the file chooser is not intended to replace the File Man-
ager; any application supporting the file chooser is also required by the File Choosing Speci-
fication to support drag and drop with the File Manager, in accordance with the OPEN LOOK
Drag and Drop Specification.

File choosers provide a simple and consistent interface for opening and saving files to the
UNIX File System. File choosers also provide a Go To Menu for going to different direc-
tories which allows the user to easily select a directory from a predefined list, an application
defined list or a dynamicly created history list. Normally a file chooser will be presented
from an application’s File Menu. The user will then have selections for opening a document,
saving a document, or saving a document to a new name. Once one of these selections is
made, a file chooser object is presented.

D.1 Creating File Choosers

To use the FILE_CHOOSER package, include the header file <xview/file_chsr.h>. The object
type is File_chooser. The class hierarchy for the FILE_CHOOSER package is:

[Generic] -> [(Drawable)] -> [Window] -> [Frame_cmd] -> [File Chooser]

File choosers come in three types:

• FILE_CHOOSER_OPEN

• FILE_CHOOSER_SAVE

• FILE_CHOOSER_SAVEAS

Figure D-1 shows an example of an OPEN file chooser.

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 677

Figure D-1. File chooser Save dialog

678 Version 3.2 and the File Chooser

Figure D-2 shows an example of a SAVE file chooser which is similar to a SAVE AS file
chooser.

Figure D-2. File chooser Open dialog

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 679

These dialogs are presented from an application’s file pop-up menu. The user may select one
of the predefined package choices: “Open”, "Save”, “Save As”, or an application defined
choice such as “Import” or “Include”. Once the file chooser is open, the user is presented
with a frame containing several elements for navigating the folder hierarchy. These elements
include the Go To menu, the Current Folder field, the scrolling list, and the Open, Save or
Save As button area, which also includes a Cancel button. The Save and Save As file chooser
also include a type in field below the scrolling list where the saved file is named. Refer to the
figures for the relative layouts of these file chooser elements. Note: the packages that make
up these elements are public and include: FILE_LIST, PATH_NAME, HISTORY_LIST and HIS-
TORY_MENU. You can uses these packages for applications that require functionality similar
to that provided by any of these file chooser components. Refer to Section A.13, “File
Chooser Components” for information on using these packages. File chooser types are speci-
fied at create time using the FILE_CHOOSER_TYPE attribute. Alternatively, convenience
macros allow you to create each of the specified file chooser types as shown below:

File_chooser open_chsr;
File_chooser save_chsr;
File_chooser saveas_chsr;

open_chsr = (File_chooser) xv_create(owner,
FILE_CHOOSER_OPEN_DIALOG, NULL);

save_chsr = (File_chooser) xv_create(owner,
FILE_CHOOSER_SAVE_DIALOG, NULL);

saveas_chsr = (File_chooser) xv_create(owner,
FILE_CHOOSER_SAVEAS_DIALOG, NULL);

The owner of a File_chooser should be a base frame, but it can also be the root window,
NULL, just as with a command frame.

D.2 Using a File Chooser

Given the information provided so far, we can demonstrate to how to install a file chooser for
a menu item. Example D-1 shows a portion of a program which installs a File chooser on a
menu item. The complete program is found in Appendix F, Example Programs.

Example D-1. Portion of file_chooser.c program

/*
* Demonstrate the XView File Chooser
*/
#include <stdio.h>
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/textsw.h>
#include <xview/scrollbar.h>
#include <xview/file_chsr.h>

static Attr_attribute MY_KEY;

typedef struct {
Frame frame;

680 Version 3.2 and the File Chooser

Example D-1. Portion of file_chooser.c program (continued)

Panel panel;
Panel_button_item file_button;
Menu file_menu;
Textsw textsw;
File_chooser open;
File_chooser save;
File_chooser saveas;
File_chooser import;
char * doc_name;

} My_ui;

static void my_open_notify();
static void my_save_notify();
static void my_saveas_notify();
static void my_import_notify();
static int my_open_callback();
static int my_save_callback();

void
main(argc, argv)

int argc;
char **argv;

{
My_ui ui = {0};

(void) xv_init (XV_INIT_ARGC_PTR_ARGV,
&argc, argv, NULL);

MY_KEY = xv_unique_key();

ui.file_menu
= xv_create(XV_NULL, MENU,

MENU_ITEM,
MENU_STRING, "Open...",
MENU_NOTIFY_PROC, my_open_notify,
NULL,

MENU_ITEM,
MENU_STRING, "Import...",
MENU_NOTIFY_PROC, my_import_notify,
NULL,

MENU_ITEM,
MENU_STRING, "Save...",
MENU_NOTIFY_PROC, my_save_notify,
NULL,

MENU_ITEM,
MENU_STRING, "Save As...",
MENU_NOTIFY_PROC, my_saveas_notify,
NULL,

XV_KEY_DATA, MY_KEY, &ui,
NULL);

ui.frame = xv_create(XV_NULL, FRAME,
XV_LABEL, "Demo Text Editor",
FRAME_SHOW_FOOTER, TRUE,
NULL);

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 681

Example D-1. Portion of file_chooser.c program (continued)

ui.panel = xv_create(ui.frame, PANEL, NULL);

ui.file_button = xv_create(ui.panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "File",
PANEL_ITEM_MENU, ui.file_menu,
NULL);

window_fit_height(ui.panel);

ui.textsw = xv_create(ui.frame, TEXTSW,
XV_X, 0,
WIN_BELOW, ui.panel,
NULL);

xv_main_loop(ui.frame);
exit(0);

}

/*
* Picked "Open" off of File Menu.
*/
static void
my_open_notify(menu, mi)

Menu menu;
Menu_item mi;

{
My_ui *ui = (My_ui *)xv_get(menu, XV_KEY_DATA, MY_KEY);

if (!ui->open) {
ui->open

= xv_create(ui->frame, FILE_CHOOSER_OPEN_DIALOG,
XV_LABEL, "Text Editor: Open",
FILE_CHOOSER_NOTIFY_FUNC, my_open_callback,
XV_KEY_DATA, MY_KEY, ui,
NULL);

}

xv_set(ui->open, XV_SHOW, TRUE, NULL);
}

/*
* Picked OPEN off of File Menu.
* See Appendix F for full example
*/

my_open_callback(fc, path, file, client_data)
File_chooser fc;
char *path;
char *file;
Xv_opaque client_data;

{
My_ui *ui = (My_ui *)xv_get(fc, XV_KEY_DATA, MY_KEY);
Textsw_status status;
char buf[512];

xv_set(fc, FRAME_BUSY, TRUE, NULL);

682 Version 3.2 and the File Chooser

Example D-1. Portion of file_chooser.c program (continued)

xv_set(ui->textsw,
TEXTSW_STATUS, &status,
TEXTSW_FILE, path,
TEXTSW_FIRST, 0,
NULL);

if (status != TEXTSW_STATUS_OKAY) {
window_bell(ui->frame);
xv_set(ui->frame,

FRAME_LEFT_FOOTER, "Unable to load file!",
NULL);

xv_set(fc, FRAME_BUSY, FALSE, NULL);
return XV_ERROR;
}

/* Set current doc name on the Save popup. */
(void) sprintf(buf, "%s.1", file);
if (ui->saveas)

xv_set(ui->saveas, FILE_CHOOSER_DOC_NAME, buf, NULL);
else {

if (ui->doc_name)
free(ui->doc_name);

ui->doc_name = strdup(buf);
}

(void) sprintf(buf, "Demo Text Editor – %s", file);
xv_set(ui->frame,
XV_LABEL, buf,
NULL);

xv_set(fc, FRAME_BUSY, FALSE, NULL);

return XV_OK;
}
.
.
.

D.3 Notification from a File Chooser

When a user presses the “Open” or “Save” button on a File chooser, the FILE_CHOOSER

package first tries to validate the given path name. If the path name passes the validation, the
client is notified using the notify function specified with FILE_CHOOSER_NOTIFY_FUNC. If
the attribute FILE_CHOOSER_NO_CONFIRM is set to TRUE, the validation step does not occur.

The callbacks for the Open and Save operations are different. The Open Callback takes the
form:

int
open_callback(fc, path, file, client_data)
File_chooser fc;

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 683

char * path;
char * file;
Xv_opaque client_data;

The path argument is the full path to the file. Use the attribute FILE_CHOOSER_DIRECTORY
to obtain the path. The file argument is strictly the file-name portion of the path. The
client_data arugment is the client_data field set for the row in the display list from
the FILE_CHOOSER_FILTER_FUNC.

The Save and Save As callbacks take the form:

int
save_callback(fc, path, stats)

File_chooser fc;
char * path;
struct stat * stats;

The path parameter is the full path of the file to be saved. The stats parameter is a
pointer to the file’s stat structure, if the file exists, or NULL if the file does not exist.

D.4 Controlling the File Chooser Display List

The view of the file system that the FILE_CHOOSER displays in the scrolling list (the file list)
can be controlled by the client using a system of three callbacks and/or a regular expression
string. Using these file list controls, the file chooser can gray out files that are not selectable.
An application may choose to gray out object files (.o files) or files otherwise not openable
for the particular application.

The flow of control for loading a new directory into the file chooser’s file list is as follows:

1. Call the callback specified with the FILE_CHOOSER_CD_FUNC attribute with an op of
FILE_CHOOSER_BEFORE_CD. If XV_ERROR is returned, leave the list empty and return.

2. Match each file against the regular expression given with the FILE_CHOOSER_FIL-

TER_STRING attribute This attribute is used primarily with the OPEN type file chooser to
gray out files in the file list that cannot be opened.

3. If the mask specified with FILE_CHOOSER_FILTER_MASK matches the file attributes, then
invoke the FILE_CHOOSER_FILTER_FUNC. If the callback filter-func returns
FILE_CHOOSER_IGNORE, gray out the file name.

4. After reading all the files, sort them using the order specified by the callback installed
with FILE_CHOOSER_COMPARE_FUNC.

5. After sorting, insert the list of files into the FILE_LIST object without repainting and call
the FILE_CHOOSER_CD_FUNC with an op of FILE_CHOOSER_AFTER_CD.

6. Finally, redisplay the list of files as the new contents of File chooser. This also adds the
current folder into the Goto Menu.

These steps, and control sequence for the attributes in the file chooser are summarized in the
following control flow diagram. More details are presented in the following sections.

684 Version 3.2 and the File Chooser

/* FILE_CHOOSER_CD_FUNC */
if (call cd_func(before-cd) != XV_OK)

return

while (more files) {
/* FILE_CHOOSER_FILTER_STRING */

matched = current file / filter-string
/* FILE_CHOOSER_MATCH_GLYPH */

assign default glyph
/* FILE_CHOOSER_FILTER_MASK */
/* FILE_CHOOSER_FILTER_FUNC */

if (current file in filter-mask)
call filter-func

if (file accepted) /* FILE_CHOOSER_ABREV_VIEW */
add to list

}
/* FILE_CHOOSER_COMPARE_FUNC */

sort the list, using the compare_func

insert the new list of files into Scrolling List
/* FILE_CHOOSER_CD_FUNC */

call cd_func(after-cd)

redisplay Scrolling List to user

D.4.1 Monitoring Directory Changes

An application may require the flexibility to intercept a change of directory or to modify the
list of files after the file list has been built and before it is shown to the user. Setting the
FILE_CHOOSER_CD_FUNC attribute installs a callback that is issued twice during a directory
change. The first time, it is called with a File_chooser_op of FILE_
CHOOSER_BEFORE_CD, this allows the client to return XV_ERROR to prevent the directory
change. The change directory function could be called at this stage to veto a change of direc-
tory if the application treats a directory specially. For example, Interleaf uses a directory to
store book files, that make up a single “document”. Thus a Interleaf application could open a
directory as a document rather than the individual files in the directory.

The second invocation of the change directory function callback is after the dispay list has
been built. The callback’s op parameter is set to FILE_CHOOSER_AFTER_CD. This allows the
client to modify the file list before the user sees it. If xv_set calls are used on the file list
from inside the change directory callback, be sure to set PANEL_PAINT for the file list to
PANEL_NONE.

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 685

D.4.2 Filtering

Files which are not “openable” by the application will be grayed out in the disply list. The
application may select files for special filtering using FILE_CHOOSER_FILTER_STRING

and/or FILE_CHOOSER_FILTER_MASK.

Using FILE_CHOOSER_FILTER_STRING, an application may specify a regular expression to
match parts of a file name such as a common postfix (for example .c for C source files).
Files that match this expression will then be grayed out in the file list. Along with this regu-
lar expression matching, the application may specify a Server_image that automatically
is displayed for each file that matches. The Server_image for matched files is specified
by FILE_CHOOSER_MATCH_GLYPH and FILE_CHOOSER_MATCH_GLYPH_MASK. By default,
the filter string is set to NULL which disables pattern matching entirely.

Another method for filtering the file list is by specifing a callback that allows the application
to qualify each file and return information such as a Server_image to be displayed with
the file and a client_data field to return to the “open” notify callback. The filter callback
is installed using FILE_CHOOSER_FILTER_FUNC. The files for wich this callback gets issued
can be selected with the FILE_CHOOSER_FILTER_MASK attribute which takes an or’d list of
type File_chooser_filter_mask flags.

D.4.3 File Chooser Sorting

The default sorting algorithm used by the FILE_CHOOSER package is alpha-numeric without
case sensitivity. If a different sort algorithm is appropriate for a particular application, the
different sort routine may be installed with the FILE_CHOOSER_COMPARE_FUNC attribute.
This attribute works using the qsort(3) library routine.

XView provides several built-in comparison functions for ascending and descending case-
sensitive or case-insensitive sorts. Also, the comparison functions are given arguments of
type File_chooser_row which includes information such as the file name, the associated
stat(3) structure, the strxfrm(3) version of the string and the File_chooser_op of
FILE_CHOOSER_MATCHED or FILE_CHOOSER_NOT_MATCHED with respect to the
FILE_CHOOSER_FILTER_STRING. This provides a highly flexible and efficient means of
sorting files.

686 Version 3.2 and the File Chooser

D.5 Modifying the Display List

There are several attributes that allow the client to modify the display of files in a file
chooser. A file chooser’s default values comply with the OPEN LOOK Application File
Choosing Specification. Note that the File Choosing Specification requires the client to pro-
vide an appropriate human interface to revert to the default behavior if the client changes the
default behavior (for example, the application should provide a toggle that turns off the dis-
play of dot files if the application displays dot files.)

D.5.1 Dot Files

Since most dot files are created by applications and not directly by the user, the file chooser
does not show dot files by default (also, user testing has shown that dot files often confuse
end-users). If an application needs to show dot files in the file list display, the attribute
FILE_CHOOSER_SHOW_DOT_FILES toggles their display.

D.5.2 Abbreviated View

Some applications may only need to show those files that are relevant to the application. In
this case, files that are not openable may be removed from the file list, rather than being
displayed as grayed out items. This functionality may be turned on by setting the
FILE_CHOOSER_ABBREV_VIEW attribute to TRUE. Warning: use of this attribute is recom-
mended only for applications that expect very technical users who will understand that files
not being displayed is not a problem.

D.6 File Chooser Customization

The application has the option of adding permanent application-specific entries into the file
chooser Go To menu. The attribute FILE_CHOOSER_APP_DIR sets the values for these
entries.

Some applications may need to do use a non-standard configuration with the Go To menu.
This is achieved by creating a custom History_list object and attaching it to a file
chooser with the FILE_CHOOSER_HISTORY_LIST attribute. Once installed, the
FILE_CHOOSER package will add “Recent Entries” to the installed list as the user navigates
the file system.

Other modifications for the Go To history list and menu can be accomplished using the HIS-
TORY_LIST and HISTORY_MENU attributes. The last section of this chapter list the HISTORY
attributes. Refer to the XView Reference Manual for additional information on these attri-
butes.

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 687

The Save and Save As FILE_CHOOSERs can include a default name in the field for the File
type in. You specify this default name using the FILE_CHOOSER_DOC_NAME attribute. For a
Save file chooser, the default document name should be Untitled1. For a Save As File
Chooser, the default document name should be “current document”.1.

In some circumstances, the application may wish to save more than one file to a directory.
The file chooser Save dialog does not provide for this very well, so there is an option to gray
out the Save typein while leaving the Save button available to the user. This is toggled with
the FILE_CHOOSER_SAVE_TO_DIR attribute.

Since the file chooser has elements that are public it is possible to get handles to the objects
that make up the file chooser, either by the FILE_CHOOSER_CHILD interface or by
PANEL_EACH_ITEM, etc. For example, the file chooser’s FILE_LIST object is available in
this manner. Keep in mind that values that are not gotten or set via the parent
FILE_CHOOSER API are not guaranteed to be compatible across releases of the XView
toolkit.

The attribute FILE_CHOOSER_AUTO_UPDATE modifies the action of a FILE_CHOOSER. This
attribute tells the FILE_CHOOSER to re-read its current directory only when
FILE_CHOOSER_UPDATE is explicitly called, or when the user performs some action to read
the directory.

D.7 Customizing the File Chooser Dialog

The OPEN LOOK Application File Choosing Specification defines two methods for
OPEN LOOK-Compliant file chooser customization. The first, and simplest, is to modify the
Open dialog and define a custom File Chooser, such as an “Import” or an “Include” File
Chooser. Using the attributes supplied for adding a custom button, this change is not difficult.
For example,

File_chooser open_chsr;

open_chsr = (File_chooser) xv_create(owner,
FILE_CHOOSER_OPEN_DIALOG,
FILE_CHOOSER_CUSTOMIZE_OPEN,
"Import",
"Select a file or folder and click Import",

FILE_CHOOSER_SELECT_FILES,
NULL);

The first argument supplied to the attribute FILE_CHOOSER_CUSTOMIZE_OPEN is the label for
the new custom button. The second argument is the line of text that is placed above the Scrol-
ling List. The third argument is an enum value that represents whether this custom operation
can deal with files (that is, if the item can only use files this argument is set to
FILE_CHOOSER_SELECT_FILES, otherwise, if both files and directories are valid it is set to
FILE_CHOOSER_SELECT_ALL).

The second way to customize the XView file chooser is to add custom controls to the file
chooser panel. Implementing this is a multi-step process.

688 Version 3.2 and the File Chooser

The OPEN LOOK Application File Choosing Specification mandates that custom controls be
placed under the Scrolling List (and below the Save typein), but above the buttons at the bot-
tom of the dialog. To implement this, the FILE_CHOOSER package reserves an area, called
the extension rectangle, in part of the dialog space. By default, the extension rectangle has a
height of 0 pixels; the client make may this area a specific size using the
FILE_CHOOSER_EXTEN_HEIGHT attribute.

The FILE_CHOOSER package leaves much of the responsibility for layout and sizing of cus-
tom controls in the hands of the client. The client has the responsibility of positioning cus-
tom controls within the extention rectangle area during layout and resizing. The callback
installed with the attribute FILE_CHOOSER_EXTEN_FUNC handles resizing and layout.

Other responsibilities of the client when adding custom controls include adjusting the default
and minimum sizes for the Frame.

Example D-2 illustrates adding an extension item to a file chooser.

Example D-2. An extension item program

File_chooser fc;
Panel panel;
Panel_item item;
int item_width;
int item_height;
int frame_width;
int frame_height;

panel = xv_get(fc, FRAME_CMD_PANEL);

item = xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Hidden Files:",
PANEL_CHOICE_STRINGS, "Hide", "Show", NULL,
PANEL_NOTIFY_PROC, my_show_dot_files_proc,
NULL);

item_width = (int) xv_get(item, XV_WIDTH);
item_height = (int) xv_get(item, XV_HEIGHT);

/*
* Adjust Frame default size to make room for the extension item.
*/
frame_width = (int) xv_get(fc, XV_WIDTH);
frame_height = (int) xv_get(fc, XV_HEIGHT);
xv_set(fc,

XV_WIDTH, MAX(frame_width, (item_width + xv_cols(panel, 4))),
XV_HEIGHT, frame_height + item_height,
NULL);

/*
* Adjust Frame Min Size. provide for at least 2
* columns on either side of the extension item.
*/
xv_get(fc, FRAME_MIN_SIZE, &frame_width, &frame_height);
xv_set(fc,

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 689

Example D-2. An extension item program (continued)

FRAME_MIN_SIZE, MAX(frame_width, (item_width + xv_cols(panel, 4))),
frame_height + item_height,

NULL);

/* Tell file chooser to reserve layout space for it */

xv_set(fc,
FILE_CHOOSER_EXTEN_HEIGHT, item_height,
FILE_CHOOSER_EXTEN_FUNC, my_exten_func,
XV_KEY_DATA, EXTEN_ITEM_KEY, item,
NULL);

/* [.................] */

static int
my_exten_func(fc, frame_rect, exten_rect,

left_edge, right_edge, max_height)
File_chooser fc;
Rect *frame_rect;
Rect *exten_rect;
int left_edge;
int right_edge;
int max_height;

{
Panel_item item = (Panel_item) xv_get(fc,

XV_KEY_DATA, EXTEN_ITEM_KEY);
int item_width;

item_width = (int) xv_get(item, XV_WIDTH);

/*
* show item centered in frame.
*/

xv_set(item,
XV_X, (frame_rect->r_width - item_width) / 2,
XV_Y, exten_rect->r_top,
PANEL_PAINT, PANEL_NONE,
NULL);

return -1; /* (-1) means exten height didn’t change */
}

D.7.1 File Chooser Components

Internally, the file chooser is uses three high-level interfaces: the FILE_LIST package, the
PATH_NAME packge, and the HISTORY package. The FILE_LIST package is a subclass of
PANEL_LIST; it handles all of the navigation and display of the UNIX File System. The
PATH_NAME package is a subclass of PANEL_TEXT; it handles shell variable and tilde expan-
sion. The HISTORY package implements a shareable command history through the XView

690 Version 3.2 and the File Chooser

Menu and Menu_item packages (the Go To menus in the file chooser use this). If your file
manipulation needs do not fall within the scope of the OPEN LOOK Application File Choos-
ing Specification, you have the option of designing your own dialog with the same compo-
nents the File uses. Since the FILE_CHOOSER package implements a particular look and feel,
which may not suffice for all application needs, the component parts are made available.

[Generic] -> [Panel_item] -> [Panel_list_item] -> [File_list]
[Generic] -> [Panel_item] -> [Panel_text_item] -> [Path_name]
[Generic] -> [History_menu]
[Generic] -> [History_list]

D.8 Version 3.2 Additions

This section lists additional changes for available with XView Version 3.2 and new releases.

D.8.1 New Panel List Attributes for Version 3.2

Version 3.2 of XView offers a new and improved method for adding entries to a
PANEL_LIST. Version 3.2 offers the following new attributes for panel lists:

PANEL_LIST_INACTIVE
PANEL_LIST_DELETE_INACTIVE_ROWS
PANEL_LIST_DO_DBL_CLICK
PANEL_LIST_MASK_GLYPH
PANEL_LIST_MASK_GLYPHS
PANEL_LIST_ROW_VALUES
PANEL_LIST_EXTENSION_DATA
PANEL_LIST_EXTENSION_DATAS

D.8.1.1 Adding new list entries

The attribute PANEL_LIST_ROW_VALUES offers an improved performance method of get-
ting/setting row values in a PANEL_LIST. This attribute takes the row number, a pointer to a
Panel_list_row_values array, and a count of how many rows in the array. The enum
Panel_list_row_values is defined as shown below:

typedef struct {
char * string;
Server_image glyph;
Server_image mask_glyph;
Xv_font font;
Xv_opaque client_data;
Xv_opaque extension_data;
unsigned inactive : 1;
unsigned selected : 1;
} Panel_list_row_values;

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 691

On get, the arguments remain the same, the array passed in gets filled in by the PANEL_LIST
package. The return value is the number of rows that were successfully filled in.

