
Sun Microsystems, Inc.
Market Development & Developer Relations
Support Readiness Education

Support Readiness Document
Java 2 Standard Edition 1.3
Swing

Sun Microsystems, Inc.
Market Development & Developer Relations
901 San Antonio Road
Palo Alto, CA 94303
U.S.A.

Support Readiness Document
Java 2 Standard Edition 1.3
Swing

Version: 1.3
Release Date: March 30, 2000

Sun Microsystems, Inc.
Market Development & Developer Relations
901 San Antonio Road
Palo Alto, CA 94303
U.S.A.

 2000 by Sun Microsystems, Inc.—Printed in USA.
901 San Antonio Road, Palo Alto, CA 94303-4900

All rights reserved. No part of this work covered by copyright may be duplicated by any

means—graphic, electronic or mechanical, including photocopying, or storage in an information

retrieval system—without prior written permission of the copyright owner.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 (October 1988) and FAR 52.227-19 (June 1987). The

product described in this manual may be protected by one or more U.S. patents, foreign patents,

and/or pending applications.

TRADEMARKS: Java, J2SE, Solaris, JDBC, Java Compiler are trademarks of Sun Microsystems,

Inc. Solaris SPARC (Platform Edition) is a trademark of Sun Microsystems, Inc. All SPARC

trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. in the United States and other countries. Products bearing SPARC trademarks

are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered

trademark in the United States and other countries, exclusively licensed through X/Open

Company, Ltd.

Table of Contents

Preface iii

1.0 Swing Overview 1
1.1 Features, Advantages and Benefits 1

1.1.1 Pluggable Look and Feel 1
1.1.2 Components Provided with Swing 2

1.1.2.1 AWT Components 2
1.1.2.2 Additional High-Level Components 2
1.1.2.3 Menus 3
1.1.2.4 Text Application Program Interface 3

1.2 New in the Java 2 Platform 3
1.3 Changes in Java 2 Standard Edition 1.3 3

1.3.1 Summary of Enhancements 3
1.3.1.1 Button, JCheckBox, JRadioButton 3
1.3.1.2 FileChooser 3
1.3.1.3 JFrame 4
1.3.1.4 InternalFrame 4
1.3.1.5 Menu (Menus) 4
1.3.1.6 SplitPane 4
1.3.1.7 JTabbedPane 5
1.3.1.8 JTable 5

1.3.2 Summary of Changes toJTable 5
1.3.2.1 JTable 5
1.3.2.2 JTableHeader 6
1.3.2.3 TableColumn 6
1.3.2.4 New Classjavax.swing.AbstractCellEditor 6

1.3.3 ToolBar 7
1.3.4 JTree 7
1.3.5 JViewport (Scrolling) 7
1.3.6 Text 7
1.3.7 Cascading Style Sheets 9
1.3.8 Actions 11
1.3.9 Borders 13
1.3.10 Exposed Listener Lists 13
1.3.11 Input Verification 14
 SUN MICROSYSTEMS, INC. i

Table of Contents
1.3.12 Printing 14
1.3.13 Performance 15

2.0 Product Distribution 16

3.0 Requirements and Dependencies 16
3.1 Product Compatibility 16

3.1.1 Versions 16
3.1.2 Backward and Forward Compatibility With Other Versions 16

4.0 Key File Descriptions 16
4.1 Thert.jar File 16
4.2 Swing Demos 16

5.0 Bugs 17

6.0 Using Swing 17
6.1 The Swing Packages 17

6.1.1 Learning Swing 18

7.0 Tuning and Troubleshooting 18
7.1 Installation and Configuration “Gotchas” 19
7.2 Common User Questions 19
7.3 Error Message Guide 19
7.4 Performance and Tuning Recommendations 19

8.0 Reference Information 20
8.1 Technical Articles on the Swing Connection Web Site 20

8.1.1 Swing Component Architecture 20
8.1.2 Swing’s Threading Model 20
8.1.3 Understanding Swing Containers 20
8.1.4 Issues with Mixing Abstract Window Toolkit and Swing 20
8.1.5 Using theJList Component 20
8.1.6 Using theJTable Class 20
8.1.7 Using theJTree Component 20
8.1.8 Understanding Swing Text 20
8.1.9 Swing 1.3 Keyboard Binding Mechanism 21
8.1.10 CreatingTreeTable Components 21
8.1.11 Understanding Swing Paint Architecture 21
8.1.12 Building Accessible GUIs 21
8.1.13 Laying Out a GUI 21
8.1.14 Using Drag and Drop With Swing 21
8.1.15 Internationalization and Swing 21
 SUN MICROSYSTEMS, INC. ii

1.3
neers
 not
on or
ort,

me,
in
he
 will
ue

re

alic

d

r
rm.

ular

n in

hen
Preface
This document provides Support Readiness information for Java 2 Standard Edition
Swing. The goal of Support Readiness Documents (SRDs) is to help support engi
prepare to support Software Products and Platforms Division products. SRDs are
designed to provide comprehensive product training (see the product documentati
Sun Education for this). Instead, they focus on issues immediately relevant to supp
such as installation, configuration, and common user problems.