Example D-3 shows a portion of a program which uses the new PANEL_LIST insertion
method.

Example D-3. Program that adds values to a panel list

/*
* Demonstrate the use of the PANEL_LIST_ROW_VALUES attribute
*/

#include <stdio.h>
#include <xview/xview.h>
#include <xview/font.h>
#include <xview/panel.h>

static Attr_attribute MY_KEY;

static void my_clear_proc();
static void my_load_proc();
static void my_print_proc();

typedef struct {
Frame frame;
Panel_list_item list;
Xv_font font;

} My_ui;

void
main (argc, argv)

int argc;
char **argv;

{
Panel panel;
My_ui ui;

(void) xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);
MY_KEY = xv_unique_key();

ui.frame = xv_create (XV_NULL, FRAME,
XV_LABEL, "New Load",
FRAME_SHOW_FOOTER, TRUE,
NULL);

panel = xv_create (ui.frame, PANEL, NULL);

(void) xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Load",
PANEL_NOTIFY_PROC, my_load_proc,
XV_KEY_DATA, MY_KEY, &ui,
NULL);

(void) xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Clear",

692 Version 3.2 and the File Chooser

Example D-3. Program that adds values to a panel list (continued)

PANEL_NOTIFY_PROC, my_clear_proc,
XV_KEY_DATA, MY_KEY, &ui,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Print Selected Row",
PANEL_NOTIFY_PROC, my_print_proc,
XV_KEY_DATA, MY_KEY, &ui,
NULL);

ui.list = xv_create(panel, PANEL_LIST,
PANEL_LIST_WIDTH, 300,
PANEL_LIST_DISPLAY_ROWS, 8,
NULL);

ui.font = xv_create(XV_NULL, FONT,
FONT_FAMILY, FONT_FAMILY_DEFAULT,
FONT_STYLE, FONT_STYLE_BOLD,
NULL);

window_fit (panel);
window_fit (ui.frame);
xv_main_loop (ui.frame);

}

static void
my_clear_proc(item, event)

Panel_item item;
Event *event;

{
My_ui *ui = (My_ui *)xv_get(item, XV_KEY_DATA, MY_KEY);
int rows = (int)xv_get(ui->list, PANEL_LIST_NROWS);

if (rows > 0)
xv_set(ui->list,

PANEL_LIST_DELETE_ROWS, 0, rows,
NULL);

xv_set(ui->frame, FRAME_LEFT_FOOTER, "", NULL);
}

static void
my_load_proc(item, event)

Panel_item item;
Event *event;

{
My_ui *ui = (My_ui *)xv_get(item, XV_KEY_DATA, MY_KEY);
int ii;
Panel_list_row_values vals[1000];
char buf[64];

xv_set(ui->frame, FRAME_BUSY, TRUE, NULL);

for(ii=0; ii<1000; ++ii) {
vals[ii].string = "Testing PANEL_LIST_ROW_VALUES";

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 693

Example D-3. Program that adds values to a panel list (continued)

vals[ii].font = ui->font;
vals[ii].glyph = XV_NULL;
vals[ii].mask_glyph = XV_NULL;
vals[ii].client_data = ui->font;
vals[ii].selected = FALSE;
vals[ii].inactive = FALSE;
}

xv_set(ui->list,
PANEL_LIST_ROW_VALUES, 0, &vals, 1000,
NULL);

(void) sprintf(buf, "%d rows in list",
(int) xv_get(ui->list, PANEL_LIST_NROWS)
);

xv_set(ui->frame,
FRAME_LEFT_FOOTER, buf,
FRAME_BUSY, FALSE,
NULL);

}

static void
my_print_proc(item, event)

Panel_item item;
Event *event;

{
My_ui *ui = (My_ui *)xv_get(item, XV_KEY_DATA, MY_KEY);
Panel_list_row_values vals;
int row = (int) xv_get(ui->list, PANEL_LIST_FIRST_SELECTED);
int count;

count = (int) xv_get(ui->list, PANEL_LIST_ROW_VALUES, row, &vals, 1);

if (count != 1) {
window_bell(ui->frame);
xv_set(ui->frame,

FRAME_LEFT_FOOTER, "Unable to get row",
FRAME_BUSY, FALSE,
NULL);

return;
}

printf("Row Number %d:0, row);
printf(" String: %s0, vals.string);
printf(" Selected: %d0, vals.selected);
printf(" Inactive: %d0, vals.inactive);

}

694 Version 3.2 and the File Chooser

D.8.1.2 Other panel list changes

This section describes the additional changes for the panel list package.

The attribute PANEL_LIST_INACTIVE "Grays out” a row in a PANEL_LIST. Note that a row
that is inactive cannot be selected. Also, mouseless model navigation is not effected by the
inactive state of the individual rows.

The attribute PANEL_LIST_DELETE_INACTIVE_ROWS deletes all inactive rows from the list.
This is similar to PANEL_LIST_DELETE_SELECTED_ROWS attribute.

The PANEL_LIST_DO_DBL_CLICK attribute tells PANEL_LIST to interpret two select events
that occur within the timout value as a double-click instead of as a second select or a deselect
(depending on the current mode of the list). The timeout value is specified with Open
Windows.MulticlickTimeout If true, the PANEL_LIST will deliver a new op called
PANEL_LIST_OP_DBL_CLICK instead of the normal PANEL_LIST_OP_SELECT or
PANEL_LIST_OP_DESELECT.

The attributes PANEL_LIST_MASK_GLYPH and PANEL_LIST_MASK_GLYPHS tell the
PANEL_LIST to use the given Server_image as a clip mask for the corresponding
PANEL_LIST_GLYPH. The Server_image supplied must be of depth 1. PANEL_
LIST_MASK_GLYPHS is like like PANEL_LIST_MASK_GLYPH, but takes a NULL terminated
list of glyphs rather than a row and a single handle.

The attributes PANEL_LIST_EXTENSION_DATA and PANEL_LIST_EXTENSION_DATAS are the
same as PANEL_LIST_CLIENT_DATA, except they are reserved for package implementors.
This is used by the FILE_LIST package.

D.9 Keyboard Menu Accelerators

The keyboard menu accelerator functionality in XView provides attributes to associate an
accelerator with a menu item. Keyboard menu accelerators can be used to invoke menu com-
mands directly without having to display the menu in which the commands appear. These
accelerators provide a more efficient path to familiar menu functionality.

Accelerators are global to a frame of an application. The accelerator key strokes are
displayed on the right side of the menu item. The diamond symbol represents the meta key.
If there are qualifiers such as Control (ctrl), Shift (shift) or Alt (alt), indicated on the menu
item, those keys are to be used in conjunction with the accelerator key and possibly the Meta
key (if the diamond symbol exists on the menu item).

If a menu is pinned, the accelerators will not be displayed on the menu, as a way to conserve
screen space. Although the accelerators are not visible on the menu, they are still active and
can be used as long as the input focus is in the application frame where the menu was first
brought up.

Menu accelerators are activated if the resource OpenWindows.MenuAccelerators is
set to True (the default case for OpenWindows Version 3.2). This resource can be set using
the “Keyboard” category of the OpenWindows(Version 3.2) Workspace Properties program.
Setting “Keyboard Menu Equivalents” to “Application + Window” or “Application Only”

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 695

sets the OpenWindows.MenuAccelerators resource to True, while the “None” setting
will set the resource to False.

D.9.0.1 Frame package menu accelerator attributes

The attributes FRAME_MENUS, FRAME_MENU_COUNT, FRAME_MENU_ADD, and
FRAME_MENU_DELETE are used in conjunction with menu accelerators. They are used to
inform the frame object which menus will be used on the frame - this is required because the
frame has to know what menu accelerators to detect. Any menus with accelerators that are
used anywhere on the frame, i.e. on panels, textsw, canvas will not work until they are regis-
tered using these attributes.

The attribute FRAME_MENUS replaces the current menu list with the one passed on the avlist.
For get, this return a pointer to the current list of menus. The list returned should not be
modified by the application.

Menu *menu_list;

xv_set(frame1, FRAME_MENUS,
edit_menu, load_menu, NULL,
NULL);

menu_list = (Menu *)xv_get(frame1, FRAME_MENUS);

The number of menus can be obtained with FRAME_MENU_COUNT.

int menu_count;

menu_count = (int)xv_get(frame2, FRAME_MENU_COUNT);

The attribute FRAME_MENU_COUNT returns the current number of menus registered on the
frame via FRAME_MENUS, FRAME_MENU_ADD, or FRAME_MENU_DELETE.

The attribute FRAME_MENU_ADD appends to the list of accelerated menus on the frame. For
example:

xv_set(frame1,
FRAME_MENU_ADD, print_menu,
NULL);

The attribute FRAME_MENU_DELETE deletes from the list of accelerated menus on the frame.

xv_set(frame1,
FRAME_MENU_DELETE, print_menu,
NULL);

696 Version 3.2 and the File Chooser

D.9.0.2 The menu attributes for menu accelerators

The following attributes provide functionality to define menu accelerators for menu items.
The basic difference for menu accelerators is that when an accelerator (eg. Meta+l) is
pressed, the menu is not brought up. Instead, the procedures that are normally called when
one selects a menu item, are called directly.

Each new attribute below corresponds to one of many ways of creating a menu item. The
attribute MENU_STRINGS_AND_ACCELERATORS and MENU_ACTION_ACCELERATOR are for
static creation of menu items for a given menu.

The attribute MENU_ACCELERATOR, when used in a create or set call, set an accelerator on a
menu item:

Menu menu;

menu = xv_create(NULL, MENU
MENU_ITEM,

MENU_STRING, "Load",
MENU_NOTIFY_PROC, load_proc,
MENU_ACCELERATOR, "Meta+l",

NULL,
NULL);

or

Menu_item load_item;

load_item = xv_create(NULL, MENU_ITEM,
MENU_STRING, "Load",
MENU_NOTIFY_PROC, load_proc,
MENU_ACCELERATOR, "Meta+l",
NULL);

The accelerator string will be copied by XView. A get returns the accelerator string. The
string returned should not be modified.

The attribute MENU_ACTION_ACCELERATOR can be used to create a menu item with a given
label, notify procedure, and accelerator:

xv_set(menu,
MENU_ACTION_ACCELERATOR,

"Load", load_proc, "Meta+L",
NULL);

The menu item label string, the first argument, will not be copied by XView. The accelerator
string, argument three, will be copied.

MENU_STRINGS_AND_ACCELERATORS can be used to create a menu item with a given label
and accelerator:

xv_set(menu, MENU_NOTIFY_PROC, file_proc,
MENU_STRINGS_AND_ACCELERATORS,

"Load", "Meta+l",
"Print", "Meta+p",
"Include","Meta+Ctrl+i",

NULL,
NULL);

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 697

The accelerator strings will be copied by XView. The menu item label strings will not be
copied.

For all the attributes above, if an accelerator is changed with xv_set, the attribute
FRAME_MENUS must be set again before the change to the accelerator will take effect.

Callback procedures registered using MENU_NOTIFY_PROC, MENU_GEN_PROC, and
MENU_DONE_PROC will be called the same way for menu accelerators as if the menu item was
selected using the menu directly.

The accelerators can be specified in a number of ways. These specifications are a combina-
tion of Xt, OLIT, and XView syntaxes:

Xt: [modifier...] ’<Key>’key
OLIT: [OLITmodifier...] ’<’key’>’
XView: [modifier [’+’ modifier] ’+’] key
modifier: ’Meta’ | ’Shift’ | ’Alt’ | ’Hyper’ | ’Ctrl’ |
OLITmodifier: modifier | ’m’ | ’s’ | ’a’ | ’h’ | ’c’

Key: all print characters and X keysym names (e.g. ’return’, ’tab’, ’comma’, ’period’,
etc . . .)

Note: keysym names consist of the entries in <X11/keysymdef.h> without the “XK_” prefix.
For example:

Meta+Shift+a
Meta+comma
Meta <Key>c
Shift Meta <Key>I
m <z>

D.9.0.3 Resources

The resource <appname>.<menu item instance name>.accelerator can be used to override the
accelerator specified using the attributes described above.

For example, in the application ’foo’, if we have:

load_item = xv_create(NULL, MENUITEM,
XV_INSTANCE_NAME, "load",
MENU_STRING, "load",
MENU_ACCELERATOR, "Meta+l",
MENU_NOTIFY_PROC, load_action,

NULL);

The "Meta+l” can be overriden by having the following entry in your X resource database:

foo.load.accelerator:Meta+b

The load action will be done when “Meta+b” is pressed instead of “Meta+l”. Note:
XV_INSTANCE_NAME will need to be used to give the menu item an instance name.

698 Version 3.2 and the File Chooser

D.9.0.4 Core set menu accelerators

Various menu accelerators for “common features” of OpenWindows (e.g. Print, Save, Quit,
Undo, Paste, etc.) are called the core set menu accelerators. These accelerators are special in
that they are specified using the string: "coreset <core set name>" instead of the
syntax mentioned above. For example:

load_item = xv_create(NULL, MENUITEM,
MENU_STRING, "Open",
MENU_ACCELERATOR, "coreset Open",
MENU_NOTIFY_PROC, load_action,
NULL);

The core set menu accelerators will be activated only if the X resources:

OpenWindows.MenuAccelerator.<core set name>:<accelerator string>

are present. For example:

OpenWindows.MenuAccelerator.Open:Meta<key>o

This means that the key combination meta-o is the menu accelerator for the “open” action.
These resources can also be used to rebind the core set accelerators. The advantage of core
set accelerators is that all applications that use them will have uniform accelerators (use the
same key bindings for the same functions). Rebinding using the resource above will affect all
such applications.

The list of possible values of <core set name> and the default case-sensitive resource bind-
ings for OpenWindows.MenuAccelerator.<core set name> are as follows:

Core set accelerator Default binding

BoldFont Shift Meta <Key>B

Copy Meta<Key>c

Cut Meta <Key>x

Find Meta <Key>f

ItalicFont Shift Meta <Key>I

New Meta <Key>n

NormalFont Shift Meta <Key>N

Open Meta <Key>o

Paste Meta <Key>v

Print Meta <Key>p

Props Meta <Key>i

Redo Shift Meta <Key>Z

Save Meta <Key>s

SelectAll Meta <Key>a

Typeface Meta <Key>t

Undo Meta <Key>z

In OpenWindows 3.2, the above bindings are set by default upon startup.

Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 699

D.9.0.5 Events

When a menu is brought up using menu_show() and a menu item is selected, it is possible
to query the menu using the attribute MENU_FIRST_EVENT to obtain the event
(event_action(event) == ACTION_MENU) that was passed into menu_show(),
presumably the event that caused the menu to be brought up.

Event *menu_event;

menu_event = (Event *)xv_get(menu, MENU_FIRST_EVENT);

When a menu item notify procedure is called using a menu accelerator, MENU_FIRST_EVENT
will return the event corresponding to the accelerator. That is, the event that corresponds to
“Meta+l”. The action id, obtained using the event_action() macro, will be
ACTION_ACCELERATOR. The window id in the event will be the subwindow that had input
focus (and received the key event) at the time.

D.10 File Chooser and Version 3.2 Additions Summary

Table D-1 lists the procedures macros for the File Chooser. Table D-2 lists the attributes and
macros the File Chooser. This section also lists the attributes for the HISTORY, FILE_LIST
and PATH packages, as well as the XView Version 3.2 and newer PANEL_LIST and MENU

accelerator additions. This information is described fully in the XView Reference Manual.

Table D-1. File Chooser Procedures and Macros

Procedures and Macros

fchsr_case_ascend_compare() FILE_CHOOSER_OPEN_DIALOG

fchsr_case_descend_compare() FILE_CHOOSER_SAVE_DIALOG

fchsr_no_case_ascend_compare() FILE_CHOOSER_SAVEAS_DIALOG

fchsr_no_case_descend_compare() FILE_CHOOSER_NULL_COMPARE

FILE_CHOOSER_DEFAULT_COMPARE

Table D-2. File Chooser Attributes

FILE_CHOOSER_ABBREV_VIEW FILE_CHOOSER_FILTER_MASK

FILE_CHOOSER_APP_DIR FILE_CHOOSER_FILTER_STRING

FILE_CHOOSER_AUTO_UPDATE FILE_CHOOSER_HISTORY_LIST

FILE_CHOOSER_CD_FUNC FILE_CHOOSER_MATCH_GLYPH

FILE_CHOOSER_CHILD FILE_CHOOSER_MATCH_GLYPH_MASK

FILE_CHOOSER_COMPARE_FUNC FILE_CHOOSER_NOTIFY_FUNC

FILE_CHOOSER_CUSTOMIZE_OPEN FILE_CHOOSER_NO_CONFIRM

FILE_CHOOSER_DIRECTORY FILE_CHOOSER_SAVE_TO_DIR

FILE_CHOOSER_DOC_NAME FILE_CHOOSER_SHOW_DOT_FILES

700 Version 3.2 and the File Chooser

Table D-2. File Chooser Attributes (continued)

FILE_CHOOSER_EXTEN_FUNC FILE_CHOOSER_TYPE

FILE_CHOOSER_EXTEN_HEIGHT FILE_CHOOSER_UPDATE

FILE_CHOOSER_FILTER_FUNC

Table D-3. History and History Menu Attributes

HISTORY_ADD_FIXED_ENTRY HISTORY_MENU_HISTORY_LIST

HISTORY_ADD_ROLLING_ENTRY HISTORY_MENU_OBJECT

HISTORY_DUPLICATE_LABELS HISTORY_NOTIFY_PROC

HISTORY_DUPLICATE_VALUES HISTORY_ROLLING_COUNT

HISTORY_FIXED_COUNT HISTORY_ROLLING_MAXIMUM

HISTORY_INACTIVE HISTORY_VALUE

HISTORY_LABEL

Table D-4. File List Attributes

FILE_LIST_ABBREV_VIEW FILE_LIST_MATCH_GLYPH

FILE_LIST_AUTO_UPDATE FILE_LIST_MATCH_GLYPH_MASK

FILE_LIST_CHANGE_DIR_FUNC FILE_LIST_ROW_TYPE

FILE_LIST_COMPARE_FUNC FILE_LIST_SHOW_DIR

FILE_LIST_DIRECTORY FILE_LIST_SHOW_DOT_FILES

FILE_LIST_DOTDOT_STRING FILE_LIST_UPDATE

FILE_LIST_FILTER_FUNC FILE_LIST_USE_FRAME

FILE_LIST_FILTER_MASK

FILE_LIST_FILTER_STRING

Table D-5. Path Attributes

PATH_IS_DIRECTORY

PATH_USE_FRAME

PATH_RELATIVE_TO

PATH_LAST_VALIDATED Version 3.2 and
the File Chooser

Version 3.2 and the File Chooser 701

Table D-6. Version 3.2 Panel List Attributes

PANEL_LIST_INACTIVE PANEL_LIST_MASK_GLYPHS

PANEL_LIST_DELETE_INACTIVE_ROWS PANEL_LIST_ROW_VALUES

PANEL_LIST_DO_DBL_CLICK PANEL_LIST_EXTENSION_DATA

PANEL_LIST_MASK_GLYPH PANEL_LIST_EXTENSION_DATAS

Table D-7. Version 3.2 Menu Accelerator Attributes

FRAME_MENUS MENU_ACCELERATOR

FRAME_MENU_COUNT MENU_ACTION_ACCELERATOR

FRAME_MENU_ADD MENU_STRINGS_AND_ACCELERATORS

FRAME_MENU_DELETE

702 Version 3.2 and the File Chooser

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

E
OPEN LOOK User-interface

Compliance

This appendix lists the ways that the XView Toolkit is not compliant with the OPEN LOOK
Graphical User Interface Functional Specification . It is not a complete list of the ways that
OpenWindows 3.0 is not an OPEN LOOK UI-compliant environment. OPEN LOOK UI com-
pliance has two components: toolkit compliance and environment compliance.

An OPEN LOOK UI-compliant toolkit allows a developer to write an application that will be
OPEN LOOK UI-compliant if run with an OPEN LOOK UI window manager. The toolkit
might also support the application running successfully with, for example, a MOTIF win-
dow manager, but in such a configuration, the application would not be OPEN LOOK UI-com-
pliant. An OPEN LOOK UI-compliant environment consists of an OPEN LOOK UI window
manager, file manager, workspace properties window, and other such utility programs. To
guarantee an OPEN LOOK UI application, the developer must write the application with an
OPEN LOOK UI-compliant toolkit and run the application in an OPEN LOOK UI-compliant
environment.

This list is in three parts. The first part consists of those features missing from XView 3.0
that are specified as Level 1 OPEN LOOK UI features. The second part lists some of the
Level 2 OPEN LOOK UI features supported by XView 3.0. The third part lists the rest of the
Level 2 OPEN LOOK UI features, which are not supported by XView 3.0.

E.1 Level 1 Features Not Supported in XView 3.0

The Level 1 features listed on the following pages are not supported in XView 3.0.

E.1.1 Keyboard and Mouse Customization

XView 3.0 hard-codes the bindings for function keys, mouse buttons, and mouse modifiers
that OPEN LOOK UI says the user should be able to customize.

OPEN LOOK UI
Com

pliance

OPEN LOOK User Interface Compliance 705

An OPEN LOOK UI toolkit should allow the user to specify the keys used for CUT, COPY,
PASTE, PROPERTIES, UNDO, CANCEL, DEFAULTACTION, NEXTFIELD, and PREVFIELD.

• In XView 3.0, these key bindings are hard-coded to L10, L6, L8, L3, L4, L1, Return,
Tab, and Shift-Tab.

An OPEN LOOK UI toolkit should allow the user to change the mouse buttons used for
SELECT, ADJUST, and MENU; the specified default mouse button bindings are LEFT, MIDDLE,
and RIGHT.

• In XView 3.0, the specified default mouse button bindings are hard-coded.

An OPEN LOOK UI toolkit should allow the user to change the mouse modifiers used for
SETMENUDEFAULT, DUPLICATE, PAN, and CONSTRAIN. The specified default modified mouse
actions are Control-RIGHT for SETMENUDEFAULT, Control-LEFT for DUPLICATE,
Meta-LEFT for PAN, and LEFT-and-MIDDLE-chorded for CONSTRAIN.

• In XView 3.0, the specified defaults for SETMENUDEFAULT and DUPLICATE are hard-
coded, and PAN and CONSTRAIN are not supported.

In an OPEN LOOK UI toolkit, clicking ADJUST when there is no selection will set an initial
insert point (the same as clicking SELECT).

• In XView 3.0, this selects a single character.

In an OPEN LOOK UI toolkit, the user can bind a modified mouse action to selecting a single
character, but the default binding is NONE.

• In XView 3.0, selecting a single character is hard-coded to clicking ADJUST when there
is no selection.

E.1.2 Default Buttons in Pop Ups

In an OPEN LOOK UI toolkit, notices, command windows, and property windows must
always have a “default button,” even when there is only one button, and that the DEFAULT-
ACTION keyboard accelerator always invokes the default button.