Document Format Options: PDF and PostScript

TheJava 2 Standard Edition 1.3 Swing SRD can be viewed in PostScript or PDF for-
mat. The PDF version of the document allows navigation via a table of contents fra
and the benefit of live cross references and web links. Text that is underlined and
blue, such as the URL in this paragraph, are clickable links in the PDF version of t
document. (Note: page numbers in the PDF document refer to printed pages, and
not coincide with the page numbers in the PDF reader status bar.) Although the bl
color and underlining appear in the PostScript version, there are no live links when
viewing that version.

Typographic Conventions

This document uses the following type conventions:

• The names of commands, files, Java™ objects, Java classes, and directories a
shown inregular monospace font .

• Text that is a placeholder to be replaced with a real name or value appears in it
type; for example:% unzip jsdt-1.4.zip -d destination directory.

• Text that you type, when shown alongside computer output such as a comman
prompt, is shown inbold monospace font . The marker "prompt> ," in regular
monospace font, represents the actual command prompt you would see on you
screen, which may vary depending on your specific environment, shell, or platfo
For example:Solaris prompt> ls -l .

• The names of menu items, buttons, windows, and keyboard keys appear in reg
font with initial capitals, such as the Enter key.

• URLs that are clickable web links in the PDF version of the document are show
blue, underlined monospace font, as inhttp://java.sun.com . Although the blue
color and underlining appears in the PostScript version, there are no live links w
viewing that version.
 SUN MICROSYSTEMS, INC. iii

http://java.sun.com

Preface

h as

t are

lue
hen
• URLs that are not clickable web links are shown in regular monospace font, suc
jsdt://stard:5555/socket/Session/chatSession .

• Cross-references to other sections of the document are shown in regular font bu
blue and underlined, as in,SeeSection1.0,“JSDTOverview.” In the PDF version of
the document, these are clickable links to the indicated section. Although the b
color and underlining appears in the PostScript version, there are no live links w
viewing that version.

• New terms and book titles appear initalic type.
 SUN MICROSYSTEMS, INC. iv

wing
sses

ables,

it

ns,
 the

ently
nts,

ok
ok

ge,
Java 2 Standard Edition 1.3
Swing

This document provides Support Readiness information for the Swing package. S
is a set of graphical user interface (GUI) components in the Java™ Foundation Cla
(JFC) that enable developers to incorporate Swing components such as tool bars, t
split panes, buttons and menus into their Java applications.

Swing was released as an unbundled product to run with the Java Development K
(JDK™) and has been added as a “core” library in the Java 2 platform.

Note: The Java 2 platform 1.2 was previously referred to as JDK 1.2.

1.0 Swing Overview

The Swing packages in the JFC provide the framework for building GUIs for Java
programs. Swing includes a comprehensive set of GUI components, such as butto
scrollbars, table, and text, which are implemented entirely in Java code and rely on
lower level infrastructure of the Abstract Window Toolkit (AWT).

1.1 Features, Advantages and Benefits

Swing is implemented entirely in Java code, which ensures that it behaves consist
across different hardware platforms. This feature is unlike the AWT peer compone
which have inconsistencies which can be difficult to work around.

1.1.1 Pluggable Look and Feel
Swing provides a Pluggable Look and Feel (PLAF) architecture, which allows the Lo
and Feel of a program to be selected dynamically. Swing provides the following Lo
and Feels:

• Windows Look and Feel – Runs on Win95/Win98/WinNT only

• Motif Look and Feel – Used on Solaris, OpenWindows, X-Windows

• Metal Look and Feel – Common Look and Feel developed for cross-platform usa
which is the default
 SUN MICROSYSTEMS, INC. 1 of 21

Swing Overview

ing
nd

of
n

in
The pluggable Look and Feel architecture also provides an Application Programm
Interface (API) that allows the architecture to be extended to create custom Look a
Feels.

Swing uses the Model-View-Controller paradigm to encourage a clean separation
application logic from the GUI. This API allows application programs to plug their ow
model implementations (the application’s “data”) into the components.

1.1.2 Components Provided with Swing

1.1.2.1 AWT Components
Swing provides Java implementation versions of all of the AWT components:

• JButton

• CheckBox

• List

• ComboBox

• TextArea

• TextField

• Label

• ScrollBar

• ScrollPane

• Panel

1.1.2.2 Additional High-Level Components
Swing provides the following additional high-level components that cannot be found
the AWT:

• ToolBar

• ProgressBar

• Slider

• InternalFrame

• DesktopPane

• OptionPane

• SplitPane

• TabbedPane

• Tree

• Table

• EditorPane

• FileChooser

• ColorChooser
 SUN MICROSYSTEMS, INC. 2 of 21

Swing Overview

e

ext,

hich
any
te to

ation.
1.1.2.3 Menus
Swing implements its menus as real components. This implementation is unlike th
AWT, where menus are treated as special cases. The components are:

• Menu

• MenuBar

• PopupMenu

• MenuItem

• CheckBoxMenuItem

• RadioButtonMenuItem

• Separator

1.1.2.4 Text Application Program Interface
Swing also provides a sophisticated Text API which implements support for styled t
such as hypertext markup language (HTML) and rich text format (RTF).

1.2 New in the Java 2 Platform

The Java 2 platform is the first version of the Java software to include the Swing
packages as part of the core platform. The functionality in Swing for the Java 2
platform, version 1.3, now supersedes the functionality provided in Swing 1.1.1, w
was the last unbundled version for JDK1.1.X. We currently have no plans to provide
more unbundled releases of Swing for JDK1.1.X. We recommend customers migra
Java 2 in order to get new features and bug fixes for Swing.

1.3 Changes in Java 2 Standard Edition 1.3

There were many minor API enhancements made in version 1.3. For a complete
description of each, please consult the latest Java 2 Standard Edition 1.3 document
Swing changes can be found at
http://java.sun.com/products/jdk/1.3/docs/guide/swing/
SwingChanges.html .

1.3.1 Summary of Enhancements

1.3.1.1 Button, JCheckBox, JRadioButton

JCheckBox added a “borderPaintedFlat ” property to allow it to be more easily
used as a cell renderer.

AddedDefaultButtonModel.getGroup() method to make it easier to translate
from a model to a group.

1.3.1.2 FileChooser

JFileChooser added a “isAcceptAllFileFilterUsed ” property to allow control
of theAcceptAll (*.*) file filter, which is added to the choosable file filters
combobox by default.
 SUN MICROSYSTEMS, INC. 3 of 21

http://java.sun.com/products/jdk/1.3/docs/guide/swing/SwingChanges.html
http://java.sun.com/products/jdk/1.3/docs/guide/swing/SwingChanges.html

Swing Overview

ly,

is
Support was added for removing the OK and Cancel buttons by the addition of a
controlButtonsAreShowing property onJFileChooser .

1.3.1.3 JFrame

JFrame addedEXIT_ON_CLOSE defaultCloseOperation constant to make it
easier for programs to automatically exit when the user closes the frame. Previous
developers had to add aWindowListener and do this themselves.

1.3.1.4 InternalFrame

JInternalFrame addedsetLayer(int) method so that the beans introspector
recognizes this as a property.

BasicInternalFrameUI addeduninstallListeners() method to remove its
listeners when no longer needed.

 Changes toJInternalFrame “closed “ Property:

• The default setting fordefaultCloseOperation has been changed from
HIDE_ON_CLOSE to DISPOSE_ON_CLOSE

• The constantEXIT_ON_CLOSE has been added

• JInternalFrame ’s doDefaultCloseAction method has been changed from
private to public

JInternalFrame.getNormalBounds() method was added to allow for getting the
normal dimensions of an internal frame.

JInternalFrame addedgetFocusOwner() method.

JInternalFrame addedrestoreSubcomponentFocus() method.

InternalFrameEvent addedgetInternalFrame() method.

MetalInternalFrameTitlePane Class is now public.

1.3.1.5 Menu (Menus)
JMenugetPopupMenuOrigin() method is now protected.

BasicMenuItemUI installComponents() , uninstallComponents() methods
are now protected.

JPopupMenu addedisPopupTrigger() method. Also,
javax.swing.plaf.PopupMenuUI added anisPopupTrigger() method.

1.3.1.6 SplitPane

JSplitPane added a “resizeWeight “ property, so that when the size of a
JSplitPane changes, the extra space is added to the right/bottom component. Th
gives the effect of the left/top component being fixed.

TheJSplitPane “dividerLocation “ property is now bound.
 SUN MICROSYSTEMS, INC. 4 of 21

Swing Overview

r code

or
an
 to

see

the

.

There is now aBorder on theJSplitPane ’s divider:BasicSplitPaneDivider . As
a result,setDividerSize now needs to take into account the border size, which is
usually an extra 2 pixels, that is, developers used to dosetDividerSize(5) , but now
it will need to besetDividerSize(7) (unless a developer installs a new UI with a
different border size).

1.3.1.7 JTabbedPane

JTabbedPane added a new “toolTipTextAt ” index property to allow the tool tip
text to be set for individual tabs after they are created.

1.3.1.8 JTable

Improvements to column and row layout were made:

• Improved performance in tables with large numbers of columns

• Dynamic changing of individual row height

• Simplified creation of non-standard editor components

• Better handling of inter-cell spacing

As a result of the changes in this release, code written for 1.2 or for JFC/Swing 1.1
might have the following problems when run in 1.3.

Since theTableColumn getHeaderRenderer method now returns null by default,
you can’t use that method to get the default header renderer. Instead, change you
to use theJTableHeader getDefaultRenderer method. See “How to Use Tables”
in The Java Tutorial for an example.
http://java.sun.com/docs/books/tutorial/uiswing/
components/table.html

BecauseJTable ’s default text editor is now smarter about data types, it gives
setValueAt objects of the appropriate type, instead of always specifying strings. F
example, ifsetValueAt is invoked for an Integer cell, then the value is specified as
Integer instead of a String. If you implemented a table model, then you might have
change itssetValueAt method to take the new data type into account. If you
implemented a class used as a data type for cells, make sure that your class has a
constructor that takes a single String argument.