• XView 3.0 does not provide this automatically, but applications can implement this fea-
ture using XView primitives.

E.1.3 Help

In an OPEN LOOK UI toolkit, help text can have bold text, italic text, and glyphs (small pic-
tures).

• XView 3.0 does not support this.

706 XView Programming Manual

E.1.4 Window Background

In an OPEN LOOK UI toolkit, window backgrounds are used to access the Window menu, to
select a window, and to move it by dragging.

• XView 3.0 does not support this.

E.1.5 Notices

In an OPEN LOOK UI toolkit, notices do not freeze the screen; input to other applications is
always possible.

• In XView 3.0, making notices that freeze the screen is determined by the user (applica-
tion programmer).

In an OPEN LOOK UI toolkit, each window of an application displays the standard busy pat-
tern in the header when a notice is displayed.

• XView 3.0 this is determined by the user (application programmer).

E.1.6 Text Functions

In an OPEN LOOK UI toolkit, an UNDO after an UNDO reverses the effect of the UNDO, restoring
the original state.

• In XView 3.0, the second UNDO undoes the next-previous edit. There is no way in
XView 3.0 to reverse the effect of an UNDO.

E.1.7 Control Items

In an OPEN LOOK UI toolkit, an abbreviated menu button can have a text field to the right of
the menu button. The text field is used to add items to the menu.

• XView 3.0 the application level supports this behavior as an option.

In an OPEN LOOK UI toolkit, menu buttons (and abbreviated menu buttons) highlight on
MENU down, and change to the standard busy pattern on MENU-up in stay-up mode.

• XView 3.0 does not provide this.

In an OPEN LOOK UI toolkit, a default setting for exclusive and non-exclusive settings is
only displayed when the controls are used on a menu.

• XView 3.0 indicates a default setting for exclusive and non-exclusive settings even
when the controls are used in command and property windows.

OPEN LOOK UI
Com

pliance

OPEN LOOK User Interface Compliance 707

In an OPEN LOOK UI toolkit, an indeterminate state is defined on exclusive and non-exclu-
sive settings.

• XView 3.0 does not support this.

In an OPEN LOOK UI toolkit, the bold border width on exclusive and non-exclusive settings
is adjusted (to either 2 or 3 pixels) depending on the display resolution.

• XView 3.0 does not provide this.

E.1.8 Property Windows

In an OPEN LOOK UI toolkit, there is a required Settings pop-up menu for a property window.

• XView 3.0 does not provide this automatically, but applications can implement this
menu themselves.

In an OPEN LOOK UI toolkit, property windows have two required buttons, Apply and
Reset, and an optional button, Set Default.

• Again, XView 3.0 does not provide this automatically, but applications can implement
this feature using XView primitives.

In an OPEN LOOK UI toolkit, there is a way to have two active selections when using prop-
erty windows.

• XView 3.0 does not support this.

In an OPEN LOOK UI toolkit, when there are two active selections, the Apply button
becomes a menu button with Original Selection and New Selection items.

• XView 3.0 does not support this.

E.2 Level 2 Features Supported in XView 3.0

The following Level 2 features are supported in XView 3.0.

• Abbreviated buttons.

• Nonstandard basic windows.

• Numeric text fields with increment/decrement buttons.

• Some keyboard accelerators.

• Splittable panes.

– Missing: Dimming the pane’s border or its contents to indicate that the pane is
about to disappear when removing a split pane using cable anchors.

• Split View and Join Views items on Scrollbar menu.

• Dragging text to move/copy.

708 XView Programming Manual

• Quick Move and Quick Duplicate on (most) text.

• Some Level 2 Workspace Properties.

• Blocking pop-up windows.

• Multi-line text areas.

• Read-only gauges.

• Automatic scrolling.

• View must be updated while scrollbar elevator is dragged.

• Glyphs in scrolling lists.

• Sliders with end-boxes and tickmarks.

• Vertical sliders.

• Soft function keys.

• Window scaling.

E.3 Level 2 Features Not Supported in XView 3.0

The following Level 2 features are not supported in XView 3.0.

• Change bars in property windows.

• Edit menu for text fields.

• Menus containing more than one type of control.

• Resizable panes.

• Selectable panes.

• Minimum scrollbar.

• Page-oriented scrollbar.

• Panning.

• Hierarchical scrolling lists.

OPEN LOOK UI
Com

pliance

OPEN LOOK User Interface Compliance 709

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

F
Example Programs

This appendix contains nine example programs that supplement the programs in the chapters:

• item_move.c

• scroll_cells2.c

• menu_dir2.c

• type_font.c

• fonts.c

• x_draw.c

• Logo.c

• Bitmap.c

• panel_dnd.c

Some of these programs are extensions to programs presented earlier in this book; they are
listed here to demonstrate extended usage. Other programs in this appendix attempt to inte-
grate features from unrelated XView packages that exceeded the scope of a particular chap-
ter.

F.1 item_move.c

The first program demonstrates how you can use an event handler within a panel to allow the
user to create panel items, move them around within the panel, and delete them. Chapter 7,
Panels, discusses specifics about how panels work. Chapter 5, Canvases and Openwin, dis-
cusses the canvas and openwin issues, since the panel is subclassed from those packages.

Example F-1. The item_move.c program

/*
* item_move.c
* Move items around in a panel using an interpose event handler
* specific to the panel. Two panels are created -- the left panel
* contains panel buttons that allow you to create certain types of
* items that are put in the second panel. Use the MENU (right)

Exam
ple Program

s

Example Programs 713

Example F-1. The item_move.c program (continued)

* mouse button to move items around in the second panel.
*/
#include <stdio.h>
#include <xview/xview.h>
#include <xview/panel.h>

/* We need handles to the base frame and a panel -- instead of
* using global variables, we’re going to attach the objects to
* the objects which need to reference them. Attach using
* XV_KEY_DATA -- here are the keys.
*/
#define PACKAGE_KEY 100
#define FRAME_KEY 101
#define PANEL_KEY 102

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Xv_Window window;
Panel_item create_text, item;
Notify_value my_event_proc();
int create_item();
char buf[64];

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

sprintf(buf, "%s: Use MENU (Right) Button To Move Items", argv[0]);
frame = (Frame)xv_create(XV_NULL, FRAME,

FRAME_LABEL, buf,
FRAME_SHOW_FOOTER, TRUE,
NULL);

/*
* Create panel for known panel items. Layout panel vertically.
*/
panel = (Panel)xv_create(frame, PANEL,

PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

/*
* Create text panel item, attach the frame as client data for
* use by the notify procedure create_item(). Text items inherit
* the layout of "label" and "value" from its parent panel.
* override for the text item by setting PANEL_LAYOUT explicitly.
*/
create_text = (Panel_item)xv_create(panel, PANEL_TEXT,
XV_X, 0,
XV_Y, 20,
PANEL_LABEL_STRING, "Create Button:",
PANEL_NOTIFY_PROC, create_item,
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_VALUE_DISPLAY_LENGTH, 10,
NULL);

/*
* Create panel button to determine which type of button to create --

714 XView Programming Manual

Example F-1. The item_move.c program (continued)

* a button, message, or text item. See create_item().
*/
item = (Panel_item)xv_create(panel, PANEL_CHOICE,
XV_X, 0,
XV_Y, 50,
PANEL_DISPLAY_LEVEL, PANEL_CURRENT,
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_LABEL_STRING, "Item type",
PANEL_CHOICE_STRINGS, "Button", "Message", "Text", NULL,
NULL);

window_fit(panel);

/* Create a new panel to be used for panel creation. The panel
* from above is no longer referenced. The panel created here
* is the panel used throughout the rest of this program. To
* add confusion, "panel" is used as the handle of this panel, too.
* The panel referenced in WIN_RIGHT_OF and XV_HEIGHT is the old
* one since the new one hasn’t been created yet.
*/
panel = (Panel)xv_create(frame, PANEL,

WIN_RIGHT_OF, canvas_paint_window(panel),
XV_WIDTH, 300,
XV_HEIGHT, xv_get(panel, XV_HEIGHT),
WIN_BORDER, TRUE,
XV_KEY_DATA, PANEL_KEY, panel,
NULL);

/* Install event handling routine for the panel. This must be done
* by an interpose function to make sure that the ACTION_MENU
* event is not consumed by the first panel before it has a chance
* to get to the second panel’s event proc: my_event_proc.
*/
notify_interpose_event_func(panel, my_event_proc, NOTIFY_SAFE);

/* attach various items to the text item for text_select() */
xv_set(create_text,

XV_KEY_DATA, FRAME_KEY, frame,
XV_KEY_DATA, PACKAGE_KEY, item,
XV_KEY_DATA, PANEL_KEY, panel,
NULL);

window_fit(frame);
xv_main_loop(frame);

}

/*
* Process events for panel’s subwindow. This routine gets -all-
* events that occur in the panel subwindow but passes them on to
* the normal event dispatcher when the interposed function has been
* completed. The notify function, my_event_proc, is only
* interested in MENU button events that happen on top of panel items.
* When the user clicks and _drags_ the MENU button on a panel item,
* the item is moved to where the mouse moves to.
*/
Notify_value
my_event_proc(panel, event, arg, type)
Panel panel;

Exam
ple Program

s

Example Programs 715

Example F-1. The item_move.c program (continued)

Event *event;
Notify_arg arg;
Notify_event_type type;
{

static Panel_item item;
static int x_offset, y_offset;
Frame frame = (Frame)xv_get(panel, XV_OWNER);
Rect *rect, *item_rect;
char buf[64];

/*
* If the mouse is dragging an item, reset its new location.
*/
if (event_action(event) == LOC_DRAG && item) {

Panel_item pi;
Rect r;
/*
* Get the rect of item, then *copy* it -- never change data
* returned by xv_get(). Modify the copied rect reflecting
* new X,Y position of panel item and check to see if it
* intersects with any existing panel items.
*/
rect = (Rect *)xv_get(item, XV_RECT);
rect_construct(&r, /* see <xview/rect.h> for macros */

rect->r_left, rect->r_top, rect->r_width, rect->r_height);
r.r_left = event->ie_locx - x_offset;
r.r_top = event->ie_locy - y_offset;
PANEL_EACH_ITEM(panel, pi)

if (pi == item)
continue;

/* don’t let panel items overlap */
item_rect = (Rect *)xv_get(pi, XV_RECT);
if (rect_intersectsrect(item_rect, &r))

return;
PANEL_END_EACH
/* no overlap -- move panel item. */
xv_set(item,

PANEL_ITEM_X, r.r_left,
PANEL_ITEM_Y, r.r_top,
NULL);

}

/* If it’s not the MENU button, we’re not interested,
* so allow the event to be passed on to the notifier
* for normal event handling.
*/
if (event_action(event) != ACTION_MENU) {
notify_next_event_func(panel, (Notify_event) event, arg, type);
return;

}

/*
* next two cases is MENU button just-down or just-released
*/
if (event_is_down(event)) {

/* Right (MENU) button down on an item -- determine panel item */

716 XView Programming Manual

Example F-1. The item_move.c program (continued)

if ((xv_get((panel), PANEL_FIRST_ITEM)) == NULL) {
sprintf(buf, "No panel items are currently in the panel.");

xv_set(frame, FRAME_RIGHT_FOOTER, buf, NULL);
}
PANEL_EACH_ITEM(panel, item)

rect = (Rect *)xv_get(item, XV_RECT);
if (rect_includespoint(rect,

event->ie_locx, event->ie_locy)) {
x_offset = event->ie_locx - rect->r_left;
y_offset = event->ie_locy - rect->r_top;

sprintf(buf, "Panel item found.");
xv_set(frame, FRAME_RIGHT_FOOTER, buf, NULL);

break;
}

else {
sprintf(buf, "The cursor is not over any panel item.");

xv_set(frame, FRAME_RIGHT_FOOTER, buf, NULL);
}

PANEL_END_EACH
if (item)

sprintf(buf, "Moving item: ’%s’",
(char *)xv_get(item, PANEL_LABEL_STRING));

else
buf[0] = 0;

} else if (item) {
char *name = (char *)xv_get(item, PANEL_LABEL_STRING);

/* test if item is inside panel by comparing XV_RECTs */
rect = (Rect *)xv_get(panel, XV_RECT);
if (!rect_includespoint(rect,

event->ie_locx + rect->r_left,
event->ie_locy + rect->r_top)) {
/* item is outside the panel -- remove item */
xv_destroy(item);
sprintf(buf, "Removed ’%s’ from panel", name);

} else
sprintf(buf, "’%s’ moved to %d %d", name,

(int)xv_get(item, XV_X), (int)xv_get(item, XV_Y));
/* set "item" to null so that new drag
* events don’t attempt to move old item.
*/
item = NULL;

}
xv_set(frame, FRAME_LEFT_FOOTER, buf, NULL);

}

/*
* Callback routine for all panel buttons.
* If the panel item is the text item, determine the name of the new
* panel button the user wishes to create. Loop through all the
* existing panel items looking for one with the same label. If so,
* return PANEL_NONE and set the frame’s footer with an error message.
* Otherwise, create a new panel item with the label, reset the text
* item value and return PANEL_NEXT.
*/
int

Exam
ple Program

s

Example Programs 717

Example F-1. The item_move.c program (continued)

create_item(item, event)
Panel_item item;
Event *event;
{

Xv_pkg *pkg;
Panel panel = (Panel)xv_get(item, XV_KEY_DATA, PANEL_KEY);
Frame frame = (Frame)xv_get(item, XV_KEY_DATA, FRAME_KEY);
Panel_item pi, pkg_item;
char buf[64];
int selected();

pkg_item = (Panel_item)xv_get(item, XV_KEY_DATA, PACKAGE_KEY);
(void) strncpy(buf, (char *)xv_get(item, PANEL_VALUE), sizeof buf);
if (!buf[0])

return PANEL_NONE;
switch((int)xv_get(pkg_item, PANEL_VALUE)) {

case 1: pkg = PANEL_MESSAGE; break;
case 2: pkg = PANEL_TEXT; break;
default: pkg = PANEL_BUTTON;

}
/* loop thru all panel items and check for item with same name */
PANEL_EACH_ITEM(panel, pi)

if (!strcmp(buf, (char *)xv_get(pi, PANEL_LABEL_STRING))) {
xv_set(frame, FRAME_LEFT_FOOTER, "Label Taken", NULL);
return PANEL_NONE;

}
PANEL_END_EACH
(void) xv_create(panel, pkg,

PANEL_LABEL_STRING, buf,
PANEL_NOTIFY_PROC, selected,
XV_KEY_DATA, FRAME_KEY, frame,
/* only for text items, but doesn’t affect other items */
PANEL_VALUE_DISPLAY_LENGTH, 10,
PANEL_LAYOUT, PANEL_HORIZONTAL,
NULL);

xv_set(item, PANEL_VALUE, "", NULL);
return PANEL_NEXT;

}

/*
* For panel buttons. return XV_OK or XV_ERROR if the item was
* selected using the left mouse button or not.
*/
int
selected(item, event)
Panel_item item;
Event *event;
{

Frame frame = (Frame)xv_get(item, XV_KEY_DATA, FRAME_KEY);
char buf[64];

if (event_action(event) == ACTION_SELECT) {
sprintf(buf, "’%s’ selected", xv_get(item, PANEL_LABEL_STRING));
xv_set(frame, FRAME_RIGHT_FOOTER, buf, NULL);
return XV_OK;

}

718 XView Programming Manual

Example F-1. The item_move.c program (continued)

return XV_ERROR;
}

F.2 scroll_cells2.c

This program is based heavily on scroll_cells.c, which is found in Chapter 10, Scrollbars.
This version of the program deals with resize events. When a resize occurs, the object,
view, and page length attributes are set to correctly reflect the size of the scrollbar with
respect to the object it scrolls.

Example F-2. The scroll_cells2.c program

/*
* scroll_cells2.c -- scroll a bitmap of cells around in a canvas.
* This is a simplified version of scroll_cells.c graphically. That
* is, it does not display icons, just rows and columns of cells.
* The difference with this version is that it attempts to accommodate
* resize events not addressed in the scroll_cells.c.
* This new function is at the end of the file.
*/
#include <stdio.h>
#include <X11/X.h>
#include <X11/Xlib.h> /* Using Xlib graphics */
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/scrollbar.h>
#include <xview/xv_xrect.h>

#define CELL_WIDTH 64
#define CELL_HEIGHT 64
#define CELLS_PER_HOR_PAGE 5 /* when paging w/scrollbar */
#define CELLS_PER_VER_PAGE 5 /* when paging w/scrollbar */
#define CELLS_PER_ROW 16
#define CELLS_PER_COL 16

Pixmap cell_map; /* pixmap copied onto canvas window */
Scrollbar horiz_scrollbar;
Scrollbar vert_scrollbar;
GC gc; /* General usage GC */

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Canvas canvas;
void repaint_proc(), resize_proc();

/* Initialize, create frame and canvas... */
xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

Exam
ple Program

s

Example Programs 719

Example F-2. The scroll_cells2.c program (continued)

frame = xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
FRAME_SHOW_FOOTER, TRUE,
NULL);

canvas = xv_create(frame, CANVAS,
/* make subwindow the size of a "page" */
XV_WIDTH, CELL_WIDTH * CELLS_PER_HOR_PAGE,
XV_HEIGHT, CELL_HEIGHT * CELLS_PER_VER_PAGE,
/* canvas is same size as window */
CANVAS_WIDTH, CELL_WIDTH * CELLS_PER_HOR_PAGE,
CANVAS_HEIGHT, CELL_HEIGHT * CELLS_PER_VER_PAGE,
/* don’t retain window -- we’ll repaint it all the time */
CANVAS_RETAINED, FALSE,
/* We’re using Xlib graphics calls in repaint_proc() */
CANVAS_X_PAINT_WINDOW, TRUE,
CANVAS_REPAINT_PROC, repaint_proc,
CANVAS_RESIZE_PROC, resize_proc,
OPENWIN_AUTO_CLEAR, FALSE,
NULL);

/*
* Create scrollbars attached to the canvas. When user clicks
* on cable, page by the page size (PAGE_LENGTH). Scrolling
* should move cell by cell, not by one pixel (PIXELS_PER_UNIT).
*/
vert_scrollbar = xv_create(canvas, SCROLLBAR,

SCROLLBAR_DIRECTION, SCROLLBAR_VERTICAL,
SCROLLBAR_PIXELS_PER_UNIT, CELL_HEIGHT,
NULL);

horiz_scrollbar = xv_create(canvas, SCROLLBAR,
SCROLLBAR_DIRECTION, SCROLLBAR_HORIZONTAL,
SCROLLBAR_PIXELS_PER_UNIT, CELL_WIDTH,
NULL);

/*
* create pixmap and draw cells into it. This portion of the
* program could use XCopyArea to render real bitmaps whose sizes
* do not exceed whatever CELL_WIDTH and CELL_HEIGHT are defined
* to be. The cell_map will be copied into the window via
* XCopyPlane in the repaint procedure.
*/
{

short x, y, pt = 0;
XPoint points[256];
XGCValues gcvalues;
Display *dpy = (Display *)xv_get(canvas, XV_DISPLAY);

cell_map = XCreatePixmap(dpy, DefaultRootWindow(dpy),
CELLS_PER_ROW * CELL_WIDTH + 1,
CELLS_PER_COL * CELL_HEIGHT + 1,
1); /* We only need a 1-bit deep pixmap */

/* Create the gc for the cell_map -- since it is 1-bit deep,
* use 0 and 1 for fg/bg values. Also, limit number of
* events generated by setting graphics exposures to False.

720 XView Programming Manual

Example F-2. The scroll_cells2.c program (continued)

*/
gcvalues.graphics_exposures = False;
gcvalues.background = 0;
gcvalues.foreground = 1;
gc = XCreateGC(dpy, cell_map,

GCForeground|GCBackground|GCGraphicsExposures, &gcvalues);

/* dot every other pixel */
for (x = 0; x <= CELL_WIDTH * CELLS_PER_ROW; x += 2)

for (y = 0; y <= CELL_HEIGHT * CELLS_PER_COL; y += 2) {
if (x % CELL_WIDTH != 0 && y % CELL_HEIGHT != 0)

continue;
points[pt].x = x, points[pt].y = y;
if (++pt == sizeof points / sizeof points[0]) {

XDrawPoints(dpy, cell_map, gc,
points, pt, CoordModeOrigin);

pt = 0;
}

}
if (pt != sizeof points) /* flush out the remaining points */

XDrawPoints(dpy, cell_map, gc,
points, pt, CoordModeOrigin);

/* label each cell indicating the its coordinates */
for (x = 0; x < CELLS_PER_ROW; x++)

for (y = 0; y < CELLS_PER_COL; y++) {
char buf[8];
sprintf(buf, "%d,%d", x+1, y+1);
XDrawString(dpy, cell_map, gc,

x * CELL_WIDTH + 5, y * CELL_HEIGHT + 25,
buf, strlen(buf));

}
/* we’re now done with the cell_map, so free gc and
* create a new one based on the window that will use it.
*/
XFreeGC(dpy, gc);
gcvalues.background = WhitePixel(dpy, DefaultScreen(dpy));
gcvalues.foreground = BlackPixel(dpy, DefaultScreen(dpy));
gcvalues.plane_mask = 1L;
gc = XCreateGC(dpy, DefaultRootWindow(dpy),

GCForeground|GCBackground|GCGraphicsExposures, &gcvalues);
}

/* shrink frame to minimal size and start notifier */
window_fit(frame);
xv_main_loop(frame);

}

/*
* The repaint procedure is called whenever repainting is needed in
* a paint window. Since the canvas is not retained, this routine
* is going to be called any time the user scrolls the canvas. The
* canvas will handle repainting the portion of the canvas that
* was in view and has scrolled onto another viewable portion of
* the window. The xrects parameter will cover the new areas that
* were not in view before and have just scrolled into view. If
* the window resizes or if the window is exposed by other windows

Exam
ple Program

s

Example Programs 721

Example F-2. The scroll_cells2.c program (continued)

* disappearing or cycling thru the window tree, then the number
* of xrects will be more than one and we’ll have to copy the new
* areas one by one. Clipping isn’t necessary since the areas to
* be rendered are set by the xrects value.
*/
void
repaint_proc(canvas, paint_window, dpy, win, xrects)
Canvas canvas;
Xv_Window paint_window;
Display *dpy;
Window win;
Xv_xrectlist *xrects;
{

int x, y;

x = (int)xv_get(horiz_scrollbar, SCROLLBAR_VIEW_START);
y = (int)xv_get(vert_scrollbar, SCROLLBAR_VIEW_START);

for (xrects->count--; xrects->count >= 0; xrects->count--) {
printf("top–left cell = %d, %d –– %d,%d %d,%d0, x+1, y+1,

xrects->rect_array[xrects->count].x,
xrects->rect_array[xrects->count].y,
xrects->rect_array[xrects->count].width,
xrects->rect_array[xrects->count].height);

XCopyPlane(dpy, cell_map, win, gc,
x * CELL_WIDTH,
y * CELL_HEIGHT,
xv_get(paint_window, XV_WIDTH),
xv_get(paint_window, XV_HEIGHT),
0, 0, 1L);

}
}
/*
* If the application is resized, then we may wish to reset the
* paging and viewing parameters for the scrollbars.
*/
void
resize_proc(canvas, new_width, new_height)
Canvas canvas;
int new_width, new_height;
{

int page_w = (int)(new_width/CELL_WIDTH);
int page_h = (int)(new_height/CELL_HEIGHT);

if (!vert_scrollbar || !horiz_scrollbar)
return;

printf("new width/height in cells: w = %d, h = %d0,
page_w, page_h);

xv_set(horiz_scrollbar,
SCROLLBAR_OBJECT_LENGTH, CELLS_PER_ROW,
SCROLLBAR_PAGE_LENGTH, page_w,
SCROLLBAR_VIEW_LENGTH, page_w,
NULL);

722 XView Programming Manual

Example F-2. The scroll_cells2.c program (continued)

xv_set(vert_scrollbar,
SCROLLBAR_OBJECT_LENGTH, CELLS_PER_COL,
SCROLLBAR_PAGE_LENGTH, page_h,
SCROLLBAR_VIEW_LENGTH, page_h,
NULL);

}

F.3 menu_dir2.c

In Chapter 11, Menus, the program menu_dir.c demonstrates the use of an XView menu in a
canvas subwindow. A menu is brought up with the MENU mouse button and displays menu
choices representing the files in the directory. The problem with menu_dir.c is that the entire
menu cascade is created for all the subdirectories at the very beginning of the program. If the
directory stack is very deep, it could take a very long time to build. You could also run out of
memory in the process. Further, if the contents of the directory tree is dynamic, the menu
entries could become invalid over time.

These problems are solved in menu_dir2.c because it creates only the top-level menu. For
each directory entry under the top-level, rather than creating an associated pullright menu, a
MENU_GEN_PULLRIGHT procedure is specified. This routine creates that menu only at the
time it is needed. So, when the user invokes the menu and tries to descend into a submenu
representing a subdirectory in the directory tree, only then is the directory entry searched and
a new submenu created. When the user backs out of the menu, the menu is des-
troyed—attempting to re-enter the submenu causes the process to be repeated.

An exercise for the ambitious programmer would be to modify this program so that the sub-
menus are not destroyed until the entire menu cascade has been dismissed. This enhance-
ment would optimize the perceived performance of the program for the user because, once a
directory subpath has been searched and a menu created, the menu is cached so that re-entry
into the same submenu would be instantaneous.

Example F-3. The menu_dir2.c program

/*
* menu_dir2.c -
* Demonstrate the use of an XView menu in a canvas subwindow.
* A menu is brought up with the MENU mouse button and displays
* menu choices representing the files in the directory. If a
* directory entry is found, a new pullright item is created with
* that subdir as the pullright menu’s contents. This implementation
* creates directories on an as-needed basis. Thus, we provide a
* MENU_GEN_PULLRIGHT procedure.
*
* argv[1] indicates which directory to start from.
*/
#include <xview/xview.h>
#include <xview/canvas.h>
#include <sys/stat.h>
#include <sys/dir.h>

Exam
ple Program

s

Example Programs 723

Example F-3. The menu_dir2.c program (continued)

#include <X11/Xos.h>
#ifndef MAXPATHLEN
#include <sys/param.h>
#endif /* MAXPATHLEN */

Frame frame;

main(argc,argv)
int argc;
char *argv[];
{

Canvas canvas;
extern void exit();
void my_event_proc();
Menu menu;
Menu_item mi, add_path_to_menu();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(NULL, FRAME,
FRAME_LABEL, argv[1]? argv[1] : "cwd",
FRAME_SHOW_FOOTER, TRUE,
NULL);

canvas = (Canvas)xv_create(frame, CANVAS,
FRAME_LABEL, argv[0],
XV_WIDTH, 400,
XV_HEIGHT, 100,
NULL);

mi = add_path_to_menu(argc > 1? argv[1] : ".");
menu = (Menu)xv_get(mi, MENU_PULLRIGHT);
/* We no longer need the item since we have the menu from it */
xv_destroy(mi);

/* associate the menu to the canvas win for easy etreival */
xv_set(canvas_paint_window(canvas),

WIN_CONSUME_EVENTS, WIN_MOUSE_BUTTONS, NULL,
WIN_EVENT_PROC, my_event_proc,
WIN_CLIENT_DATA, menu,
NULL);

window_fit(frame);
window_main_loop(frame);

}

/*
* my_action_proc - display the selected item in the frame footer.
*/
void
my_action_proc(menu, menu_item)
Menu menu;
Menu_item menu_item;
{

xv_set(frame,
FRAME_LEFT_FOOTER, xv_get(menu_item, MENU_STRING),
NULL);

724 XView Programming Manual

Example F-3. The menu_dir2.c program (continued)

}

/*
* Call menu_show() to display menu on right mouse button push.
*/
void
my_event_proc(canvas, event)
Canvas canvas;
Event *event;
{

if ((event_id(event) == MS_RIGHT) && event_is_down(event)) {
Menu menu = (Menu)xv_get(canvas, WIN_CLIENT_DATA);
menu_show(menu, canvas, event, NULL);

}
}

/*
* return an allocated char * that points to the last item in a path.
*/
char *
getfilename(path)
char *path;
{

char *p;

if (p = rindex(path, ’/’))
p++;

else
p = path;

return strcpy(malloc(strlen(p)+1), p);
}

/* gen_pullright() is called in the following order:
* Pullright menu needs to be displayed. (MENU_PULLRIGHT)
* Menu is about to be dismissed (MENU_DISPLAY_DONE)
* User made a selection (before menu notify function)
* After the notify routine has been called.
* The above order is done whether or not the user makes a
* menu selection.
*/
Menu
gen_pullright(mi, op)
Menu_item mi;
Menu_generate op;
{

Menu menu;
Menu_item new, old = mi;
char buf[MAXPATHLEN];

if (op == MENU_DISPLAY) {
menu = (Menu)xv_get(mi, MENU_PARENT);
sprintf(buf, "%s/%s",

xv_get(menu, MENU_CLIENT_DATA), xv_get(mi, MENU_STRING));
/* get old menu and free it -- we’re going to build another */
if (menu = (Menu)xv_get(mi, MENU_PULLRIGHT)) {

free(xv_get(menu, MENU_CLIENT_DATA));

Exam
ple Program

s

Example Programs 725

Example F-3. The menu_dir2.c program (continued)

xv_destroy(menu);
}
if (new = add_path_to_menu(buf)) {

menu = (Menu)xv_get(new, MENU_PULLRIGHT);
xv_destroy(new);
return menu;

}
}
if (!(menu = (Menu)xv_get(mi, MENU_PULLRIGHT)))

menu = (Menu)xv_create(NULL, MENU,
MENU_STRINGS, "Couldn’t build a menu.", NULL,
NULL);

return menu;
}

/*
* The path passed in is scanned via readdir(). For each file in the
* path, a menu item is created and inserted into a new menu. That
* new menu is made the PULLRIGHT_MENU of a newly created panel item
* for the path item originally passed it. Since this routine is
* recursive, a new menu is created for each subdirectory under the
* original path.
*/
Menu_item
add_path_to_menu(path)
char *path;
{

DIR *dirp;
struct direct *dp;
struct stat s_buf;
Menu_item mi;
Menu next_menu;
char buf[MAXPATHLEN];
static int recursion;

/* don’t add a folder to the list if user can’t read it */
if (stat(path, &s_buf) == -1 || !(s_buf.st_mode & S_IREAD))

return NULL;
if (s_buf.st_mode & S_IFDIR) {

int cnt = 0;
if (!(dirp = opendir(path)))

/* don’t bother adding to list if we can’t scan it */
return NULL;

if (recursion)
return (Menu_item)-1;

recursion++;
next_menu = (Menu)xv_create(XV_NULL, MENU, NULL);
while (dp = readdir(dirp))

if (strcmp(dp->d_name, ".") && strcmp(dp->d_name, "..")) {
(void) sprintf(buf, "%s/%s", path, dp–>d_name);
mi = add_path_to_menu(buf);
if (!mi || mi == (Menu_item)-1) {

int do_gen_pullright = (mi == (Menu_item)-1);
/* unreadable file or dir - deactivate item */
mi = (Menu_item)xv_create(XV_NULL, MENUITEM,

MENU_STRING, getfilename(dp->d_name),

726 XView Programming Manual

Example F-3. The menu_dir2.c program (continued)

MENU_RELEASE,
MENU_RELEASE_IMAGE,
NULL);

if (do_gen_pullright)
xv_set(mi,

MENU_GEN_PULLRIGHT, gen_pullright,
NULL);

else
xv_set(mi, MENU_INACTIVE, TRUE, NULL);

}
xv_set(next_menu, MENU_APPEND_ITEM, mi, NULL);
cnt++;

}
closedir(dirp);
mi = (Menu_item)xv_create(XV_NULL, MENUITEM,

MENU_STRING, getfilename(path),
MENU_RELEASE,
MENU_RELEASE_IMAGE,
MENU_NOTIFY_PROC, my_action_proc,
NULL);

if (!cnt) {
xv_destroy(next_menu);
/* An empty or unsearchable directory - deactivate item */
xv_set(mi, MENU_INACTIVE, TRUE, NULL);

} else {
xv_set(next_menu,

MENU_TITLE_ITEM, strcpy(malloc(strlen(path)+1), path),
MENU_CLIENT_DATA, strcpy(malloc(strlen(path)+1), path),
NULL);

xv_set(mi, MENU_PULLRIGHT, next_menu, NULL);
}
recursion--;
return mi;

}
return (Menu_item)xv_create(NULL, MENUITEM,

MENU_STRING, getfilename(path),
MENU_RELEASE,
MENU_RELEASE_IMAGE,
MENU_NOTIFY_PROC, my_action_proc,
NULL);

}

F.4 type_font.c

This very simple program captures keyboard events in a canvas and uses XDrawString()
to render what the user types. It also looks for backspacing. This is not intended to replace
the text subwindow in any way, but rather to demonstrate how some text rendering functions
can be implemented. See Chapter 16, Fonts, for more information about fonts.

Exam
ple Program

s

Example Programs 727

Example F-4. The type_font.c program

/*
* simple_font.c -- very simple program showing how to render text
* using fonts loaded by XView.
*/
#include <ctype.h>
#include <X11/X.h>
#include <X11/Xlib.h>
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/font.h>

Display *dpy;
GC gc;
XFontStruct *font_info;

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Canvas canvas;
XGCValues gcvalues;
Xv_Font font;
void my_event_proc();
extern void exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
NULL);

panel = (Panel)xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

window_fit(panel);

canvas = (Canvas)xv_create(frame, CANVAS,
XV_WIDTH, 400,
XV_HEIGHT, 200,
CANVAS_X_PAINT_WINDOW, TRUE,
NULL);

xv_set(canvas_paint_window(canvas),
WIN_EVENT_PROC, my_event_proc,
NULL);

window_fit(frame);

dpy = (Display *)xv_get(frame, XV_DISPLAY);
font = (Xv_Font)xv_get(frame, XV_FONT);
font_info = (XFontStruct *)xv_get(font, FONT_INFO);

728 XView Programming Manual

Example F-4. The type_font.c program (continued)

gcvalues.font = (Font)xv_get(font, XV_XID);
gcvalues.foreground = BlackPixel(dpy, DefaultScreen(dpy));
gcvalues.background = WhitePixel(dpy, DefaultScreen(dpy));
gcvalues.graphics_exposures = False;
gc = XCreateGC(dpy, RootWindow(dpy, DefaultScreen(dpy)),

GCForeground | GCBackground | GCFont | GCGraphicsExposures, &gcvalues);

xv_main_loop(frame);
}

void
my_event_proc(win, event)
Xv_Window win;
Event *event;
{

static int x = 10, y = 10;
Window xwin = (Window)xv_get(win, XV_XID);
char c;

if (event_is_up(event))
return;

if (event_is_ascii(event)) {
c = (char)event_id(event);
if (c == ’0 || c == ’

’) {

y += font_info->max_bounds.ascent +
font_info->max_bounds.descent;

x = 10;
} else if (c == 7 || c == 127) { /* backspace or delete */

if (x > 10)
x -= XTextWidth(font_info, "m", 1);

/* use XDrawImageString to overwrite previous text */
XDrawImageString(dpy, xwin, gc, x, y, " ", 2);

} else {
XDrawString(dpy, xwin, gc, x, y, &c, 1);
x += XTextWidth(font_info, &c, 1);

}
} else if (event_action(event) == ACTION_SELECT) {

x = event_x(event);
y = event_y(event);

}
}

Exam
ple Program

s

Example Programs 729

F.5 fonts.c

This program is similar to type_font.c above. However, fonts.c provides an interface for the
user to pick and choose from a subset of the font families and styles available on the X
server. If a font “name” is specified, then the family, style and size choices are ignored.
Using the SELECT button on the canvas window positions the current typing location at the
x,y coordinates of the button-down event. The characters typed are printed in the current
font.

Example F-5. The fonts.c program

/*
* fonts.c -- provide an interface for the user to pick and choose
* between font families and styles known to XView. The program
* provides several panel buttons to choose between font types, and
* a canvas window in which the user can type. The characters typed
* are printed in the current font. If a font "name" is specified,
* then the family, style and size are ignored. Using the SELECT
* button on the canvas window positions the current typing location
* at the x,y coordinates of the button-down event.
*/
#include <ctype.h>
#include <X11/X.h>
#include <X11/Xlib.h>
#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/font.h>

Display *dpy;
GC gc;
XFontStruct *cur_font;
Panel_item family_item, style_item, scale_item, name_item;
int canvas_width;

main(argc, argv)
int argc;
char *argv[];
{

Frame frame;
Panel panel;
Canvas canvas;
XGCValues gcvalues;
Xv_Font font;
void change_font();
void my_event_proc(), my_resize_proc();
int change_font_by_name();
extern void exit();

xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

frame = (Frame)xv_create(XV_NULL, FRAME,
FRAME_LABEL, argv[0],
FRAME_SHOW_FOOTER, TRUE,
NULL);

730 XView Programming Manual

Example F-5. The fonts.c program (continued)

panel = (Panel)xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
NULL);

(void) xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, exit,
NULL);

family_item = (Panel_item)xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Family",
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_DISPLAY_LEVEL, PANEL_CURRENT,
PANEL_CHOICE_STRINGS,

FONT_FAMILY_DEFAULT, FONT_FAMILY_DEFAULT_FIXEDWIDTH,
FONT_FAMILY_LUCIDA, FONT_FAMILY_LUCIDA_FIXEDWIDTH,
FONT_FAMILY_ROMAN, FONT_FAMILY_SERIF, FONT_FAMILY_COUR,
FONT_FAMILY_CMR, FONT_FAMILY_GALLENT,
FONT_FAMILY_OLGLYPH, FONT_FAMILY_OLCURSOR, NULL,

PANEL_NOTIFY_PROC, change_font,
NULL);

style_item = (Panel_item)xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Style",
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_DISPLAY_LEVEL, PANEL_CURRENT,
PANEL_CHOICE_STRINGS,

FONT_STYLE_DEFAULT, FONT_STYLE_NORMAL, FONT_STYLE_BOLD,
FONT_STYLE_ITALIC, FONT_STYLE_BOLD_ITALIC, NULL,

PANEL_NOTIFY_PROC, change_font,
NULL);

scale_item = (Panel_item)xv_create(panel, PANEL_CHOICE,
PANEL_LABEL_STRING, "Scale",
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_DISPLAY_LEVEL, PANEL_CURRENT,
PANEL_CHOICE_STRINGS,

"Small", "Medium", "Large", "X-Large", NULL,
PANEL_NOTIFY_PROC, change_font,
NULL);

name_item = (Panel_item)xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Font Name:",
PANEL_LAYOUT, PANEL_HORIZONTAL,
PANEL_VALUE_DISPLAY_LENGTH, 20,
PANEL_NOTIFY_PROC, change_font_by_name,
NULL);

window_fit(panel);

canvas = (Canvas)xv_create(frame, CANVAS,
XV_WIDTH, 400,
XV_HEIGHT, 200,
CANVAS_X_PAINT_WINDOW, TRUE,
CANVAS_RESIZE_PROC, my_resize_proc,
NULL);

xv_set(canvas_paint_window(canvas),
WIN_EVENT_PROC, my_event_proc,
WIN_CONSUME_EVENT, LOC_WINENTER,
NULL);

window_fit(frame);

Exam
ple Program

s

Example Programs 731

Example F-5. The fonts.c program (continued)

dpy = (Display *)xv_get(frame, XV_DISPLAY);
font = (Xv_Font)xv_get(frame, XV_FONT);
cur_font = (XFontStruct *)xv_get(font, FONT_INFO);
xv_set(frame, FRAME_LEFT_FOOTER, xv_get(font, FONT_NAME), NULL);

gcvalues.font = cur_font->fid;
gcvalues.foreground = BlackPixel(dpy, DefaultScreen(dpy));
gcvalues.background = WhitePixel(dpy, DefaultScreen(dpy));
gcvalues.graphics_exposures = False;
gc = XCreateGC(dpy, RootWindow(dpy, DefaultScreen(dpy)),

GCForeground | GCBackground | GCFont | GCGraphicsExposures,
&gcvalues);

xv_main_loop(frame);
}

void
my_event_proc(win, event)
Xv_Window win;
Event *event;
{

static int x = 10, y = 10;
Window xwin = (Window)xv_get(win, XV_XID);
char c;

if (event_is_up(event))
return;

if (event_is_ascii(event)) {
c = (char)event_action(event);
XDrawString(dpy, xwin, gc, x, y, &c, 1);
/* advance x to next position. If over edge, linewrap */
if ((x += XTextWidth(cur_font, &c, 1)) >= canvas_width) {

y += cur_font->max_bounds.ascent +
cur_font->max_bounds.descent;

x = 10;
}

} else if (event_action(event) == ACTION_SELECT) {
x = event_x(event);
y = event_y(event);

} else if (event_action(event) == LOC_WINENTER)
win_set_kbd_focus(win, xwin);

}

/*
* check resizing so we know how wide to allow the user to type.
*/
void
my_resize_proc(canvas, width, height)
Canvas canvas;
int width, height;
{

canvas_width = width;
}

732 XView Programming Manual

Example F-5. The fonts.c program (continued)

void
change_font(item, value, event)
Panel_item item;
Event *event;
{

static int family, style, scale;
char buf[128];
Frame frame;
char *family_name;
char *style_name;
int scale_value;
Xv_Font font;

frame = (Frame)xv_get(xv_get(item, PANEL_PARENT_PANEL), XV_OWNER);
family_name = (char *)xv_get(family_item, PANEL_CHOICE_STRING,

xv_get(family_item, PANEL_VALUE));
style_name = (char *)xv_get(style_item, PANEL_CHOICE_STRING,

xv_get(style_item, PANEL_VALUE));
scale_value = (int) xv_get(scale_item, PANEL_VALUE);
xv_set(frame, FRAME_BUSY, TRUE, NULL);
font = (Xv_Font)xv_find(frame, FONT,

FONT_FAMILY, family_name,
FONT_STYLE, style_name,
/* scale_value happens to coincide with Window_rescale_state */
FONT_SCALE, scale_value,
/*
* If run on a server that cannot rescale fonts, only font
* sizes that exist should be passed
*/
FONT_SIZES_FOR_SCALE, 12, 14, 16, 22,
NULL);

xv_set(frame, FRAME_BUSY, FALSE, NULL);

if (!font) {
if (item == family_item) {

sprintf(buf, "cannot load ’%s’", family_name);
xv_set(family_item, PANEL_VALUE, family, NULL);

} else if (item == style_item) {
sprintf(buf, "cannot load ’%s’", style_name);
xv_set(style_item, PANEL_VALUE, style, NULL);

} else {
sprintf(buf, "Not available in %s scale.",

xv_get(scale_item, PANEL_CHOICE_STRING, scale));
xv_set(scale_item, PANEL_VALUE, scale, NULL);

}
xv_set(frame, FRAME_RIGHT_FOOTER, buf, NULL);
return;

}
if (item == family_item)

family = value;
else if (item == style_item)

style = value;
else

scale = value;
cur_font = (XFontStruct *)xv_get(font, FONT_INFO);
XSetFont(dpy, gc, cur_font->fid);

Exam
ple Program

s

Example Programs 733

Example F-5. The fonts.c program (continued)

sprintf(buf, "Current font: %s", xv_get(font, FONT_NAME));
xv_set(frame, FRAME_LEFT_FOOTER, buf, NULL);

}

change_font_by_name(item, event)
Panel_item item;
Event *event;
{

char buf[128];
char *name = (char *)xv_get(item, PANEL_VALUE);
Frame frame = (Frame)xv_get(xv_get(item, XV_OWNER), XV_OWNER);
Xv_Font font;

xv_set(frame, FRAME_BUSY, TRUE, NULL);
font = (Xv_Font)font = (Xv_Font)xv_find(frame, FONT,

FONT_NAME, name,
NULL);

xv_set(frame, FRAME_BUSY, FALSE, NULL);

if (!font) {
sprintf(buf, "cannot load ’%s’", name);
xv_set(frame, FRAME_RIGHT_FOOTER, buf, NULL);
return PANEL_NONE;

}
cur_font = (XFontStruct *)xv_get(font, FONT_INFO);
XSetFont(dpy, gc, cur_font->fid);
sprintf(buf, "Current font: %s", xv_get(font, FONT_NAME));
xv_set(frame, FRAME_LEFT_FOOTER, buf, NULL);
return PANEL_NONE;

}

F.6 x_draw.c

This program uses several Xlib drawing functions to draw various types of geometric objects.
We integrate the XView color model (see Chapter 21, Color) to render each object in a dif-
ferent color.