1.3.2 Summary of Changes to JTable

This is a summary of the API changes made to JTable for 1.3. For more information,
the API documentation for the following methods and fields.

Note: “Obsolete” means that you should avoid using the obsolete API, but that using
API isn’t dangerous enough to warrant a compile-time warning.
A “Deprecated” API is not only obsolete but also results in a compile-time warning

1.3.2.1 JTable

New:

• public void removeNotify()

• protected void unconfigureEnclosingScrollPane()
 SUN MICROSYSTEMS, INC. 5 of 21

http://java.sun.com/docs/books/tutorial/uiswing/components/table.html

Swing Overview
• public void changeSelection(int rowIndex, int columnIndex,
boolean toggle, boolean extend)

• public void setRowHeight(int row, int height)

• public int getRowHeight(int row)

Obsolete:

• protected boolean cellSelectionEnabled // obsolete

1.3.2.2 JTableHeader

New:

• public void setDefaultRenderer(TableCellRenderer
defaultRenderer)

• public TableCellRenderer getDefaultRenderer()

• protected TableCellRenderer createDefaultRenderer()

Obsolete:

• protected boolean updateTableInRealTime // obsolete

• public boolean getUpdateTableInRealTime() // obsolete

• public void setUpdateTableInRealTime(boolean flag) //
obsolete

1.3.2.3 TableColumn

New:

• protected TableCellRenderer createDefaultHeaderRenderer()

Obsolete:

• public final static String COLUMN_WIDTH_PROPERTY; // obsolete

• public final static String HEADER_VALUE_PROPERTY; // obsolete

• public final static String HEADER_RENDERER_PROPERTY //
obsolete

• public final static String CELL_RENDERER_PROPERTY // obsolete

Deprecated:

• transient protected int resizedPostingDisableCount //
deprecated

• public void disableResizedPosting() // deprecated

• public void enableResizedPosting() //deprecated

1.3.2.4 New Class javax.swing.AbstractCellEditor

Existing ClassDefaultCellEditor now extendsAbstractCellEditor .
 SUN MICROSYSTEMS, INC. 6 of 21

Swing Overview

e

oll.
king
Before this release the height of rows in aJTable was always fixed. Introducing
variable height rows while retaining the scalability requirements of the
JTable (no O(N) behavior on rows) has required the new class,
javax.swing.SizeSequence .

1.3.3 ToolBar

Support was added for specifying the title for undocked toolbars by adding the
following constructors:

• public JToolBar(String name)

• public JToolBar(String name , int orientation)

1.3.4 JTree

JTree now provides a “toggleClickCount ” property for configuring how many
clicks are needed to expand or collapse a node.

JTree also provides two new properties for controlling how nodes are selected:
“ leadSelectionPath ” and “anchorSelectionPath ”.

JTree provides an “expandsSelectedPaths ” property for controlling whether or
not selected nodes are made visible. Also, the
removeDescendantSelectedPaths() method was added to be called when a nod
is removed or collapsed.

DefaultTreeCellRenderer exposed the “hasFocus ” field as protected.

TreeSelectionEvent added theisAddedPath() method.

DefaultTreeSelectionModel ’s insureUniqueness() method was made
obsolete (remains for backward compatibility).

1.3.5 JViewport (Scrolling)
JViewport added a “scrollMode ” property to control the type of scrolling. J2SE 1.3
adds a new optimization, called “BLIT_SCROLL_MODE” (now the default) that
copies unobscured areas of the components heavy weight ancestor to effect a scr
Previously we had offered a related optimization that managed a per viewport bac
store image. Although still supported, thebackingStoreEnabled property has been
deprecated.

1.3.6 Text
A method inHTMLEditorKit , insertAtBoundry() was misspelled. It’s been
deprecated andinsertAtBoundary() has been added.

The default functionality of managing theDocumentEvent has been moved (from
CompositeView) and raised from package private to public. Subclassing has been
made much easier as the management of theDocumentEvent is now distributed to the
protected methods:

• updateChildren()

• forwardUpdate()
 SUN MICROSYSTEMS, INC. 7 of 21

Swing Overview

ded

lass
out of
(such

. The

d

is
• forwardUpdateToView()

• updateLayout()

To accomplish its behavior, the methods managing the children of the view also nee
to be moved fromCompositeView to View :

• removeAll()

• remove()

• append()

• replace()

BoxView has an axis argument which subclasses previously could not get at. A subc
that sets its axis based upon i18n considerations needs this as a property. The lay
the box should also be treated separately from the requested size as in some cases
as a table) the layout may become invalid independent of the children’s preferences
following methods have been added tojavax.swing.text.BoxView :

• public int getAxis()

• public void setAxis(int axis)

• public void layoutChanged(int axis)

TheView protocol supports building flows, but the only previous implementation ha
beenParagraphView which creates relatively simple paragraph flows. The
functionality can be generalized substantially to do things like shaped flows, page
breaking, and some others. Generalizing the functionality will make the creation of
alternative flows much easier.