Example F-6. The x_draw.c program

/*
* x_draw.c -- demonstrates the use of Xlib drawing functions
* inside an XView canvas. Color is used, but not required.
*/
#include <xview/xview.h>
#include <xview/canvas.h>
#include <xview/cms.h>
#include <xview/xv_xrect.h>

/* indices into color table renders specified colors. */
#define WHITE 0
#define RED 1
#define GREEN 2

734 XView Programming Manual

Example F-6. The x_draw.c program (continued)

#define BLUE 3
#define ORANGE 4
#define AQUA 5
#define PINK 6
#define BLACK 7

GC gc; /* GC used for Xlib drawing */
unsigned long *colors; /* the color table */

/*
* initialize cms data to support colors specified above. Assign
* data to new cms -- use either static or dynamic cms depending
* on -dynamic command line switch.
*/
main(argc, argv)
int argc;
char *argv[];
{

static char stipple_bits[] = {0xAA, 0xAA, 0x55, 0x55};
static Xv_singlecolor cms_colors[] = {

{ 255, 255, 255 },
{ 255, 0, 0 },
{ 0, 255, 0 },
{ 0, 0, 255 },
{ 250, 130, 80 },
{ 30, 230, 250 },
{ 230, 30, 250 },

};
Cms cms;
Frame frame;
Canvas canvas;
XFontStruct *font;
Display *display;
XGCValues gc_val;
XID xid;
void canvas_repaint();
Xv_cmsdata cms_data;
int use_dynamic = FALSE;

/* Create windows */
xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);
if (*++argv && !strcmp(*argv, "-dynamic"))

use_dynamic = TRUE;

frame = xv_create(NULL,FRAME,
FRAME_LABEL, "xv_canvas_x_draw",
XV_WIDTH, 400,
XV_HEIGHT, 300,
NULL);

cms = xv_create(NULL, CMS,
CMS_SIZE, 7,
CMS_TYPE, use_dynamic? XV_DYNAMIC_CMS : XV_STATIC_CMS,
CMS_COLORS, cms_colors,
NULL);

Exam
ple Program

s

Example Programs 735

Example F-6. The x_draw.c program (continued)

canvas = xv_create(frame, CANVAS,
CANVAS_REPAINT_PROC, canvas_repaint,
CANVAS_X_PAINT_WINDOW, TRUE,

/* WIN_DYNAMIC_VISUAL, use_dynamic, */
XV_VISUAL_CLASS, PseudoColor,
WIN_CMS, cms,
NULL);

/* Get display and xid */
display = (Display *)xv_get(frame, XV_DISPLAY);
xid = (XID)xv_get(canvas_paint_window(canvas), XV_XID);

if (!(font = XLoadQueryFont(display, "fixed"))) {
puts("cannot load fixed font");
exit(1);

}

/* Create and initialize GC */
gc_val.font = font->fid;
gc_val.stipple =

XCreateBitmapFromData(display, xid, stipple_bits, 16, 2);
gc = XCreateGC(display, xid, GCFont | GCStipple, &gc_val);

/* get the colormap from the canvas now that
* the cms has been installed
*/
colors = (unsigned long *)xv_get(canvas, WIN_X_COLOR_INDICES);

/* Start event loop */
xv_main_loop(frame);

}

/*
* Draws onto the canvas using Xlib drawing functions.
*/
void
canvas_repaint(canvas, pw, display, xid, xrects)
Canvas canvas;
Xv_Window pw;
Display *display;
Window xid;
Xv_xrectlist *xrects;
{

static XPoint box[] = {
{0,0}, {100,100}, {0,-100}, {-100,100}, {0,-100}

};
static XPoint points[] = {

{0,0}, /* this point to be overwritten below */
{25,0}, {25,0}, {25,0}, {25,0}, {-100,25},
{25,0}, {25,0}, {25,0}, {25,0}, {-100,25},
{25,0}, {25,0}, {25,0}, {25,0}, {-100,25},
{25,0}, {25,0}, {25,0}, {25,0}, {-100,25},
{25,0}, {25,0}, {25,0}, {25,0}, {-100,25},

};

XSetForeground(display, gc, colors[RED]);

736 XView Programming Manual

Example F-6. The x_draw.c program (continued)

XDrawString(display, xid, gc, 30, 20, "XFillRectangle", 14);
XFillRectangle(display, xid, gc, 25, 25, 100, 100);
XSetFunction(display, gc, GXinvert);
XFillRectangle(display, xid, gc, 50, 50, 50, 50);
XSetFunction(display, gc, GXcopy);

XSetForeground(display, gc, colors[BLACK]);
XDrawString(display, xid, gc, 155, 20, "XFillRect - stipple", 19);
XSetFillStyle(display, gc, FillStippled);
XFillRectangle(display, xid, gc, 150, 25, 100, 100);
XSetFillStyle(display, gc, FillSolid);

XSetForeground(display, gc, colors[BLUE]);
XDrawString(display, xid, gc, 280, 20, "XDrawPoints", 11);
points[0].x = 275; points[0].y = 25;
XDrawPoints(display, xid, gc, points,

sizeof(points)/sizeof(XPoint), CoordModePrevious);

XSetForeground(display, gc, colors[ORANGE]);
XDrawString(display, xid, gc, 30, 145, "XDrawLine - solid", 17);
XDrawLine(display, xid, gc, 25, 150, 125, 250);
XDrawLine(display, xid, gc, 25, 250, 125, 150);

XSetForeground(display, gc, colors[AQUA]);
XDrawString(display, xid, gc, 155, 145, "XDrawLine - dashed", 18);
XSetLineAttributes(display, gc, 5,

LineDoubleDash, CapButt, JoinMiter);
XDrawLine(display, xid, gc, 150, 150, 250, 250);
XDrawLine(display, xid, gc, 150, 250, 250, 150);
XSetLineAttributes(display, gc, 0, LineSolid, CapButt, JoinMiter);

XSetForeground(display, gc, colors[PINK]);
XDrawString(display, xid, gc, 280, 145, "XDrawLines", 10);
box[0].x = 275; box[0].y = 150;
XDrawLines(display, xid, gc, box, 5, CoordModePrevious);

XSetForeground(display, gc, colors[GREEN]);
XDrawRectangle(display, xid, gc,

5, 5, xv_get(pw, XV_WIDTH)-10, xv_get(pw, XV_HEIGHT)-10);
XDrawRectangle(display, xid, gc,

7, 7, xv_get(pw, XV_WIDTH)-14, xv_get(pw, XV_HEIGHT)-14);
}

Exam
ple Program

s

Example Programs 737

F.7 The Logo.c Module

In Chapter 25, XView Internals, the methods for writing XView extensions is discussed.
Example F-7 contains all the functions outlined in the chapter. The chapter also contains list-
ings of the header files required by this module.

Example F-7. The Logo.c module

/*
* Logo.c -- a XView object class that paints an X logo in a window.
* This object is subclassed from the window object to take advantage
* of the window it creates. This object has no attributes, so the
* set and get functions are virtually empty. The only internal
* fields used by this object are a GC and a Pixmap. The GC is used
* to paint the Pixmap into the window. The window object has no GC
* associated with it or we would have inherited it. This will
* probably go away in the next version of XView.
*/
#include "logo_impl.h"
#include <xview/notify.h>
#include <xview/cms.h>
#include <X11/bitmaps/xlogo32>

/* declare the "methods" used by the logo class. */
static int logo_init(), logo_destroy();
static Xv_opaque logo_set(), logo_get();
static void logo_repaint();

Xv_pkg logo_pkg = {
"Logo", /* package name */
ATTR_PKG_UNUSED_FIRST, /* package ID */
sizeof(Logo_public), /* size of the public struct */
WINDOW, /* subclassed from the window package */
logo_init,
logo_set,
logo_get,
logo_destroy,
NULL /* disable the use of xv_find() */

};

/* the only thing this object does is paint an X into its own window.
* This is the event handling routine that is used to check for
* Expose or Configure event requests. the configure event clears
* the window and the "expose" event causes a repaint of the X image.
* The GC has its foreground and background colros set from the
* CMS of the window from which this logo object is subclassed.
*/
static void
logo_redraw(logo_public, event)
Logo_public *logo_public;
Event *event;
{

Logo_private *logo_private = LOGO_PRIVATE(logo_public);
XEvent *xevent = event_xevent(event);

if (xevent->xany.type == Expose && xevent->xexpose.count == 0) {

738 XView Programming Manual

Example F-7. The Logo.c module (continued)

Display *dpy = (Display *)xv_get(logo_public, XV_DISPLAY);
Window window = (Window)xv_get(logo_public, XV_XID);
int width = (int)xv_get(logo_public, XV_WIDTH);
int height = (int)xv_get(logo_public, XV_HEIGHT);
int x = (width - xlogo32_width)/2;
int y = (height - xlogo32_height)/2;

XCopyPlane(dpy, logo_private->bitmap, window, logo_private->gc,
0, 0, xlogo32_width, xlogo32_height, x, y, 1L);

} else if (xevent->xany.type == ConfigureNotify)
XClearArea(xv_get(logo_public, XV_DISPLAY),

xv_get(logo_public, XV_XID), 0, 0,
xevent->xconfigure.width, xevent->xconfigure.height, True);

}

/* initialize the logo object -- create (alloc) an instance of it.
* There are two parts to an object class: a public part and a private
* part. Each contains a pointer to the other, so link the two
* together and initialize the remaining fields of the logo data
* structure. This includes creating the Xlogo pixmap. However,
* we do no initialize the logo’s GC because it is dependent on its
* window’s cms and that isn’t assigned to the window till the "set"
* method. See logo_set() below.
*/
static int
logo_init(owner, logo_public, avlist)
Xv_opaque owner;
Logo_public *logo_public;
Attr_avlist avlist; /* ignored here */
{

Logo_private *logo_private = xv_alloc(Logo_private);
Display *dpy;
Window win;

if (!logo_private)
return XV_ERROR;

dpy = (Display *)xv_get(owner, XV_DISPLAY);
win = (Window)xv_get(logo_public, XV_XID);

/* link the public to the private and vice-versa */
logo_public->private_data = (Xv_opaque)logo_private;
logo_private->public_self = (Xv_opaque)logo_public;

/* create the 1-bit deep pixmap of the X logo */
if ((logo_private->bitmap = XCreatePixmapFromBitmapData(dpy, win,

xlogo32_bits, xlogo32_width, xlogo32_height,
1, 0, 1)) == NULL) {
free(logo_private);
return XV_ERROR;

}
/* set up event handlers to get resize and repaint events */
xv_set(logo_public,

WIN_NOTIFY_SAFE_EVENT_PROC, logo_redraw,
WIN_NOTIFY_IMMEDIATE_EVENT_PROC, logo_redraw,
NULL);

Exam
ple Program

s

Example Programs 739

Example F-7. The Logo.c module (continued)

return XV_OK;
}

/* logo_set() -- the function called to set attributes in a logo
* object. This function is called when a logo is created after
* the init routine as well as when the programmer calls xv_set.
*/
static Xv_opaque
logo_set(logo_public, avlist)
Logo_public *logo_public;
Attr_avlist avlist;
{

Logo_private *logo_private = LOGO_PRIVATE(logo_public);
Attr_attribute *attrs;

for (attrs = avlist; *attrs; attrs = attr_next(attrs))
switch ((int) attrs[0]) {

case XV_END_CREATE : {
/* this stuff *must* be here rather than in the "init"
* routine because the CMS is not loaded into the
* window object until the "set" routines are called.
*/
Cms cms = xv_get(logo_public, WIN_CMS);
XGCValues gcvalues;
Display *dpy =

(Display *)xv_get(logo_public, XV_DISPLAY);
gcvalues.foreground =

x(unsigned long)v_get(cms, CMS_FOREGROUND_PIXEL);
gcvalues.background =

(unsigned long)xv_get(cms, CMS_BACKGROUND_PIXEL);
gcvalues.graphics_exposures = False;
logo_private->gc = XCreateGC(dpy,

xv_get(logo_public, XV_XID),
GCForeground|GCBackground|GCGraphicsExposures,
&gcvalues);

}
default :

xv_check_bad_attr(LOGO, attrs[0]);
break;

}

return XV_OK;
}

/* logo_get() -- There are no logo attributes to get, so just return */
static Xv_opaque
logo_get(logo_public, status, attr, args)
Logo_public *logo_public;
int *status;
Attr_attribute attr;
Attr_avlist args;
{

*status = xv_check_bad_attr(LOGO, attr);
return (Xv_opaque)XV_OK;

}

740 XView Programming Manual

Example F-7. The Logo.c module (continued)

/* destroy method: free the pixmap and the GC before freeing the object */
static int
logo_destroy(logo_public, status)
Logo_public *logo_public;
Destroy_status status;
{

Logo_private *logo_private = LOGO_PRIVATE(logo_public);

if (status == DESTROY_CLEANUP) {
XFreePixmap(xv_get(logo_public, XV_DISPLAY),

logo_private->bitmap);
XFreeGC(xv_get(logo_public, XV_DISPLAY), logo_private->gc);
free(logo_private);

}

return XV_OK;
}

F.8 The Bitmap.c Module

In Chapter 25, XView Internals, the Bitmap package was introduced, but not fully listed. The
following listing contains the entire Bitmap package implementation except for its header
files (which are listed in the chapter).

Example F-8. The Bitmap.c module

/*
* Bitmap.c -- an XView object class that displays an arbitrary
* pixmap. This is similar to the Logo object, but the programmer
* may specify the bitmap to use via the BITMAP_FILE attribute.
*/
#include "bitmap_impl.h"
#include <xview/notify.h>
#include <xview/cms.h>
#include <X11/Xutil.h>

/* declare the "methods" used by the bitmap class. */
static int bitmap_init(), bitmap_destroy();
static Xv_opaque bitmap_set(), bitmap_get();
static void bitmap_repaint();

Xv_pkg bitmap_pkg = {
"Bitmap2", /* package name */
ATTR_PKG_BITMAP, /* package ID */
sizeof(Bitmap_public), /* size of the public struct */
WINDOW, /* subclassed from the window package */
bitmap_init,
bitmap_set,
bitmap_get,
bitmap_destroy,
NULL /* disable the use of xv_find() */

Exam
ple Program

s

Example Programs 741

Example F-8. The Bitmap.c module (continued)

};

static void
bitmap_redraw(bitmap_public, event)
Bitmap_public *bitmap_public;
Event *event;
{

Bitmap_private *bitmap_private = BITMAP_PRIVATE(bitmap_public);
XEvent *xevent = event_xevent(event);

if (bitmap_private->bitmap &&
xevent->xany.type == Expose && xevent->xexpose.count == 0) {
Display *dpy = (Display *)xv_get(bitmap_public, XV_DISPLAY);
Window window = (Window)xv_get(bitmap_public, XV_XID);
int width = (int)xv_get(bitmap_public, XV_WIDTH);
int height = (int)xv_get(bitmap_public, XV_HEIGHT);
int x = (width - bitmap_private->width)/2;
int y = (height - bitmap_private->height)/2;

XCopyPlane(dpy, bitmap_private->bitmap, window,
bitmap_private->gc, 0, 0, bitmap_private->width,
bitmap_private->height, x, y, 1L);

} else if (xevent->xany.type == ConfigureNotify)
XClearArea(xv_get(bitmap_public, XV_DISPLAY),

xv_get(bitmap_public, XV_XID), 0, 0,
xevent->xconfigure.width, xevent->xconfigure.height,
True);

}

/* initialize the bitmap object by creating (alloc) an instance
* of it. There are two parts to an object class: a public part
* and a private part. Each contains a pointer to the other, so
* link the two together and initialize the remaining fields of
* the bitmap data structure. Do no initialize the bitmap’s GC
* because it is dependent on its window’s cms and that isn’t
* assigned to the window till the "set" method. Also, wait till
* till the "set" method to initialize the bitmap file specified.
*/
static int
bitmap_init(owner, bitmap_public, avlist)
Xv_opaque owner;
Bitmap_public *bitmap_public;
Attr_avlist avlist; /* ignored here */
{

Bitmap_private *bitmap_private = xv_alloc(Bitmap_private);

if (!bitmap_private)
return XV_ERROR;

/* link the public to the private and vice-versa */
bitmap_public->private_data = (Xv_opaque)bitmap_private;
bitmap_private->public_self = (Xv_opaque)bitmap_public;

/* set up event handlers to get resize and repaint events */
xv_set(bitmap_public,

WIN_NOTIFY_SAFE_EVENT_PROC, bitmap_redraw,

742 XView Programming Manual

Example F-8. The Bitmap.c module (continued)

WIN_NOTIFY_IMMEDIATE_EVENT_PROC, bitmap_redraw,
NULL);

return XV_OK;
}

/* bitmap_set() -- the function called to set attributes in a bitmap
* object. This function is called when a bitmap is created after
* the init routine as well as when the programmer calls xv_set.
*/
static Xv_opaque
bitmap_set(bitmap_public, avlist)
Bitmap_public *bitmap_public;
Attr_avlist avlist;
{

Bitmap_private *bitmap_private = BITMAP_PRIVATE(bitmap_public);
Attr_attribute *attrs;

for (attrs = avlist; *attrs; attrs = attr_next(attrs))
switch ((int) attrs[0]) {

case BITMAP_FILE : {
int val, x, y;
Display *dpy =

(Display *)xv_get(bitmap_public, XV_DISPLAY);
Window window =

(Window)xv_get(bitmap_public, XV_XID);
Pixmap old = bitmap_private->bitmap;
if (XReadBitmapFile(dpy, window, attrs[1],

&bitmap_private->width, &bitmap_private->height,
&bitmap_private->bitmap, &x, &y) != BitmapSuccess)

{
xv_error(bitmap_public,

ERROR_STRING, "Unable to load bitmap file",
ERROR_PKG, BITMAP,
NULL);

bitmap_private->bitmap = old;
}
break;

}
case BITMAP_PIXMAP :

xv_error(bitmap_public,
ERROR_CANNOT_SET, attrs[0],
ERROR_PKG, BITMAP,
NULL);

break;
case XV_END_CREATE : {

/* this stuff *must* be here rather than in the "init"
* routine because the CMS is not loaded into the
* window object until the "set" routines are called.
*/
Cms cms = xv_get(bitmap_public, WIN_CMS);
XGCValues gcvalues;
Display *dpy =

(Display *)xv_get(bitmap_public, XV_DISPLAY);
gcvalues.foreground =

(unsigned long)xv_get(cms, CMS_FOREGROUND_PIXEL);

Exam
ple Program

s

Example Programs 743

Example F-8. The Bitmap.c module (continued)

gcvalues.background =
(unsigned long)xv_get(cms, CMS_BACKGROUND_PIXEL);

gcvalues.graphics_exposures = False;
bitmap_private->gc =

XCreateGC(dpy, xv_get(bitmap_public, XV_XID),
GCForeground|GCBackground|GCGraphicsExposures,
&gcvalues);

}
default :

xv_check_bad_attr(BITMAP, attrs[0]);
break;

}
return XV_OK;

}

static Xv_opaque
bitmap_get(bitmap_public, status, attr, args)
Bitmap_public *bitmap_public;
int *status;
Attr_attribute attr;
Attr_avlist args;
{

Bitmap_private *bitmap_private = BITMAP_PRIVATE(bitmap_public);

switch ((int) attr) {
case BITMAP_PIXMAP :

return (Xv_opaque)bitmap_private->bitmap;
case BITMAP_FILE : /* can’t get this attribute */
default :

*status = xv_check_bad_attr(BITMAP, attr);
return (Xv_opaque)XV_OK;

}
}

/* destroy method: free the pixmap and the GC before freeing object */
static int
bitmap_destroy(bitmap_public, status)
Bitmap_public *bitmap_public;
Destroy_status status;
{

Bitmap_private *bitmap_private = BITMAP_PRIVATE(bitmap_public);

if (status == DESTROY_CLEANUP) {
if (bitmap_private->bitmap)

XFreePixmap(xv_get(bitmap_public, XV_DISPLAY),
bitmap_private->bitmap);

XFreeGC(xv_get(bitmap_public, XV_DISPLAY),
bitmap_private->gc);

free(bitmap_private);
}
return XV_OK;

}

744 XView Programming Manual

F.9 The panel_dnd.c Program

In Chapter 7, Panels, a Drop Target Items is described. This program creates and uses a
Panel Drop Target Item.

Example F-9. The panel_dnd.c program

/*
* panel_dnd.c - provides text fields, a textsw, and
* several drop targets to demonstate ways to receive
* and illustrate drag and drop operations.
*/

#include <malloc.h>
#include <xview/xview.h>
#include <xview/dragdrop.h>
#include <xview/panel.h>
#include <xview/svrimage.h>
#include <xview/textsw.h>

static unsigned short normal_bitmap[] = {
#include "normal.icon"
};

static unsigned short busy_bitmap[] = {
#include "busy.icon"
};

static unsigned short normal2_bitmap[] = {
#include "normal2.icon"
};

static unsigned short busy2_bitmap[] = {
#include "busy2.icon"
};

static char * dnd_codes[7] = {
"OK",
"Error",
"Illegal Target",
"Timeout",
"Unable to obtain selection",
"Dropped on root window",
"*** Unknown return code"

};

Frame frame;
Panel panel;
Panel_item drop_target[3];
Drag_drop dnd;

/*ARGSUSED*/
static void
hide_drop_targets(item, event)

Panel_item item;

Exam
ple Program

s

Example Programs 745

Example F-9. The panel_dnd.c program (continued)

Event *event;
{

int i;
int show;

show = !xv_get(drop_target[0], XV_SHOW);
for (i=0; i<=2; i++)
xv_set(drop_target[i],

XV_SHOW, show,
0);

xv_set(item,
PANEL_LABEL_STRING, show ? "Hide drop targets" : "Show drop targets",
0);

}

/*ARGSUSED*/
static void
inactivate_drop_targets(item, event)

Panel_item item;
Event *event;

{
int i;
int inactive;

inactive = !xv_get(drop_target[0], PANEL_INACTIVE);
for (i=0; i<=2; i++)
xv_set(drop_target[i],

PANEL_INACTIVE, inactive,
0);

xv_set(item,
PANEL_LABEL_STRING, inactive ? "Activate drop targets" :

"Inactivate drop targets",
0);

}

static void
get_primary_selection(sel_req)

Selection_requestor sel_req;
{

long length;
int format;
char *sel_string;
char *string;

xv_set(sel_req, SEL_TYPE, XA_STRING, 0);
string = (char *) xv_get(sel_req, SEL_DATA, &length, &format);
if (length != SEL_ERROR) {
/* Create a NULL-terminated version of ’string’ */
sel_string = (char *) xv_calloc(1, length+1);
strncpy(sel_string, string, length);
/* Print out primary selection string */
printf("Primary selection=

} else
printf("*** Unable to get primary selection.0);

746 XView Programming Manual

Example F-9. The panel_dnd.c program (continued)

}

static int
drop_target_notify_proc(item, value, event)

Panel_item item;
unsigned int value;
Event *event;

{
Selection_requestor sel_req;

printf("(drop_target_notify_proc) %s action= ",
xv_get(item, PANEL_LABEL_STRING));

sel_req = xv_get(item, PANEL_DROP_SEL_REQ);
switch (event_action(event)) {
case ACTION_DRAG_COPY:
printf("ACTION_DRAG_COPY,0);
get_primary_selection(sel_req);
break;
case ACTION_DRAG_MOVE:
printf("ACTION_DRAG_MOVE0);
get_primary_selection(sel_req);
break;
case LOC_DRAG:
printf("LOC_DRAG, result= %s0, dnd_codes[MIN(value, 6)]);
break;
default:
printf("%d0, event_action(event));
break;

}
return XV_OK;

}

main(argc, argv)
int argc;
char **argv;

{
Server_image busy_glyph[2];
Server_image normal_glyph[2];
Panel panel2;

xv_init(XV_INIT_ARGS, argc, argv, 0);

frame = xv_create(NULL, FRAME,
FRAME_LABEL, "Drag and Drop Test",
0);

panel = xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
0);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Inactivate Drop Targets",
PANEL_NOTIFY_PROC, inactivate_drop_targets,
0);

xv_create(panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Hide Drop Targets",

Exam
ple Program

s

Example Programs 747

Example F-9. The panel_dnd.c program (continued)

PANEL_NOTIFY_PROC, hide_drop_targets,
0);

xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Text field #1:",
PANEL_VALUE, "Hello world!",
PANEL_VALUE_DISPLAY_LENGTH, 20,
0);

xv_create(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Text field #2:",
PANEL_VALUE_DISPLAY_LENGTH, 20,
0);

dnd = xv_create(panel, DRAGDROP, 0);
xv_create(dnd, SELECTION_ITEM,
SEL_DATA, "dnd selection data",
0);

normal_glyph[0] = xv_create(NULL, SERVER_IMAGE,
XV_HEIGHT, 64,
XV_WIDTH, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, normal_bitmap,
0);

busy_glyph[0] = xv_create(NULL, SERVER_IMAGE,
XV_HEIGHT, 64,
XV_WIDTH, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, busy_bitmap,
0),

normal_glyph[1] = xv_create(NULL, SERVER_IMAGE,
XV_HEIGHT, 64,
XV_WIDTH, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, normal2_bitmap,
0);

busy_glyph[1] = xv_create(NULL, SERVER_IMAGE,
XV_HEIGHT, 64,
XV_WIDTH, 64,
SERVER_IMAGE_DEPTH, 1,
SERVER_IMAGE_BITS, busy2_bitmap,
0),

drop_target[0] = xv_create(panel, PANEL_DROP_TARGET,
PANEL_LABEL_STRING, "Full Drop Target:",
PANEL_NOTIFY_PROC, drop_target_notify_proc,
PANEL_DROP_DND, dnd,
PANEL_DROP_FULL, TRUE,
PANEL_DROP_GLYPH, normal_glyph[0],
PANEL_DROP_BUSY_GLYPH, busy_glyph[0],
0);

xv_create(panel, PANEL_DROP_TARGET,
PANEL_LABEL_STRING, "Full Drop Target #2:",
PANEL_NOTIFY_PROC, drop_target_notify_proc,
PANEL_DROP_DND, dnd,
PANEL_DROP_FULL, TRUE,
PANEL_DROP_GLYPH, normal_glyph[1],
PANEL_DROP_BUSY_GLYPH, busy_glyph[1],
0);

drop_target[1] = xv_create(panel, PANEL_DROP_TARGET,

748 XView Programming Manual

Example F-9. The panel_dnd.c program (continued)

PANEL_LABEL_STRING, "Default Empty Drop Target:",
PANEL_NOTIFY_PROC, drop_target_notify_proc,
PANEL_DROP_SITE_DEFAULT, TRUE,
0);

if (xv_get(drop_target[1], PANEL_DROP_SITE_DEFAULT) != TRUE) {
printf("PANEL_DROP_SITE_DEFAULT failed0);
exit(1);

}
drop_target[2] = xv_create(panel, PANEL_DROP_TARGET,
PANEL_LABEL_STRING, "Default Full Drop Target:",
PANEL_NOTIFY_PROC, drop_target_notify_proc,
PANEL_DROP_DND, dnd,
PANEL_DROP_FULL, TRUE,
0);

window_fit(panel);

xv_create(frame, TEXTSW,
WIN_ROWS, 4,
WIN_COLUMNS, 10,
0);

panel2 = xv_create(frame, PANEL,
PANEL_LAYOUT, PANEL_VERTICAL,
0);

xv_create(panel2, PANEL_MESSAGE,
PANEL_LABEL_STRING, "New panel",
0);

xv_create(panel2, PANEL_TEXT,
PANEL_LABEL_STRING, "Text field:",
PANEL_VALUE_DISPLAY_LENGTH, 20,
0);

window_fit(panel2);

window_fit(frame);

xv_main_loop(frame);
exit(0);

}

Exam
ple Program

s

Example Programs 749

Index

A

abbreviated choice item, 171, 173
abbreviated view, 687
abort function, 568, 572
accelerator keys, used in notices, 658
ACTION_MENU event, 279
ACTION_SELECT event, 126, 175
alarm system call, 462
applications, structure of, 41
Attr_attribute type, 582-583
Attr_avlist type, 583
ATTR_CONSUME macro, 587, 598
attr_create_avlist function, 583
attr_find function, 586
attribute, attribute-value pair, 22-23

changing, 22
consuming, 587
customizable, 587
FRAME_MAX_SIZE, 73
FRAME_MIN_SIZE, 73
FRAME_SHOW_RESIZE_CORNER, 73
generic and common, described, 22
HELP_STRING_FILENAME, 561
naming conventions, 22
PANEL_VALUE_STORED_LENGTH, 184
SCROLLBAR_COMPUTE_SCROLL_PROC, 263
SCROLLBAR_NORMALIZE_PROC, 263
TTY_ARGV, 247
WIN_MESSAGE_DATA, 131
WIN_MESSAGE_FORMAT, 131
WIN_MESSAGE_TYPE, 131

attribute-value lists, 582
ATTR_LIST attribute, 583
attr_next macro, 584
ATTR_PKG_UNUSED_FIRST macro, 594
ATTR_PKG_UNUSED_LAST macro, 594
ATTR_STANDARD_SIZE macro, 583
auto-expand, 98
auto-shrink, 98

B

base frame, closed, 66
creating, 62
defined, 61

basicLocale resources, 541
BitGravity, set for canvases, 88

windows, 94
blocking, 479
busy frames, 74
BUT macro, 129
button item, 166

label, 166
selection, 167

C

callback procedure, 35, 116
callback style of programming, 35
canvas, about, 30, 85-86

automatic sizing, 98
callback procedures, 106
controlling size of, 98
creating, 88
default input mask, 106
drawing in, 89
getting view windows, 104
handling input, 105
height of subwindow, 99
model of, 86
paint window, 86-87
repaint procedure, 91-98
repainting, 89, 94
resize procedure, 100
scrolling, 101
splitting views, 102
subclassed from openwin, 85
subwindow, 85-86
tracking changes in size, 100
tracking events, 122

Index 751

canvas (cont’d)
view window, 85-86
width of subwindow, 99

CANVAS package, 85-111
CANVAS_AUTO_CLEAR attribute, 93
CANVAS_AUTO_EXPAND attribute, 98
CANVAS_AUTO_SHRINK attribute, 98-99
CANVAS_CMS_REPAINT attribute, 94, 528
CANVAS_EACH_PAINT_WINDOW macro, 104
CANVAS_END_EACH macro, 104
CANVAS_FIXED_IMAGE attribute, 88, 94
canvas.h header file, 88
CANVAS_HEIGHT attribute, 99
CANVAS_MIN_PAINT_HEIGHT attribute, 99
CANVAS_MIN_PAINT_WIDTH attribute, 99
CANVAS_NTH_PAINT_WINDOW attribute, 104
CANVAS_PAINTWINDOW_ATTRS attribute,

461
CANVAS_REPAINT_PROC attribute, 91
CANVAS_RESIZE_PROC attribute, 100, 122
CANVAS_RETAINED attribute, 88
CANVAS_VIEWABLE_RECT attribute, 93
CANVAS_VIEW_PAINT_WINDOW attribute,

104-105
CANVAS_WIDTH attribute, 99
CANVAS_X_PAINT_WINDOW attribute, 94
cascading menu, (See pullright menu).
chained inheritance, 19
checkbox item, 171, 174
choice item, 171

abbreviated, 171, 173
checkbox, 171
checkboxes, 174
display, 171
exclusive and nonexclusive, 171-172
foreground color, 175
getting image, 173
layout, 171
notification, 175
parallel lists, 176
selection, 175

class, definition of, 580
generic, 580
subclass, 580

class hierarchy, 18
client, about, 5

events, 474, 509
messages, 116, 123, 130;

interpreting, 130;
sending and reading, 130

client data attribute, 199
clipboard, 220, 637
closing frames, (See iconification).

CMS package, 513-534, 516
CMS_BACKGROUND_PIXEL attribute, 521
CMS_COLOR_COUNT attribute, 516
CMS_COLOR_INDEX attribute, 523
CMS_COLORS attribute, 517
CMS_CONTROL_CMS attribute, 524
CMS_CONTROL_COLORS macro, 524
CMS_FOREGROUND_PIXEL attribute, 521
cms.h header file, 333
CMS_INDEX attribute, 516
CMS_INDEX_TABLE attribute, 519
CMS_NAME attribute, 519, 527
CMS_NAMED_COLORS attribute, 517
CMS_PIXEL attribute, 520
CMS_SIZE attribute, 516
CMS_TYPE attribute, 515
CMS_X_COLORS attribute, 518
collapsing expose events, 92
color, 513-534

background, 520
colormap segment, 513;

default, 515;
definition of, 519;
dynamic, 515;
static, 515

colormap table, definition of, 519
cursor, setting for, 333
definition of RGB, 519
foreground, 520
panel items, example of, 525
resources, 524
Xv_Screen, 516

color RGB, 517
color Xv_Screen, 516
colormap segment, types, 515
colormap segments, xv_find, 527
command frame, 27, 68

defined, 61
command-line option, -lc_basiclocale, 541

-lc_displaylang, 541
-lc_inputlang, 541
-lc_numeric, 541
-lc_timeformat, 541

common attributes, 22
compiling XView programs, 41
confirmation of quit, FRAME_NO_CONFIRM

attribute, 67
connection, between server and client, 6
control area, implemented as panel, 153
create_cursor procedure, 333

752 XView Programming Manual

curses(3X), 241, 247
cursor, about, 327

as font character, 330
color, 329
color, setting, 333
hotspot, 330
predefined, 330
Xv_Cursor, 327

CURSOR package, 327-335
CURSOR_BACKGROUND_COLOR, 333
CURSOR_DRAG_STATE attribute, 334
CURSOR_DRAG_TYPE attribute, 334
CURSOR_FOREGROUND_COLOR, 333
CURSOR_IMAGE attribute, 327
CURSOR_MASK_CHAR attribute, 330
cursors.h header file, 327
CURSOR_SRC_CHAR attribute, 330
CURSOR_STRING attribute, 334
CURSOR_XHOT attribute, 330
CURSOR_YHOT attribute, 330
customizable attributes, 587

D

DefaultColormap macro, 515
defaults, 381

package, 381-390
(see also resources)

defaults_get_boolean procedure, 385
defaults_get_character procedure, 387
defaults_get_enum procedure, 388
defaults_get_integer procedure, 387
defaults_get_string procedure, 387
defaults.h header file, 385
defaults_init procedure, 385
defaults_load_db procedure, 385
defaults_set_boolean procedure, 385
defaults_set_character procedure, 387
defaults_set_integer procedure, 387
defaults_set_string procedure, 387
defaults_store_db procedure, 385
delayed binding, 277, 339
DESTROY_CHECKING, 479, 494
DESTROY_CLEANUP, 494
destroying frames, 79
DESTROY_PROCESS_DEATH, 478, 494
DESTROY_SAVE_YOURSELF, 495
Destroy_status, 494
destruction of objects, 494

safe, 479
dgettext() procedure, 545
dispatching, explicit, 501

dispatching by Notifier, explicit, 498
implicit, 498

display, distinguished from screen, 6
Display structure, 350
displaying frames, 69
displayLang resources, 541
distributed processing, about, 7
DND_ACCEPT_CURSOR attribute, 441
DND_ACCEPT_X_CURSOR attribute, 441
DND_CURSOR attribute, 441
dnd_decode_drop() procedure, 442
dnd_done() procedure, 443
dnd_is_local() macro, 443
dnd_send_drop() procedure, 439
DND_TIMEOUT_VALUE attribute, 442
DND_TYPE attribute, 439
DND_X_CURSOR attribute, 441
dot files, 687
drag and drop, about, 433

accept cursor, 441
adding and deleting regions, 436
event handling, 437
receiving a drop, 442
registering drop-sites, 436
sending the drop, 439
sourcing the drag, 439
use with selection package, 441

DRAGDROP package, 433-456
dragdrop.h header file, 435
draw programs, 89
drawing in a canvas, 89
drop target item, 194
DROP_SITE_DEFAULT attribute, 436
DROP_SITE_DELETE_REGION attribute, 437
DROP_SITE_DELETE_REGION_PTR attribute,

437
DROP_SITE_EVENT_MASK attribute, 436, 438
DROP_SITE_ID attribute, 436, 438
DROP_SITE_ITEM package, 433-456
DROP_SITE_REGION attribute, 436
DROP_SITE_REGION_PTR attribute, 436
dup2 system call, 482

E

edit log, 222
editing, (see text subwindow)
enum, ITIMER_REAL, 467

ITIMER_VIRTUAL, 467
NOTIFY_ASYNC, 465
NOTIFY_SYNC, 465

Index 753

enum (cont’d)
enumerated resources, 388
enumerated type, ERROR_NON_RECOVER-

ABLE, 571
ERROR_RECOVERABLE, 571

environment variable, HELPPATH, 558, 562
error handling, advanced usage, 570

Xlib errors, 569
error recovery, 567-574
ERROR_BAD_ATTR attribute, 570
ERROR_BAD_VALUE attribute, 570
ERROR_CANNOT_GET attribute, 570
ERROR_CANNOT_SET attribute, 570
ERROR_CREATE_ONLY attribute, 570
ERROR_INVALID_OBJECT attribute, 571
ERROR_LAYER attribute, 571
ERROR_NON_RECOVERABLE enumerated

type, 571
ERROR_PKG attribute, 571
error_proc procedure, 568
ERROR_RECOVERABLE enumerated type,

571
errors, advanced usage, 570

at run time, 567
recovery, 567
types, 570
Xlib, 569

ERROR_SERVER_ERROR attribute, 571
ERROR_SEVERITY attribute, 571
ERROR_STRING attribute, 571
escape sequences, sending to TTY subwindows,

243
event, ACTION_MENU, 279

ACTION_SELECT, 126, 175
Expose, 92
GraphicsExpose, 92
KBD_DONE, 121, 129
KBD_USE, 121, 129
LOC_DRAG, 120
LOC_MOVE, 106, 120
LOC_WINENTER, 106, 120, 129
LOC_WINEXIT, 106, 120
MapNotify, 54
MS_LEFT, 126
realize, 55
SCROLLBAR_REQUEST, 264
WIN_ASCII_EVENTS, 121
WIN_CIRCULATE_NOTIFY, 123
WIN_COLORMAP_NOTIFY, 120
WIN_CREATE_NOTIFY, 123
WIN_DESTROY_NOTIFY, 123
WIN_GRAPHICS_EXPOSE, 122
WIN_GRAVITY_NOTIFY, 123

WIN_MAP_NOTIFY, 123
WIN_META_EVENTS, 106
WIN_NO_EXPOSE, 122
WIN_REPAINT, 81, 92, 122
WIN_REPARENT_NOTIFY, 123
WIN_RESIZE, 81, 122-123
WIN_STRUCTURE_NOTIFY, 123
WIN_SUBSTRUCTURE_NOTIFY, 123
WIN_UNMAP_NOTIFY, 123
WIN_UP_ASCII_EVENTS, 121
WIN_UP_EVENTS, 106, 121
WM_SAVE_YOURSELF, 495
XClientMessage, 116
XClientMessageEvent, 131

event handling, in CANVAS package, 105
event_action macro, 126
event_button_is_down macro, 128
event-driven input handling, 460
event_id macro, 126
event_is_ascii macro, 127
event_is_button macro, 128
event_is_down macro, 126
event_is_iso macro, 127
event_is_key_bottom macro, 128
event_is_key_left macro, 128
event_is_key_right macro, 128
event_is_key_top macro, 128
event_is_up macro, 126
event_left_is_down macro, 128
event_middle_is_down macro, 128
event_right_is_down macro, 128
events, 9

about, 9, 116
classes of, 116
client, 509
communicating with client, 474
determining state of event, 126
differences between X and XView, 125
event ID, 117, 126
Event structure, 19, 124-126
event-to-action mapping, 117, 126;

default for panel items, 206
keyboard, 121
masks, 116, 138
modifier keys, 126
mouse, 121
posting, 475
posting destroy, 478
registering, 118
relationship to Notifier, 35
repaint, 81, 122
resize, 81, 122
semantic, 117

754 XView Programming Manual

events (cont’d)
XEvent structure, 125

event_string macro, 127
event_window macro, 125
event_xevent macro, 92
exclusive and nonexclusive choices, 171-172
exec system call, 482
exit function, 50, 570, 572
expanding size of canvas, 98
Expose event, 92

F

file chooser, about, 677
customization, 687
sorting, 686

file descriptors, use in Notifier, 479
File_chooser, object, 677
FILE_CHOOSER, package, 677
FILE_CHOOSER_ABBREV_VIEW attribute,

687
FILE_CHOOSER_APP_DIR attribute, 687
FILE_CHOOSER_AUTO_UPDATE attribute,

688
FILE_CHOOSER_CD_FUNC attribute, 683
FILE_CHOOSER_COMPARE_FUNC attribute,

684, 686
FILE_CHOOSER_CUSTOMIZE_OPEN attri-

bute, 688
FILE_CHOOSER_DIRECTORY attribute, 683
FILE_CHOOSER_DOC_NAME attribute, 687
FILE_CHOOSER_EXTEN_FUNC attribute, 688
FILE_CHOOSER_EXTEN_HEIGHT attribute,

688
FILE_CHOOSER_FILTER_FUNC attribute, 683
FILE_CHOOSER_FILTER_MASK attribute,

684
FILE_CHOOSER_FILTER_STRING attribute,

684
FILE_CHOOSER_HISTORY_LIST attribute,

687
FILE_CHOOSER_MATCH_GLYPH attribute,

685
FILE_CHOOSER_MATCH_GLYPH_MASK

attribute, 685
FILE_CHOOSER_NO_CONFIRM attribute, 683
FILE_CHOOSER_NOTIFY_FUNC attribute, 683
FILE_CHOOSER_OPEN macro, 677
FILE_CHOOSER_SAVE macro, 677
FILE_CHOOSER_SAVEAS macro, 677

FILE_CHOOSER_SAVE_TO_DIR attribute, 687
FILE_CHOOSER_SHOW_DOT_FILES, 687
FILE_CHOOSER_SHOW_DOT_FILES attri-

bute, 687
FILE_CHOOSER_TYPE attribute, 677
FILE_LIST, 688, 690
files, reading, 480
filtering, 685
FIOASYNC, 462
FIONBIO, 462
flow of control in Notifier-based programs, 36
font, FONT_FAMILY_DEFAULT, 372

FONT_FAMILY_DEFAULT_FIXEDWIDTH,
372

FONT_STYLE_DEFAULT, 372
font conventions, xxxvi
font ID, 367
FONT package, 367-377
FONT_CHAR_HEIGHT attribute, 376
FONT_CHAR_WIDTH attribute, 376
FONT_DEFAULT_CHAR_HEIGHT attribute,

376
FONT_DEFAULT_CHAR_WIDTH attribute, 376
FONT_FAMILY attribute, 371
FONT_FAMILY_DEFAULT font, 372
FONT_FAMILY_DEFAULT_FIXEDWIDTH font,

372
FONT_INFO attribute, 375
FONT_NAME attribute, 375
FONT_RESCALE_OF attribute, 374
fonts, 25, 50, 367

creating, 368
dimensions, 375
family, 367, 371
rescaling, 374
scale, 367
scaling, 373
size, 367, 373
specifying font by name, 375
style, 367, 371
using xv_find, 368
WINDOW attributes, 373

FONT_SCALE attribute, 373
fonts.h header file, 368
FONT_SIZE attribute, 371, 373
FONT_SIZES_FOR_SCALE attribute, 373
FONT_STRING_DIMS attribute, 376
Font_string_dims structure, 376
FONT_STYLE attribute, 372
FONT_STYLE_DEFAULT font, 372
footer, FRAME_SHOW_FOOTER attribute, 65

of a frame, 63
fork system call, 482

Index 755

frame, about, 26-28
base frame, 26, 61-62
closed base frame, 66
command frame, 61, 68
display, setting, 69
headers and footers, 63
in class hierarchy, 18
initialization, 62
modifying open/close using the Notifier, 491
multiple screens, 351
pop-up, 26
providing visual feedback, 74
role of window manager, 61
size, setting, 74
subframe, 61

FRAME package, 59-82, 69
FRAME_ACCELERATOR attribute, 147
FRAME_BUSY attribute, 74
FRAME_CLOSED attribute, 342
FRAME_CLOSED_RECT attribute, 66
FRAME_CMD package, 68-69
FRAME_CMD_DEFAULT_PIN_STATE attri-

bute, 69
FRAME_CMD_PANEL attribute, 293
FRAME_CMD_PIN_STATE attribute, 69
FRAME_DONE_PROC attribute, 71
frame_fit_all macro, 77
FRAME_FOCUS_DIRECTION attribute, 147
FRAME_FOCUS_RIGHT, 147
FRAME_FOCUS_UP, 147
FRAME_FOCUS_WIN attribute, 146
frame_get_rect procedure, 74
FRAME_ICON attribute, 66
frame_kbd_use procedure, 146
FRAME_LABEL attribute, 64
FRAME_MAX_SIZE attribute, 73
FRAME_MENU_ADD attribute, 695
FRAME_MENU_COUNT attribute, 695
FRAME_MENU_DELETE attribute, 695
FRAME_MENUS, 695
FRAME_MENUS attribute, 695
FRAME_MIN_SIZE attribute, 73
FRAME_NO_CONFIRM attribute, 67
FRAME_NTH_SUBFRAME attribute, 76
FRAME_NTH_SUBWINDOW attribute, 76
frame_set_rect procedure, 74
FRAME_SHOW_FOOTER attribute, 65
FRAME_SHOW_HEADER attribute, 64
FRAME_SHOW_RESIZE_CORNER attribute,

73
FRAME_WM_COMMAND_ARGC attribute, 78

FRAME_WM_COMMAND_ARGC_ARGV attri-
bute, 78, 495

FRAME_WM_COMMAND_ARGV attribute, 78
FRAME_WM_COMMAND_STRINGS attribute,

78
FRAME_X_ACCELERATOR attribute, 147
freeing the server, 359
FULLSCREEN package, 359

G

gap between panel items, 159
gauge item, 188
GC, about, 96-98

font ID, 367
fonts, 370
repainting objects, example of, 98

generic, attributes, 22
functions, table of, 21

generic object, 19, 24-25
getitimer system call, 462
gettext() procedure, 544
getting an object’s package, 572
global variable, xv_default_server, 353
global variables, 199
glyphs, 178, 330, 367
grabbing the server, 359
graphics, 355

CANVAS_X_PAINT_WINDOW, 94
cursor images, 327
draw programs, 89
exposure events, 92, 122
paint programs, 90
rendering in color, 521
rendering methods, 91
rendering text, example of, 370
SunView, 91
text-based programs, 90
visualization programs, 90
Xlib drawing, example of, 333
XView model, 91
(see also server image)

GraphicsExpose event, 92

H

handle, for object, 19
header, FRAME_SHOW_HEADER attribute, 64

of a frame, 63
header file, about, 42

canvas.h, 88

756 XView Programming Manual

header file (cont’d)
cms.h, 333
cursors.h, 327
defaults.h, 385
dragdrop.h, 435
fonts.h, 368
icon.h, 339
notice.h, 308, 655
notify.h, 463
openmenu.h, 277
panel.h, 155
rect.h, 66
screen.h, 350
sel_pkg.h, 397, 399
server.h, 353
signal.h, 465
svrimage.h, 356
textsw.h, 216
tty.h, 241
win_event.h, 119, 125
win_input.h, 119, 124-125
X.h, 119
Xlib.h, 96, 350
xv_error.h, 570
xview.h, 42

help, example, 559
installation, 562

help facilities, 557-564
help frame, 27
HELPPATH environment variable, 558, 562
HELP_STRING_FILENAME attribute, 561
hidden class, 85
hints, to window manager, 61
HISTORY_LIST, 687
HISTORY_MENU, 687

I

ICCCM, (See Inter-Client Communications Con-
ventions Manual).

icon, 66
about, 34, 339
creating, 339
positioning image, 342
server image, 340
size, 344
text label, 344

ICON package, 339-345
icon.h header file, 339
iconification, 66, 340
ICON_IMAGE attribute, 342
ICON_IMAGE_RECT attribute, 342