A new class calledFlowView takes a strategy to translate the logical structure to a
physical structure. The strategy is defined by a nested static class called
FlowStrategy . ParagraphView extendsFlowView adding just that behavior which
is paragraph-specific, for example, line spacing, first line indent, and alignment. Th
change adds the following method to thejavax.swing.text.View class:

• public int getViewIndex(int pos, Position.Bias b)

Classjavax.swing.text.html.FormView was not previously localizable. There
are two public static final Strings,SUBMIT andRESET, that are used to determine the
text for<form> elements in an HTML document. As they are public static final they
can not be localized.SUBMIT andRESET have been deprecated, the values are now
obtained from theUIManager properties:

• FormView.submitButtonText

• FormView.resetButtonText

javax.swing.text.html.parser.ParserDelegator now implements
Serializable .
 SUN MICROSYSTEMS, INC. 8 of 21

Swing Overview

e

CSS
n one

have

ng

pers
A nullary constructor has been added to the public static inner classHTML.Tag to allow
serialization of subclasses to work.

AbstractWriter is used as a base class for developers wishing to provide custom
writing out of a text Document. For example,HTMLWriter extendsAbstractWriter ,
and is used in the HTML package to output HTML. The problem with
AbstractWriter was that most of the methods and ivars it provided were private.
Subclasses had to resort to copying numerous methods and ivars to be useful. Th
following changes open up the API inAbstractWriter , making it more useful by
itself (this makesHTMLWriter much simpler, and it won’t have to copy as much from
AbstractWriter):

• public intgetStartOffset()

• public intgetEndOffset()

• protectedWriter getWriter()

• protected intgetLineLength()

• protected voidsetCurrentLineLength(int length)

• protected intgetCurrentLineLength()

• protected booleanisLineEmpty()

• protected voidsetCanWrapLines(boolean newValue)

• protected booleangetCanWrapLines()

• public voidsetLineSeparator(String value)

• public StringgetLineSeparator()

• protected intgetIndentLevel()

• protected voidwriteLineSeparator() throwsIOException

• protected voidwrite(char[] chars, int startIndex, int length)
throwsIOException

• protected voidoutput(char[] content, int start, int length) throws
IOException

1.3.7 Cascading Style Sheets
The HTML package supports Cascading Style Sheets (CSS). One of the abilities of
is to support the cascading of style sheets (as the name implies). That is, more tha
style sheet can influence the presentation simultaneously. For example, a browser
usually has a style sheet that defines the default styles, a particular page might also
a style sheet that overrides those provided by the browser. The following methods
expose this to developers, allowing them to link style sheets:

• public synchronized voidaddStyleSheet(StyleSheet ss)

• public synchronized voidremoveStyleSheet(StyleSheet ss)

• publicStyleSheet[] getStyleSheets()

Previously it was not very easy for developers to insert arbitrary HTML into an existi
HTML document. To accomplish this, the developer needed to have an intimate
knowledge of the Swing Text Package, as well as the HTML package. Many develo
 SUN MICROSYSTEMS, INC. 9 of 21

Swing Overview

l to

ument
w
 of
are

 size

y

el
ost
s the
ort of
have used dynamic HTML, which provides a handful of methods that make it trivia
insert HTML into an existing page. To accommodate these users we now expose
methods that closely mirror those provided by dynamic HTML:

• public voidsetInnerHTML(Element elem, String htmlText) throws
BadLocationException , IOException

• public voidsetOuterHTML(Element elem, String htmlText) throws
BadLocationException , IOException

• public void insertAfterStart(Element elem, String htmlText) throws
BadLocationException , IOException

• public voidinsertBeforeEnd(Element elem, String htmlText) throws
BadLocationException , IOException

• public voidinsertBeforeStart(Element elem, String htmlText)
throwsBadLocationException , IOException

• public voidinsertAfterEnd(Element elem, String htmlText) throws
BadLocationException , IOException

• public ElementgetElement(String id)

• public ElementgetElement(Element e, Object attribute, Object
value)

This constant has been added to classHTMLEditorKit.ParserCallback :

• public static final Object IMPLIED

The Swing Text Package uses View objects to represent a presentation of the doc
model for the sake of layout and rendering. If the model is large, the number of vie
objects that get created is large, in spite of only being able to view a small number
them. A View implementation is needed that defers creation of the objects until they
actually needed for display. This can be done by building zones with an estimated
that get replaced with the actual View objects when they are needed. This can
substantially reduce the amount of memory used for large documents.

The classZoneView was added which supports zones that don’t consume much
memory until actively viewed or edited.WrappedPlainView which will become more
heavyweight with its support of bidi for i18n will benefit substantially from this class b
changing it’s superclass fromBoxView to ZoneView .

The Swing Text Package usesView objects to represent a view of the document mod
to handle layout and rendering. Layout is done on the event handling thread like m
other things. Layout is sometimes quite expensive in terms of cpu time, and cause
user interface to freeze while performing layout. The text package has some supp
concurrency however, so this should be extended to include performing layout
asynchronous to the gui event handling thread. AView implementation is needed that
performs layout asynchronously.

To address this need, the following classes are being added to the text package:

• javax.swing.text.AsyncBoxView
 SUN MICROSYSTEMS, INC. 10 of 21

Swing Overview

t not
e of

tion
e

or a
en it
o

me

d

llow

er

ave
The
• javax.swing.text.LayoutQueue

A getGraphics() method is included on thejavax.swing.text.View class to
fetch theGraphics object that will be used to render.