ICON_LABEL attribute, 344
ICON_LABEL_RECT attribute, 344
ICON_MASK_IMAGE attribute, 344
ICON_TRANSPARENT attribute, 343
ICON_TRANSPARENT_LABEL attribute, 345
include files, (See header file).
inheritance, 19, 85, 88
initialization, 45, 62

(see also xv_init procedure)
input, about, 9

handling, event-driven, 460;
mainline, 459

handling of, 115-148
in CANVAS package, 105

input masks, 116
inputLang resources, 541
Inputmask structure, 119, 131-132
interclient communication, 9, 393-430,

635-652
interclient communications, 433-456
Inter-Client Communications Conventions

Manual, 9
internationalization, 537-553

about, 537
attributes for gettext(), 549
bindtextdomain(), 546
creating text domain, 547
dgettext() procedure, 545
gettext() procedure, 544
handling text, 543
locale command-line options, 541
locale resources, 541
locale setting, 538
locale specification, 541
objects, 550
OPEN LOOK user interface, 539
POSIX categories, 542
textdomain(), 545
xview locale attributes, 540

interposition, 37, 488-498
scrolling, 264

intrinsics, definition of, 580
xview, 580

ioctl system call, 462
item, gauge, 188
ITIMER_REAL enum, 467
ITIMER_VIRTUAL enum, 467

Index 757

K

KBD_DONE event, 121, 129
KBD_USE event, 121, 129
keyboard, event states, 126
keyboard events, 121
keyboard focus, about, 5

defined by window manager, 9
directing under program control, 129
events, 121
grabbing, 129, 359

keyboard focus item, notification, 192
setting a value, 193

KEY_BOTTOM macro, 128
KEY_LEFT macro, 128
KEY_RIGHT macro, 128
KeySym, 117
KEY_TOP macro, 128

L

-lc_basiclocale command-line option, 541
-lc_displaylang command-line option, 541
-lc_inputlang command-line option, 541
-lc_numeric command-line option, 541
-lc_timeformat command-line option, 541
libraries, for XView, 42
line, editing in text subwindow, 226
list item, adding and deleting, 181

displaying, 178
notification, 183
selection, 182

lists, attribute-value, 582
LOC_DRAG event, 120
LOC_MOVE event, 106, 120
LOC_WINENTER event, 106, 120, 129
LOC_WINEXIT event, 106, 120

M

macro, ATTR_CONSUME, 587, 598
attr_next, 584
ATTR_PKG_UNUSED_FIRST, 594
ATTR_PKG_UNUSED_LAST, 594
ATTR_STANDARD_SIZE, 583
BUT, 129
CANVAS_EACH_PAINT_WINDOW, 104
CANVAS_END_EACH, 104
CMS_CONTROL_COLORS, 524
DefaultColormap, 515
dnd_is_local(), 443

event_action, 126
event_button_is_down, 128
event_id, 126
event_is_ascii, 127
event_is_button, 128
event_is_down, 126
event_is_iso, 127
event_is_key_bottom, 128
event_is_key_left, 128
event_is_key_right, 128
event_is_key_top, 128
event_is_up, 126
event_left_is_down, 128
event_middle_is_down, 128
event_right_is_down, 128
event_string, 127
event_window, 125
event_xevent, 92
frame_fit_all, 77
KEY_BOTTOM, 128
KEY_LEFT, 128
KEY_RIGHT, 128
KEY_TOP, 128
OPENWIN_EACH_VIEW, 105
PANEL_CHECK_BOX, 174
PANEL_CHOICE_STACK, 173
PANEL_EACH_ITEM, 165
PANEL_END_EACH, 165
panel_set_value, 193
PANEL_TOGGLE, 172
window_fit, 77, 164
window_fit_height, 77, 164
window_fit_width, 77, 164
XDefaultColormap, 515
xv_alloc, 596
XV_ATTR, 583
XV_DEFAULT_CMS_SIZE, 516
XV_INIT_ARGS, 46
XV_PRIVATE, 593
XV_PUBLIC, 593
XV_SERVER_FROM_WINDOW, 138

mainline input handling, 459
MapNotify event, 54
menu, about, 31, 273

adding menu items, 285
appending new item, 283
creating, 277
default item, 297
destroying, 298
displaying image, 284, 286
finding items, 297
freeing allocated strings, 299
freeing pullright menus, 299

758 XView Programming Manual

menu (cont’d)
generation procedures, 287
menu title, 282
notification procedures, 294
owner of, 277
pin-up, 292
position of menu item, 282
pullright, 285
pullright menus, 274
selected item, 297
setting inactive items, 294
string handling, 282
toggle (nonexclusive) settings, 291
XView implementation, 274

Menu accelerators, 695
menu buttons, on panels, 167
MENU package, 273-304, 277
MENU_ACCELERATOR attribute, 696
MENU_ACCELERATORS attribute, 696
MENU_ACTION_ACCELERATOR attribute,

696
MENU_ACTION_IMAGE attribute, 284
MENU_ACTION_ITEM attribute, 283-284
MENU_APPEND_ITEM attribute, 284
MENU_CHOICE_MENU package, 278
MENU_CLIENT_DATA attribute, 199, 300
MENU_COMMAND_MENU package, 277
MENU_DEFAULT_ITEM attribute, 297
MENU_DESCEND_FIRST attribute, 297
MENU_DONE_PROC attribute, 279, 293
MENU_FIRST_EVENT attribute, 279
MENU_GEN_PIN_WINDOW attribute, 292
MENU_GEN_PROC attribute, 287
menu_gen_proc procedure, 288
MENU_GEN_PULLRIGHT attribute, 287
MENU_GEN_PULLRIGHT_ITEM attribute, 288
MENU_IMAGE attribute, 284
MENU_IMAGES attribute, 286
MENU_INACTIVE attribute, 294
MENU_ITEM attribute, 283, 299
MENUITEM package, 283-284
MENU_LAST_EVENT attribute, 279
MENU_NCOLS attribute, 292
MENU_NITEMS attribute, 288
MENU_NOTIFY_PROC attribute, 282, 294
menu_notify_proc procedure, 282, 294
MENU_NOTIFY_STATUS attribute, 298
MENU_NROWS attribute, 292
MENU_NTH_ITEM attribute, 288
MENU_PARENT attribute, 290
MENU_PIN attribute, 293
MENU_PIN_PROC attribute, 293
MENU_PIN_WINDOW attribute, 293

MENU_PULLRIGHT attribute, 285
MENU_PULLRIGHT_IMAGE attribute, 285
MENU_PULLRIGHT_ITEM attribute, 285
MENU_RELEASE attribute, 285, 298
MENU_RELEASE_IMAGE attribute, 287
MENU_REMOVE attribute, 288
MENU_SELECTED_ITEM attribute, 297
menu_show procedure, 278-279
MENU_STRING attribute, 283-284
MENU_STRINGS attribute, 282
MENU_STRINGS_AND_ACCELERATORS attri-

bute, 696
MENU_TITLE_ITEM attribute, 282
MENU_TOGGLE_MENU package, 278, 291
message item, 184

selection, 184
messages, client, 123
modifier keys, 126
modifying the display list, 686
monitoring scrolling events, 264
motion events, 120
mouse, button events, 121;

registering interest in, 119
button, re-mapping, 117
event states, 126
getting coordinate position, 330
motion events, 120
position, 124

mouseless model, 142
keyboard command mapping, 143
location cursor, 146

MS_LEFT event, 126
multiline text item, 188, 193

N

nonexclusive choice, 172
nonvisual objects, 349-363

about, 34
notice, about, 27, 307, 655

busy frames, 316
creating, 308, 655
destroying, 320
displaying, 308, 655
implementation, 655
origin, 657
responses, 311, 658
screen-locking, 316
standard, 313
status, 311
suppressing beep, 320, 661
triggers, 318, 659

Index 759

notice (cont’d)
types, 313

NOTICE package, 307-324
use of FULLSCREEN package, 359

NOTICE_BLOCK_THREAD attribute, 313
NOTICE_BUSY_FRAMES attribute, 313, 316
NOTICE_BUTTON attribute, 658
NOTICE_BUTTON_NO attribute, 311
NOTICE_BUTTON_YES attribute, 311, 658
NOTICE_EVENT_PROC attribute, 315
NOTICE_FOCUS_XY attribute, 317, 657
notice.h header file, 308, 655
NOTICE_LOCK_SCREEN attribute, 313
NOTICE_MESSAGE_STRING attribute, 309
NOTICE_MESSAGE_STRINGS attribute, 309,

312, 658
NOTICE_MESSAGE_STRINGS_ARRAY_PTR

attribute, 309, 574
NOTICE_NO attribute, 497
NOTICE_NO_BEEPING attribute, 661
notice_prompt procedure, 655
NOTICE_STATUS attribute, 311
NOTICE_TRIGGER attribute, 318
NOTICE_TRIGGER_EVENT attribute, 320
NOTICE_YES attribute, 497
notification, menus, 294
notification procedures, in a text subwindow,

233
Notifier, 459-510

about, 10, 459
base event handler, 488
client, 463
client events, 474
control, 498
definition, 461
destroy event delivery time, 479
error codes, 507-508
explicit dispatching, 498, 501
file descriptors, 479
flow of control in Notifier-based programs, 36
handling X events, 54
implicit dispatching, 498
interposing on frame open/close, 491
interposing on resize events, 493
interposition, 37, 488
miscellaneous issues, 509
operation, 461
overview, 35
pipes, 482
posting events, 475;

client, 476;
destroy, 478;
with an argument, 477

procedures of, 460
prohibited signals, 464
reading, 480
role of xv_main_loop procedure, 54
safe destruction, 479
signal handling, 464
SIGTERM handling, 470
timers, 467

Notifier procedures
notify_default_wait, 3, 472
notify_do_dispatch, 499
notify_interpose_destroy_func, 494
notify_interpose_event_func, 491
notify_next_event_func, 492
notify_post_destroy, 478
notify_post_event, 475
notify_post_event_and_arg, 477-478
notify_set_destroy_func, 464
notify_set_exception_func, 465
notify_set_input_func, 465, 480
notify_set_itimer_func, 462, 467
notify_set_output_func, 465, 480
notify_set_signal_func, 465-466
notify_set_wait3_func, 464, 471
notify_veto_destroy, 494

notify procedure, 35
Notify_arg, 475, 478
NOTIFY_ASYNC enum, 465
NOTIFY_BADF, 508
NOTIFY_BAD_ITIMER, 508
NOTIFY_BAD_SIGNAL, 508
Notify_client, 475
Notify_copy, 478
NOTIFY_COPY_NULL, 478
notify_default_wait3 procedure, 472
NOTIFY_DESTROY_VETOED, 479, 508
notify_dispatch procedure, 498
notify_do_dispatch procedure, 499
NOTIFY_DONE, 472, 475
notify_enable_rpc_svc(), function, 473
notify_errno, 507
Notify_error, 507
Notify_event, 475-476
Notify_event_type, 475
NOTIFY_FUNC_LIMIT, 508
notify.h header file, 463
NOTIFY_IGNORED, 472, 475-476, 490
NOTIFY_IMMEDIATE, 475-476
NOTIFY_INTERNAL_ERROR, 508
notify_interpose_destroy_func procedure,

463, 494
notify_interpose_event_func function, 206

760 XView Programming Manual

notify_interpose_event_func procedure, 491
NOTIFY_INVAL, 479, 508
notify_next_event_func procedure, 492
NOTIFY_NO_CONDITION, 476, 508
NOTIFY_NOMEM, 508
NOTIFY_NOT_STARTED, 508
NOTIFY_OK, 508
notify_perror procedure, 508
notify_post_destroy procedure, 478
notify_post_event procedure, 475-476
notify_post_event_and_arg procedure, 477
notify_proc procedure, 233
Notify_release, 478
NOTIFY_RELEASE_NULL, 478
NOTIFY_SAFE, 475-476
notify_set_destroy_func procedure, 470
notify_set_event_func function, 598
notify_set_event_func procedure, 475
notify_set_exception_func procedure, 465
notify_set_input_func procedure, 465, 480
notify_set_itimer_func procedure, 462, 467
notify_set_output_func procedure, 465, 480
notify_set_signal_func procedure, 465-466
notify_set_wait3_func procedure, 246, 464,

471, 482
NOTIFY_SRCH, 508
notify_start procedure, 498
notify_stop procedure, 498
NOTIFY_SYNC enum, 465
NOTIFY_UNEXPECTED, 475
NOTIFY_UNKNOWN_CLIENT, 476, 508
NULL, 22
numeric keyboard focus item, 193
numeric resources, 541
numeric text item, 188

O

object-oriented programming, 17
objects, canvas subwindows, 30

class hierarchy, 18
destroying, 50, 493-494
frames, 26
Generic Object, 19, 24
icons, 34
menus, 31
nonvisual, 18, 34
panels, 30
relationship to Notifier, 37
scrollbars, 33
text subwindows, 30
use of object handle, 19

windows, 25
opaque data types, 19
OPEN LOOK, about, 12

as standard, 12
control area, 153
documentation, 13
menus, 273
scrollbars, 253
text selection, 393

openmenu.h header file, 277
OPENWIN package, 85

split views, 254
OPENWIN_AUTO_CLEAR attribute, 93
OpenWindows.KeyboardCommands, 143
OPENWIN_EACH_VIEW macro, 105
OPENWIN_NTH_VIEW attribute, 104
OPENWIN_SPLIT attribute, 103
OPENWIN_SPLIT_DESTROY_PROC attribute,

103
OPENWIN_SPLIT_INIT_PROC attribute, 103
override_redirect, 655
ownership of objects, 48

P

package, 18, 43
CANVAS, 85-111
CMS, 513-534, 516
CURSOR, 327-335
DRAGDROP, 433-456
DROP_SITE_ITEM, 433-456
FONT, 367-377
FRAME, 59-82
FRAME_CMD, 68
FULLSCREEN, 359
ICON, 339-345
MENU, 273-304, 277
MENU_CHOICE_MENU, 278
MENU_COMMAND_MENU, 277
MENUITEM, 283-284
MENU_TOGGLE_MENU, 278, 291
NOTICE, 307-324
PANEL, 153-211, 155
PANEL_ABBREV_MENU_BUTTON, 171
PANEL_BUTTON, 166
PANEL_CHOICE, 171
PANEL_DROP_TARGET, 194
PANEL_GAUGE, 188
PANEL_LIST, 177
PANEL_MESSAGE, 184
PANEL_MULTILINE_TEXT_ITEM, 193
PANEL_NUMERIC_TEXT, 193

Index 761

package (cont’d)
PANEL_SCROLLABLE, 156
PANEL_SLIDER, 186
PANEL_TEXT, 188
PANEL_TOGGLE, 172
SCREEN, 350
SCROLLABLE_PANEL, 156
SCROLLBAR, 156, 253-270
SELECTION, 393
SELECTION_ITEM, 393
SELECTION_OWNER, 393
SELECTION_REQUESTOR, 393
SELN, 635-652
SERVER, 353
SERVER_IMAGE, 356
TEXTSW, 215-236
TTYSW, 241
Xv_pkg, 572

paint programs, 90
paint window, 87

controlling size, 99
definition of, 86
handling events, 106

panel, about, 30, 153
creating, 155
event handling, 155, 205
item (See panel item).
iterating over items, 165
layout, 159
minimum size, 164
panel item extensions, 620
scrollable, 156
sizing, 164
subclassed from window, 153

panel extensions, begin preview, 626
item handle procedures, 626

panel item, about, 153
attaching data, 199
button, 166
choice, 171
classes, 165
color, 525
creating, 157
destroying, 165
drop target, 194
drop target notify procedure, 198
extensions, 620
gap, 159
iteration, 165
layout, 160
menu buttons, 167
messages, 184
multiline text, 188

numeric text, 188
repainting, 205
scrolling lists, 177
setting values, 164
setting x and y coordinates, 162
slider, 186
text, 188
types, 157
values, 164

PANEL package, 153-211, 155
summary, 209

PANEL_ABBREV_MENU_BUTTON package,
171

PANEL_ACCEPT_KEYSTROKE attribute, 207
PANEL_BACKGROUND_PROC attribute,

206-207
PANEL_BORDER attribute, 160
PANEL_BUSY attribute, 167
PANEL_BUTTON package, 166
PANEL_CARET_ITEM attribute, 190, 206
PANEL_CHECK_BOX macro, 174
PANEL_CHOICE package, 171
PANEL_CHOICE_COLOR attribute, 175, 525
PANEL_CHOICE_IMAGE attribute, 173
PANEL_CHOICE_IMAGES attribute, 171
PANEL_CHOICE_NCOLS attribute, 171
PANEL_CHOICE_NROWS attribute, 171
PANEL_CHOICE_RECT attribute, 177
PANEL_CHOICE_STACK macro, 173
PANEL_CHOICE_STRING attribute, 171
PANEL_CHOICE_STRINGS attribute, 171, 583
PANEL_CHOICE_X attribute, 177
PANEL_CHOICE_XS attribute, 176
PANEL_CHOICE_Y attribute, 177
PANEL_CHOICE_YS attribute, 176
PANEL_CHOOSE_NONE attribute, 173
PANEL_CHOOSE_ONE attribute, 177, 182
PANEL_CLIENT_DATA attribute, 199-200
PANEL_DIRECTION attribute, 186
PANEL_DISPLAY_LEVEL attribute, 171
PANEL_DISPLAY_ROWS attribute, 193
PANEL_DROP_BUSY_GLYPH attribute, 196
PANEL_DROP_DND attribute, 197
PANEL_DROP_FULL attribute, 197
PANEL_DROP_GLYPH attribute, 196
PANEL_DROP_SEL_REQ attribute, 197
PANEL_DROP_TARGET package, 194
PANEL_EACH_ITEM macro, 165
PANEL_END_EACH macro, 165
PANEL_EVENT_PROC attribute, 206-207
PANEL_EXTRA_PAINT_HEIGHT attribute, 164

762 XView Programming Manual

PANEL_EXTRA_PAINT_WIDTH attribute, 164
PANEL_FIRST_ITEM attribute, 165
PANEL_GAUGE package, 188
PANEL_GAUGE_WIDTH attribute, 188
panel.h header file, 155
PANEL_HORIZONTAL, value of PANEL_LAY-

OUT, 159
PANEL_INACTIVE attribute, 167
PANEL_ITEM_COLOR attribute, 521, 525
PANEL_ITEM_MENU, 184
PANEL_ITEM_X attribute, 162
PANEL_ITEM_X_GAP attribute, 159
PANEL_ITEM_Y attribute, 162
PANEL_ITEM_Y_GAP attribute, 159
PANEL_LABEL_BOLD attribute, 184
PANEL_LABEL_IMAGE attribute, 358
PANEL_LABEL_STRING attribute, 160, 166
PANEL_LABEL_WIDTH attribute, 170
PANEL_LAYOUT attribute, 159, 171, 176, 189
PANEL_LINE_BREAK_ACTION attribute, 194
PANEL_LIST package, 177
PANEL_LIST_CLIENT_DATA attribute, 184
PANEL_LIST_CLIENT_DATAS attribute, 184
PANEL_LIST_DELETE attribute, 181
PANEL_LIST_DELETE_INACTIVE_ROWS, 694
PANEL_LIST_DELETE_INACTIVE_ROWS

attribute, 694
PANEL_LIST_DELETE_ROWS attribute, 181
PANEL_LIST_DELETE_SELECTED_ROWS

attribute, 181
PANEL_LIST_DISPLAY_ROWS attribute, 178
PANEL_LIST_DO_DBL_CLICK attribute, 694
PANEL_LIST_EDIT, 184
PANEL_LIST_EXTENSION_DATA attribute,

695
PANEL_LIST_EXTENSION_DATAS attribute,

695
PANEL_LIST_FIRST_SELECTED attribute, 182
PANEL_LIST_FONT attribute, 178
PANEL_LIST_FONTS attribute, 178
PANEL_LIST_GLYPH attribute, 178
PANEL_LIST_GLYPHS attribute, 178
PANEL_LIST_INACTIVE attribute, 694
PANEL_LIST_INSERT attribute, 182
PANEL_LIST_INSERT_DUPLICATE attribute,

182
PANEL_LIST_INSERT_GLYPHS attribute, 181
PANEL_LIST_INSERT_STRINGS attribute, 181
PANEL_LIST_MASK_GLYPH attribute, 695
PANEL_LIST_MASK_GLYPHS attribute, 695
PANEL_LIST_MODE attribute, 184

PANEL_LIST_NEXT_SELECTED attribute, 182
PANEL_LIST_OP_DBL_CLICK, 694
PANEL_LIST_READ, 184
PANEL_LIST_ROW_HEIGHT attribute, 178
PANEL_LIST_ROW_VALUES, 691
PANEL_LIST_ROW_VALUES attribute, 691
PANEL_LIST_SELECT attribute, 182
PANEL_LIST_STRING attribute, 178
PANEL_LIST_STRINGS attribute, 178
PANEL_LIST_TITLE attribute, 178
PANEL_LIST_WIDTH attribute, 178
PANEL_MASK_CHAR attribute, 189
PANEL_MAX_TICK_STRING attribute, 186
PANEL_MAX_VALUE attribute, 186
PANEL_MAX_VALUE_STRING attribute, 186
PANEL_MESSAGE package, 184
PANEL_MIN_TICK_STRING attribute, 186
PANEL_MIN_VALUE attribute, 186
PANEL_MIN_VALUE_STRING attribute, 186
PANEL_MULTILINE_TEXT_ITEM package,

193
PANEL_NCHOICES attribute, 171
PANEL_NEXT_COL attribute, 159
PANEL_NEXT_ITEM attribute, 165
PANEL_NEXT_ROW attribute, 159
PANEL_NO_REDISPLAY_ITEM attribute, 625
PANEL_NOTIFY_LEVEL attribute, 187, 191
PANEL_NOTIFY_PROC attribute, 175
PANEL_NOTIFY_STATUS attribute, 167, 175
PANEL_NOTIFY_STRING attribute, 191
PANEL_NUMERIC_TEXT package, 193
PANEL_PAINT attribute, 205
panel_paint procedure, 205
PANEL_POST_EVENTS attribute, 497
PANEL_REPAINT_PROC attribute, 202
PANEL_SCROLLABLE package, 156
panel_set_value macro, 193
PANEL_SHOW_RANGE attribute, 186
PANEL_SHOW_VALUE attribute, 186
PANEL_SLIDER package, 186
PANEL_SLIDER_END_BOXES attribute, 186
PANEL_SLIDER_WIDTH attribute, 186
PANEL_TEXT package, 188
PANEL_TEXT_SELECT_LINE attribute, 191
PANEL_TICKS attribute, 186
PANEL_TOGGLE macro, 172
PANEL_VALUE attribute, 164-165
PANEL_VALUE_DISPLAY_LENGTH attribute,

189, 193
PANEL_VALUE_DISPLAY_WIDTH attribute,

189, 193

Index 763

PANEL_VALUE_STORED_LENGTH attribute,
184, 189-190, 193

PANEL_VALUE_X attribute, 163
PANEL_VALUE_Y attribute, 163
PANEL_VERTICAL, value of PANEL_LAYOUT,