For I18N,GlyphView.GlyphPainter added agetNextVisualPositionFrom()
method, which provides a way to determine the next visually represented model
location that one might place a caret. Some views may not be visible, and they migh
be in the same order found in the model, or they just might not allow access to som
the locations in the model.

1.3.8 Actions
Swing provides an implementation of the Command pattern which helps the applica
developer centralize functionality which can be accessed from multiple places in th
GUI. The Action interface is used to provide a statefulActionListener which can
provide the implementation of functionality accessed from the toolbar, a menu item,
keyboard binding, as examples. As the state of the Action changes, for instance wh
becomes disabled, the associated controls change their state accordingly (they als
become disabled).

For Actions to work as intended, the following connections need to be made (assu
the Action has already been created):

• The control needs to be created.

• The Action is added as anActionListener on the control.

• A PropertyChangeListener is created which describes how the control shoul
be updated in response toPropertyChangeEvents on the Action.

• ThePropertyChangeListener is added as a listener on the Action.

• Information about the linkage may need to be retained so it can be undone to a
garbage collection (in 1.2 this can be automatically handled with WeakRefs).

Since a typical application may have between 5 and 25 Actions, and 2-3 controls p
Action, the steps above need to be done up to 75 times!

In order to relieve the developer of much of this burden, we have provided a way to h
this done automatically, through helper methods on potential Containers of Actions.
three places where this is surfaced in Swing at present are:

• JToolBar.java

public JButton add(Action a)

• JMenu.java

public JMenuItem add(Action a)

• JPopupMenu.java

public JMenuItem add(Action a)

The problems with this approach are several:
 SUN MICROSYSTEMS, INC. 11 of 21

Swing Overview

ded.

ut

-

ing

ols
a
listed

.

• It is highly problematic for Builders, since it overloadsContainer.add() to allow
a non-Component parameter which is not itself the thing that ends up being ad

• Developers cannot participate in the configuration of the controls created witho
subclassing the container classes.

• Even if they do subclass, the granularity of the configuration ends up being per
Container instead of per-control added.

• It limits developers to the expected control for each Container rather than allow
the full range ofActionEvent sources which Action permits.

Many developers have commented that they would prefer to create their own contr
which areActionEvent sources and then have a method which connects them to
particular Action. The solution is along these lines, and addresses the deficiencies
above.

The added API is initially added toAbstractButton , which defines the abstract
superclass ofJButton , JMenuItem , JMenu, andJCheckBox . The new public
methods are:

• public void setAction(Action a)

• public Action getAction()

• protected void configurePropertiesFromAction(Action a)

• protected PropertyChangeListener
createActionPropertyChangeListener()

In addition, constructors have been added to theActionEvent sources which will
allow for creating a control directly with the supplied Action.

In JButton :

• public JButton(Action a)

Equivalent constructors have been added to:

• JCheckBox

• JRadioButton

• JToggleButton

• JMenuItem

• JMenu

• JCheckBoxMenuItem

• JRadioButtonMenuItem

Note: setAction() is merely a helper method which performs the linkage steps
described previously as a convenience to the developer.

It is not expected that developers will often switch the Action for a control on the fly
However, it is possible for them to do so, usingsetAction since it replaces the
previously set action and fires aPropertyChangeEvent . This does not replace the
 SUN MICROSYSTEMS, INC. 12 of 21

Swing Overview

 that

n

standard method of addingActionListeners , note that it uses
addActionListener() as stated previously.

The current Container APIs listed above will be reimplemented in terms ofsetAction ,
so that they give the same behavior as they did previously. This solution will make
code much easier to maintain.

The methodsconfigurePropertiesFromAction and
createActionPropertyChangeListener will be overridden in subclasses to
provide the expected default behavior.
New factory methods allow one to control what toolbars and menus create when a
action is added directly, such as, with the add method.

Addition toJToolBar :

• protectedJButton createActionComponent(Action a)

Addition toJPopupMenu:

• protectedJMenuItem createActionComponent(Action a)

Addition toJMenu:

• protectedJMenuItem createActionComponent(Action a)

AbstractAction addedgetKeys() Method for serialization of Abstract Actions,
and gives the developer a way to find out which keys have been set for the
AbstractAction .

1.3.9 Borders
BorderFactory added new static methods for creating sharedEtchedBorder
instances:

• createEtchedBorder()

(The lack of this method caused inconsistency in the API).

A new constructor was added toLineBorder to allow developers to create
LineBorders with rounded corners:

• public LineBorder(Color color, int thickness,
boolean roundedCorners)

1.3.10 Exposed Listener Lists
A getListeners() method has been added to the following classes:

• javax.swing.Timer

• javax.swing.AbstractListModel

• javax.swing.DefaultBoundedRangeModel

• javax.swing.DefaultButtonModel

• javax.swing.DefaultListSelectionModel
 SUN MICROSYSTEMS, INC. 13 of 21

Swing Overview

h
er is
. In

t

l
m
 it
uld

ired

e
cted
• javax.swing.DefaultSingleSelectionModel

• javax.swing.table.AbstractTableModel

• javax.swing.table.DefaultTableColumnModel

• javax.swing.tree.DefaultTreeModel

• javax.swing.tree.DefaultTreeSelectionModel

• javax.swing.text.AbstractDocument

• javax.swing.text.DefaultCaret

• javax.swing.event.EventListenerList

1.3.11 Input Verification
A new class,InputVerifier was introduced to provide a better mechanism for
components to validate input.