159
PANEL_WRAP_AT_CHAR, 194
PANEL_WRAP_AT_WORD, 194
parallel lists for choice item, 176
PATH_NAME, 690
pattern matching, (see text subwindow)
pclose system call, 462
pipe system call, 482
pipes, 482
pixel, definition of, 519
pixmap, 90
popen system call, 462
POSIX categories, 542
precedence of resource options, 53
primary selection, in a text subwindow, 232
property sheets, 153
pullright menus, 285
pushpin, about, 27, 69

close procedure, 71
command frame, 69
use in menus, 292

Q

quit action, 67
quit confirmation, FRAME_NO_CONFIRM attri-

bute, 67
quit.c program, 44

R

read system call, 479
readv system call, 509
realize event, 55
reaping child process, 471-472
Rect structure, 19, 66
rect.h header file, 66
Rectlist structure, 19, 95
remote procedure calling, RPC, 473
rendering graphics, 91
repaint

canvas, about, 89;
form of procedure, 91;
procedures used to draw, 89-90;
when procedure is called, 91

event, 81, 122

panel item, 205
reserved names, table of, 43
resize corners, displaying, 73
resize event, 81, 122
resize size, maximum and minimum, 73
resources, 381-390

basicLocale, 541
boolean, 385
character, 387
color, 524
displayLang, 541
enumerated, 388
inputLang, 541
integer, 386
lookup, 388
mouseless model, 145
numeric, 541
pairs, 388
predefined default values, table of, 381
string, 387
timeFormat, 541

RGB, 517
rlimit system call, 509
RPC, interaction with, 473
run-time errors, 567

S

SCREEN package, 350
Screen structure, 350
Screen type, 350
screen.h header file, 350
SCREEN_NUMBER attribute, 350
screens, multiple, 351
SCREEN_SERVER attribute, 354
SCROLLABLE_PANEL package, 156
scrollbar, about, 33, 253

creating, 254
managing, 263
OPEN LOOK description, 253
relationship to objects, 256
split views, 254
use with canvases, 101

SCROLLBAR package, 156, 253-270
SCROLLBAR_COMPUTE_SCROLL_PROC

attribute, 263
scrollbar_default_compute_scroll_proc pro-

cedure, 266
SCROLLBAR_NORMALIZE_PROC attribute,

263

764 XView Programming Manual

SCROLLBAR_NOTIFY_CLIENT attribute, 264
SCROLLBAR_OBJECT_LENGTH attribute, 256
SCROLLBAR_PAGE_LENGTH attribute, 256,

259
SCROLLBAR_PIXELS_PER_UNIT attribute,

256, 258-259
SCROLLBAR_REQUEST event, 264
SCROLLBAR_SPLITTABLE attribute, 102
SCROLLBAR_VIEW_LENGTH attribute, 256,

259
SCROLLBAR_VIEW_START attribute, 256
scrolling, 266

events, 264
lists, 177

secondary selection, in a text subwindow, 232
SEL_APPEND_TYPE_NAMES attribute, 400
SEL_APPEND_TYPES attribute, 400
SEL_CONVERT_PROC attribute, 397, 403
sel_convert_proc() procedure, 404
SEL_COPY attribute, 413
SEL_DATA attribute, 401, 414
SEL_DONE_PROC attribute, 410
selection, about, 393, 635

blocking request, 401
conversion procedure, 403, 422
copying to clipboard, 637
getting from holder, 638
in a text subwindow, 231
incremental reply, 416
non-blocking request, 402
notify procedure, 421
rank, 395, 637
reply procedure attribute, 406
reply procedure errors, 408
selecting text, 393
selection item object, 411
sending data incrementally, 415
service, 393, 635
target type, 400

selection events, 130
selection model, 395
SELECTION package, 393
selection package, (See SELN package).
selection_ask procedure, 638-639, 646
selection_inquire procedure, 638
SELECTION_ITEM package, 393
SELECTION_OWNER package, 393
SELECTION_REQUESTOR package, 393
SEL_FIRST_ITEM attribute, 414
SEL_FORMAT attribute, 413
SEL_LENGTH attribute, 414
SEL_LOSE_PROC attribute, 410
SELN package, 635-652

SELN_CARET enum, 638
SEL_NEXT_ITEM attribute, 414
SELN_LEVEL_LINE attribute, 646
SELN_PRIMARY enum, 639
SELN_REQ_CONTENTS_ASCII attribute, 640,

645
SELN_REQ_FAKE_LEVEL attribute, 646
SELN_REQ_FIRST attribute, 641
SELN_REQ_FIRST_UNIT attribute, 646
SELN_REQ_LAST attribute, 641
SELN_REQ_LAST_UNIT attribute, 646
SELN_REQ_SET_LEVEL attribute, 646
Seln_request structure, 639, 641
SELN_SECONDARY enum, 639
SELN_SHELF enum, 639
SELN_UNKNOWN enum, 638
SELN_UNSPECIFIED enum, 639
SEL_OWN attribute, 397, 404
sel_pkg.h header file, 397, 399
sel_post_req() procedure, 402
SEL_PROP_DATA attribute, 418
SEL_PROP_FORMAT attribute, 418
SEL_PROP_INFO attribute, 418
SEL_PROP_LENGTH attribute, 418
SEL_PROP_TYPE attribute, 418
SEL_PROP_TYPE_NAME attribute, 418
SEL_RANK attribute, 398
SEL_RANK_NAME attribute, 398
SEL_REPLY_PROC attribute, 400, 406
SEL_TIME attribute, 399
SEL_TIMEOUT_VALUE attribute, 398
SEL_TYPE attribute, 400
SEL_TYPE_INDEX attribute, 418
SEL_TYPE_NAME attribute, 400
SEL_TYPE_NAMES attribute, 400
SEL_TYPES attribute, 400
sending client messages, 130
server, about, 5, 353

freeing, 359
grabbing, 359
identifying, 354
image (See server image)
opening a connection, 353
synchronizing, 354
windows retained, 88

server image, 355
as panel image, 358
attached to other objects, 357
creating, 356
destroying pixmap, 357
pixmaps, 355
Server_image object, 356
used for cursor, 327, 329

Index 765

Server object, 353
SERVER package, 353
SERVER_ATOM attribute, 355
SERVER_ATOM_NAME attribute, 355
server-client model, 5
SERVER_EXTENSION_PROC attribute, 138
SERVER_EXTERNAL_XEVENT_MASK attri-

bute, 139
SERVER_EXTERNAL_XEVENT_PROC attri-

bute, 139
server.h header file, 353
SERVER_IMAGE package, 356
SERVER_IMAGE_BITMAP_FILE attribute, 357
SERVER_IMAGE_BITS attribute, 356
SERVER_IMAGE_CMS attribute, 357
SERVER_IMAGE_DEPTH attribute, 357
SERVER_IMAGE_PIXMAP attribute, 357
SERVER_IMAGE_SAVE_PIXMAP attribute,

357
SERVER_IMAGE_X_BITS attribute, 356
SERVER_NTH_SCREEN attribute, 351
SERVER_SYNC_AND_PROCESS_EVENTS

attribute, 355
setjmp system call, 509
setpriority system call, 509
setquota system call, 509
settimer system call, 462
shelf, 637
sigaction (2), 462
SIGALRM, 464
sigblock system call, 509
SIGCHLD, 464, 471
SIGIO, 465
sigmask system call, 509
signal handling, 464
signal system call, 461, 486

replacement for, 465
signal.h header file, 465
sigpause system call, 509
sigstack system call, 509
SIGTERM, 464, 470, 478
SIGURG, 465
sigvec (2), 462
sigvec system call, 509
SIGVTALRM system call, 464
sleep(), emulating, 502
slider item, 186

selection, 187
soft function keys, 140
split views, about, 29

function of scrollbar, 254
in a text subwindow, 232
in canvas, 102

static subclassing, 19
structure, Display, 350

Event, 19, 124
Font_string_dims, 376
Inputmask, 119, 131-132
Rect, 19, 66
Rectlist, 19, 95
Screen, 350
Seln_request, 639, 641
XEvent, 125
XFontStruct, 375
XTextExtents, 376
Xv_Screen, 350

subclass, definition of, 580
subclassing, static, 580
subframe, 61, 68
subwindows, about, 29

laying out in frames, 77
SunView, 11

graphics, 91
svrimage.h header file, 356
system call, alarm, 462

calls to avoid, 462
dup2, 482
exec, 482
fork, 482
getitimer, 462
ioctl, 462
pclose, 462
pipe, 482
popen, 462
read, 479
readv, 509
rlimit, 509
setjmp, 509
setpriority, 509
setquota, 509
settimer, 462
sigblock, 509
sigmask, 509
signal, 461, 486
sigpause, 509
sigstack, 509
sigvec, 509
SIGVTALRM, 464
system, 462, 482
umask, 509
wait, 462
wait3, 462, 471
write, 479, 509

system system call, 462, 482

766 XView Programming Manual

T

terminal emulator, (See TTY subwindow).
text item, 164, 188

ASCII events, 206
multiline, 193
notification, 191
numeric, 193
selection, 190

text subwindow, about, 30, 215
checking status, 218
confirmation, 233
contents of, 216
creating, 216
deleting text, 220
destruction, 233
determining what lines are visible, 227
discarding edits, 224
edit log, 222
editing, 217
emulating an editing character, 221
getting a text selection, 231
getting filename, 222
index, 216
interaction with file system, 223
interposition, 236
lines on screen and in file, 226
loading a file, 217
marking positions, 230
notification, 233
pattern matching, 228
positioning text, 226
positioning views, 226
reading from, 219
replacing characters, 221
saving edits, 223
scrolling, 227
setting initial contents, 224
setting insertion point, 219
split views, 232
storing edits, 223
subclassed from OPENWIN, 216
undo, 222
use of clipboard, 220
veto destroy, 233
writing to, 219

text subwindow package, (see TEXTSW pack-
age)

text-based programs, 90
TEXTSW package, 215-236
Textsw_action attributes, 234

TEXTSW_ACTION_CAPS_LOCK attribute, 234
TEXTSW_ACTION_CHANGED_DIRECTORY

attribute, 234
TEXTSW_ACTION_EDITED_FILE attribute,

234-235
TEXTSW_ACTION_EDITED_MEMORY attri-

bute, 234
TEXTSW_ACTION_FILE_IS_READONLY attri-

bute, 234
TEXTSW_ACTION_LOADED_FILE attribute,

234-235
TEXTSW_ACTION_TOOL_CLOSE attribute,

234
TEXTSW_ACTION_TOOL_DESTROY attribute,

234
TEXTSW_ACTION_TOOL_MGR attribute, 234
TEXTSW_ACTION_TOOL_QUIT attribute, 234
TEXTSW_ACTION_USING_MEMORY attri-

bute, 234
textsw_add_mark procedure, 230
textsw_append_file_name procedure, 222
TEXTSW_CONTENTS attribute, 220, 225
textsw_delete procedure, 220
textsw_edit procedure, 221
textsw_erase procedure, 220-221
TEXTSW_FILE attribute, 217
TEXTSW_FILE_CONTENTS attribute, 224
textsw_file_lines_visible procedure, 227
textsw_find_bytes procedure, 228
textsw_find_mark procedure, 231
TEXTSW_FIRST attribute, 217
textsw_first procedure, 232
TEXTSW_FIRST_LINE attribute, 227
TEXTSW_FONT attribute, 216
TEXTSW_FOR_ALL_VIEWS attribute, 226
textsw.h header file, 216
TEXTSW_IGNORE_LIMIT attribute, 233
Textsw_index type, 216
textsw_index_for_file_line procedure, 227
TEXTSW_INFINITY value, 219-220
textsw_insert procedure, 219
TEXTSW_INSERT_FROM_FILE attribute, 225
TEXTSW_INSERTION_POINT attribute, 219
TEXTSW_INSERT_MAKES_VISIBLE attribute,

219, 228
TEXTSW_LENGTH attribute, 216
TEXTSW_LINE_BREAK_ACTION attribute,

226
textsw_match_bytes procedure, 229
TEXTSW_MEMORY_MAXIMUM attribute, 222
TEXTSW_MODIFIED attribute, 217
textsw_next procedure, 232
textsw_normalize_view procedure, 228

Index 767

TEXTSW_NOTIFY_PROC attribute, 233
textsw_possibly_normalize procedure, 228
textsw_remove_mark procedure, 231
textsw_replace_bytes procedure, 222
textsw_reset procedure, 224
textsw_save procedure, 219, 223
textsw_screen_line_count procedure, 227
textsw_scroll_lines procedure, 227
textsw_set_selection procedure, 232
TEXTSW_STATUS attribute, 216, 218, 225
TEXTSW_STORE_CHANGES_FILE attribute,

223
textsw_store_file procedure, 219, 223
TEXTSW_WRAPAROUND_SIZE attribute, 222
tiled windows, definition of, 29
timeFormat resources, 541
timers, 467
toggle_notify procedure, 291
toolkit, (See X Window System, XView)
triggers, 318, 659
TTY subwindow, about, 241

creating, 241
escape sequences, 243
input and output routines, 243
monitoring, 246
under program control, 242

TTY_ARGV attribute, 241, 246-247
tty.h header file, 241
TTY_PID attribute, 247
TTY_QUIT_ON_CHILD_DEATH attribute, 246
TTYSW package, 241
ttysw_input procedure, 242
ttysw_output procedure, 243
TTY_TTY_FD attribute, 247
type, about, 19

Attr_attribute, 582-583
Attr_avlist, 583
defined in XView, 43
Screen, 350
Textsw_index, 216
Window_rescale_state, 373
XColor, 518
XErrorEvent, 570
Xv_Cursor, 327
Xv_Font, 368
Xv_object, 19, 49
Xv_opaque, 19
Xv_pkg, 572, 589
Xv_singlecolor, 333

typecasting, 52

U

umask system call, 509
UNIX facilities used by applications, 462
UNIX system calls and XView, 462
user interface components, 7
user interface standards, 12

V

Version 3, 12
view window, 86

definition of, 85
views, (See split views).
virtual keyboards, 140

internationalization, 140
language support, 140

visualization programs, 90

W

wait system call, 462
wait3 function, 246
wait3 system call, 462, 471-472
widget sets, 7
WIN_ASCII_EVENTS event, 121
WIN_BACKGROUND_COLOR attribute, 75,

521
WIN_BIT_GRAVITY attribute, 94
WIN_CIRCULATE_NOTIFY event, 123
WIN_CLIENT_DATA attribute, 199
WIN_CMS attribute, 513, 519, 524
WIN_CMS_NAME attribute, 519
WIN_COLLAPSE_EXPOSURES attribute, 92,

122
WIN_COLORMAP_NOTIFY event, 120
WIN_CONSUME_EVENT attribute, 106, 119
WIN_CONSUME_EVENTS attribute, 119
WIN_CONSUME_X_EVENT_MASK attribute,

118
WIN_CREATE_NOTIFY event, 123
WIN_DEPTH attribute, 25, 528
WIN_DESTROY_NOTIFY event, 123
window manager, authority of, 9

definition, 9
hints, 61
role of, 61

window_fit macro, 77, 164
window_fit_height macro, 77, 164
window_fit_width macro, 77, 164
Window_rescale_state type, 373

768 XView Programming Manual

windows, as objects, 25
creation, 55

win_event.h header file, 119, 125
WIN_EVENT_PROC attribute, 106, 124
WIN_EXTEND_TO_EDGE, 25
WIN_FOREGROUND_COLOR attribute, 75,

521
WIN_GRAB_ALL_INPUT attribute, 130
WIN_GRAPHICS_EXPOSE event, 122
WIN_GRAVITY_NOTIFY event, 123
WIN_IGNORE_EVENT attribute, 120
WIN_IGNORE_EVENTS attribute, 120
WIN_IGNORE_X_EVENT_MASK attribute, 118
win_input.h header file, 119, 124-125
WIN_INPUT_MASK attribute, 132
WIN_MAP_NOTIFY event, 123
WIN_MESSAGE_DATA attribute, 131
WIN_MESSAGE_FORMAT attribute, 131
WIN_MESSAGE_TYPE attribute, 131
WIN_META_EVENTS event, 106
WIN_MOUSE_XY attribute, 330
WIN_NO_CLIPPING attribute, 95
WIN_NO_EVENTS, 120
WIN_NO_EXPOSE event, 122
WIN_NOTIFY_IMMEDIATE_EVENT_PROC

attribute, 598
WIN_NOTIFY_SAFE_EVENT_PROC attribute,

598
WIN_REPAINT event, 81, 92, 122
WIN_REPARENT_NOTIFY event, 123
WIN_RESIZE event, 81, 122-123
WIN_RETAINED attribute, 88, 101, 204
WIN_SCALE_EXTRALARGE, 373
WIN_SCALE_LARGE, 373
WIN_SCALE_MEDIUM, 373
WIN_SCALE_SMALL, 373
win_set_kbd_focus procedure, 129
WIN_SOFT_FNKEY_LABELS attribute, 141
WIN_STRUCTURE_NOTIFY event, 123
WIN_SUBSTRUCTURE_NOTIFY event, 123
WIN_TOP_LEVEL_NO_DECOR attribute, 78
WIN_UNMAP_NOTIFY event, 123
WIN_UP_ASCII_EVENTS event, 121
WIN_UP_EVENTS event, 106, 121
WIN_WINDOW_GRAVITY attribute, 94
WIN_X_COLOR_INDICES attribute, 520
WM_SAVE_YOURSELF event, 495
write system call, 479, 509

X

X Protocol, 6
X Window ID, (See XV_XID attribute).
X Window System, events, 92;

differences between X and XView, 125
extensibility, 8
interclient communications, 9, 393, 433, 635
overview, 3
protocol, 6
role of window manager, 9
server and client relationship, 5
software hierarchy, 7
specifying event masks, 118
toolkits, 7
X Window ID for paint window, 94
Xlib, 7

XAllocColor function, 518
XAllocColor procedure, 515
XAllocColorCells function, 518
XClientMessage event, 116
XClientMessageEvent event, 131
XColor type, 518
XCopyPlane procedure, 259
XDefaultColormap macro, 515
XErrorEvent type, 570
XEvent structure, 125
XFontStruct structure, 375
XGrabPointer procedure, 279
X.h header file, 119
Xlib, 7

repainting canvas, 95
using to draw, example, 333

Xlib.h header file, 96, 350
XLookupString procedure, 127
XNextEvent procedure, 131
XParseColor function, 517
XRebindKeysym procedure, 125, 127
XSendEvent procedure, 116, 130
XStoreColor function, 517
XStoreColors function, 518
XTextExtents structure, 376
xv_add_custom_attrs() procedure, 587
xv_alloc macro, 596
XV_APP_NAME attribute, 563
XV_ATTR macro, 583
XV_AUTO_CREATE attribute, 297, 612
xv_calloc function, 596
xv_check_bad_attr function, 586, 608
xv_col procedure, 163
xv_create procedure, 47

compared to xv_find(), 50
Xv_Cursor type, 327

Index 769

XV_DECREMENT_REF_COUNT attribute, 169
XV_DEFAULT_CMS_SIZE macro, 516
xv_default_server global variable, 353
xv_destroy procedure, 50, 155

used for frames, 79
xv_destroy_safe procedure, 50, 200, 479
XV_DISPLAY attribute, 350, 513
XV_DYNAMIC_CMS, 515
XV_END_CREATE attribute, 581, 600
XV_ERROR, 52
xv_error function, 567, 608
xv_error_format procedure, 568
xv_error.h header file, 570
XV_ERROR_PROC attribute, 568
xv_find, colormap segments, 527

procedure, 49
Xv_Font type, 368
xv_get procedure, 51
XV_HEIGHT attribute, 355
XV_HELP_DATA attribute, 558
xv_help_show function, 561
XView, about, 3, 7, 9, 11-12

as object-oriented system, 17
compiling programs, 41
concept of windows differs from X, 25
data types, table of, 20
example of programming interface, 43
File Chooser, 677-702
frames and subframes, 26
generic functions, 21
Generic Object, 19, 24
internals, 579-632
libraries, 42
notification, 9, 35
object class hierarchy, 18
objects, 23-24;

and owners, table of, 20;
list of, 43

overview, xxxiii
packages, 18, 43
programmer’s model, 17-23
programming interface, 41
programs, initialization, 45, 62
reserved names, 43
reserved prefixes, 43
structure of applications, 41
subwindows, 29
types, 43
Version 3.2, 677-702
window objects, 25

xview locale attributes, 540
xview.h header file, 42

XV_INCREMENT_REF_COUNT attribute, 169
xv_init procedure, 45, 62, 353
XV_INIT_ARGC_PTR_ARGV attribute, 46, 63
XV_INIT_ARGS attribute, 46, 63
XV_INIT_ARGS macro, 46
xv_input_readevent procedure, 119, 131, 361
XV_INSTANCE_NAME attribute, 390, 551
XV_KEY_DATA attribute, 199, 282
XV_KEY_DATA_REMOVE attribute, 202
XV_KEY_DATA_REMOVE_PROC attribute,

201
XV_LABEL attribute, 64, 344
XV_LC_BASIC_LOCALE attribute, 540
XV_LC_DISPLAY_LANG attribute, 540
XV_LC_INPUT_LANG attribute, 540
XV_LC_NUMERIC attribute, 540
XV_LC_TIME_FORMAT attribute, 540
XV_LOCALE_DIR attribute, 539, 547, 550
xv_main_loop procedure, 54, 498
XV_NAME attribute, 353
XV_OBJECT, 19
Xv_object type, 19, 49
Xv_opaque type, 19
Xv_pkg type, 572, 589
XV_PRIVATE macro, 593
XV_PUBLIC macro, 593
XV_RECT attribute, 582
XV_REF_COUNT attribute, 169
xv_row procedure, 163
Xv_Screen, 350, 516
XV_SCREEN attribute, 350, 354
xv_send_message procedure, 116, 130
XV_SERVER_FROM_WINDOW macro, 138
xv_set procedure, 51
XV_SHOW attribute, 69, 498
Xv_singlecolor attribute, 517
Xv_singlecolor type, 333
XV_STATIC_CMS, 515
XV_TYPE attribute, 572
XV_USAGE_PROC attribute, 46
XV_USE_DB attribute, 390, 551, 588
XV_USE_LOCALE attribute, 537-538
XV_VISUAL attribute, 528
XV_VISUAL_CLASS attribute, 528
XV_WIDTH attribute, 355
xv_window_loop procedure, 77
xv_window_return procedure, 77
XV_X attribute, 162
XV_X_ERROR_PROC attribute, 569

to xv_init(), 569
XV_XID attribute, 94, 368
Xv_xrectlist, 97
XV_Y attribute, 162

770 XView Programming Manual

	Title Page
	Copyright Notice
	CONTENTS
	Preface
	1. XView & X
	2. Prog. Model
	3. Creating Apps
	4. Frames
	5. Canvases
	6. Input Handling
	7. Panels
	8. Text Subwindows
	9. TTY Subwindows
	10 Scrollbars
	11 Menus
	12 Notices
	13 Cursors
	14 Icons
	15 Nonvisual Objects
	16 Fonts
	17 Resources
	18 Selections
	19 Drag and Drop
	20 Notifier
	21 Color
	22 Internationalization
	23 Help Facilities
	24 Error Recovery
	25 XView Internals
	A. Selection Service
	B. notice_prompt
	C. Mouseless Mappings
	D. File Choosers and 3.2
	E. OL GUI Compliance
	F. Example Programs
	INDEX