The purpose of this class is to help clients support smooth focus navigation throug
GUIs with text fields. Such GUIs often want to ensure that the text entered by the us
valid (in the proper format) before allowing the user to navigate out of the text field
order to do this, clients can implement this class, and, usingJComponent ’s
setInputVerifier method, attach an instance of it to theJComponent whose input
they want to validate. Before focus is transferred to another Swing component tha
requests it, this class’sshouldYieldFocus method is called, and focus is transferred
only if that method returns true.

Without this class, clients tried to perform input validation in aFOCUS_LOSTlistener on
the component being validated. If the input was found to be invalid, they would cal
requestFocus to restore focus back to the component with invalid input. One proble
with this approach is that there is currently a bug (bugid #4126859) which prevents
from working. Such an API would prevent focus flicker and guarantee that focus wo
stay in the component with invalid input.

The API change consists of a new abstract class,InputVerifier , and two new
methods added toJComponent :

• setInputVerifier()

• getInputVerifier()

1.3.12 Printing
JComponent previously did not override print. This meant that printing was no
different than painting, resulting in the double buffer being used. This is not the des
behavior. It also makes it harder for developers to add customized printing logic. In
most cases the developer would resort to completely replacing print, rewriting all th
code to notify the children. To be consistent with the painting methods, these prote
methods have been added toJComponent :

• printBorder()

• printChildren()

• printComponent()
 SUN MICROSYSTEMS, INC. 14 of 21

Swing Overview

d was
nager
ults

ded,

nce

 in
ng
hich

rld

s and

they
1.3.13 Performance
One of the main reasons that Swing’s startup performance was slower than desire
that as soon as any component requires a User Interface (UI) delegate, the UI Ma
loads a Look And Feel, which results in loading a defaults table which includes defa
for UIs for all component classes.

In previous releases, we mistakenly believed that instance creation should be avoi
so we delayed instance creation by creating anonymous implementations of
LazyValue , an interface which acts as a lightweight proxy that only creates its insta
the first time it is retrieved from the defaults table.

Performance analysis of Java 2 Standard Edition 1.3 indicates that we were wrong
believing that instance creation was the determining factor. In fact, the overwhelmi
factor contributing to delay and increased footprint in this area was classloading, w
was not helped by our creation of lots of anonymous interface implementations!

The general approach taken to fix this was to define a concreteLazyValue
implementation inUIDefaults.java which uses reflection to create its proxied
instance when asked to do so. This class is calledUIDefaultProxy . As a result only
one class is loaded, and about 90 other classloads could be avoided in a Hello Wo
example.

In the course of replacing the existing anonymousLazyValue implementations and
identifying other classloads that could be avoided, we came across several classe
accessor methods which were incorrectly packaged as private. Since the
UIDefaultProxy is in thejavax.swing package, and most of the uses are in
javax.swing.plaf.* packages, these signatures needed to be changed so that
could be used by the proxy. These are:

• javax.swing.plaf.basic.BasicBorders

public static Border getSplitPaneDividerBorder()

• javax.swing.plaf.metal.MetalBorders

public static class PaletteBorder

public static Border getButtonBorder()

public static Border getTextBorder()

public static Border getTextFieldBorder()

static class ToggleButtonBorder extends ButtonBorder

public static Border getToggleButtonBorder()

public static Border getDesktopIconBorder()

• javax.swing.plaf.metal.MetalIconFactory

public static Icon getCheckBoxIcon()

public static class PaletteCloseIcon implements Icon,
UIResource, Serializable
 SUN MICROSYSTEMS, INC. 15 of 21

Product Distribution

 not

.

n

ug
ion

nges
ich

 in
2.0 Product Distribution

Swing is shipped as part of the Java 2 Platform Standard Edition 1.3.

3.0 Requirements and Dependencies

This version of Swing depends on other packages in the Java 2 platform, but does
have dependencies on any outside packages.

3.1 Product Compatibility

3.1.1 Versions

• Swing 1.0/1.0.1 – The first “final” version of the Swing product. The unbundled
library was designed to be used with JDK1.1. This version shipped March 1998

• Swing 1.0.2 – The follow-on bug fix release for Swing 1.0 (JDK1.1). This versio
fixed many bugs related to Applet painting. This version shipped April 1998.

• Swing 1.0.3 – The bug fix release for Swing 1.0.2. This version fixed a critical b
with mnemonics. Other than this change, it is identical to Swing 1.0.2. This vers
shipped June 1998.

• Swing 1.1 – This unbundled release included minor feature additions, API cha
to plaf, and the package-name change. It is equivalent to the Swing release wh
was included in JDK1.2.0.

• Swing 1.1.1 – This unbundled release contained hundreds of bug fixes (no API
changes). It is equivalent to the Swing release which was part of JDK1.2.2.

3.1.2 Backward and Forward Compatibility With Other Versions
Programs written to run with Swing in Java 2, Version1.2.X should run unchanged
Java 2, Version1.3.0.

4.0 Key File Descriptions

4.1 The rt.jar File

All the classes in the Swing packages are contained in thert.jar file. Thert.jar file
is located in the/jre/lib subdirectory of the installation directory for the Java 2
platform.

4.2 Swing Demos

Swing provides the following demos located in the/demo/jfc subdirectory of the
installation directory for the Java 2 platform:

• DBDemos

• FileChooserDemo
 SUN MICROSYSTEMS, INC. 16 of 21

Bugs

eels
• Metalworks

• Notepad

• SampleTree

• SimpleExample

• Stylepad

• SwingApplet

• SwingSet2 (NEW for 1.3!)

• TableExample

The originalSwingSet demo has been replaced bySwingSet2 , which is a more
cleanly written demo of Swing functionality.

5.0 Bugs

Please go tohttp://developer.java.sun.com/developer/bugParade and do
a search for Swing, to find information on Swing bugs.

6.0 Using Swing

6.1 The Swing Packages

Swing includes the following packages:

Table1. Swing Package Names and Contents

Swing Package Name Contents

javax.swing Top-level Swing component and utility classes and
interfaces

javax.swing.border Classes and interfaces for putting borders around
components

javax.swing.colorchooser Classes and interfaces supporting the ColorChooser

javax.swing.event All Swing-specific event classes/interfaces

javax.swing.filechooser Classes and interfaces supporting the File Chooser

javax.swing.plaf Abstract classes used for pluggable Look and Feel

javax.swing.plaf.basic Classes used as common base for standard Look and F

javax.swing.plaf.metal Classes used for Metal (Java) Look and Feel

javax.swing.plaf.multi Classes used for multiplexing Look and Feel

javax.swing.table Classes and interfaces supporting Table

javax.swing.text Classes and interfaces supporting Text

javax.swing.text.html Classes and interfaces supporting HTML

javax.swing.text.parser Classes and interfaces supporting HTML parser
 SUN MICROSYSTEMS, INC. 17 of 21

http://developer.java.sun.com/developer/bugParade/

Tuning and Troubleshooting

wing

fined

es. All
l

reat
on

ed to
but
, see

s in
g

For detailed information about the specific classes and interfaces contained in the S
packages, see
http://java.sun.com/products/jdk/1.3/docs/api/index.html .

The majority of basic GUI programs only need to use the classes and interfaces de
in thejavax.swing package, which contains all the top-level component classes.
These top-level classes are each prefixed with a “J,” for exampleJButton , JTable ,
JTextField . Programs that need to do more custom configuration of the complex
components, such asJTable , JTree , JText* , JFileChooser , andJColorChooser
will need to use the classes and interfaces defined in those respective sub packag
of thejavax.swing.plaf sub packages contain APIs specific to the Look and Fee
implementations and most programs should never need to use these APIs. The
exceptions are those programs which create or extend a Look and Feel.

6.1.1 Learning Swing
The best place to start learning Swing is the Java Tutorial, which now includes a g
deal of Swing-specific programming instruction. For more information on this secti
of the Java Tutorial, see
http://java.sun.com/docs/books/tutorial/ui/index.html .

In addition, the Swing Connection Web site has numerous articles on subjects relat
Swing programming. The site is updated every couple of months with new material,
all articles are archived and available at all times. To access the Swing Connection
http://java.sun.com/products/jfc/tsc/index.html .

7.0 Tuning and Troubleshooting

For the most part, techniques that apply to tuning and troubleshooting Java program
general also apply to Swing. However, the following tips are useful when debuggin
problems to help isolate where the issue actually resides:

• Is the problem reproducible on both Solaris and Win32 platforms?

javax.swing.text.rtf Classes supporting RTF

javax.swing.tree Classes and interfaces supporting Tree

javax.swing.undo Classes and interfaces supporting “undo” and “redo”

com.sun.java.swing.plaf.windows Classes for Win32 Look and Feel (not “core”)

com.sun.java.swing.plaf.motif Classes used for Motif Look and Feel (not “core)

Table1. Swing Package Names and Contents (Continued)

Swing Package Name Contents
 SUN MICROSYSTEMS, INC. 18 of 21

http://java.sun.com/products/jdk/1.3/docs/api/index.html
http://java.sun.com/docs/books/tutorial/ui/index.html
http://java.sun.com/products/jfc/tsc/index.html

Tuning and Troubleshooting

 -
the

it

,

s are
ted as
to

an
If so, this likely indicates a bug in the “common” Java code somewhere.

If not, then the problem is likely due to a platform-specific AWT bug (remember
Swing contains no native code, so if it behaves differently on different platforms,
differences are caused by AWT, not Swing).

• Is the problem reproducible in multiple Look and Feels?

If the problem only shows up in a single Look and Feel—Metal, for example, then
is easier for us to isolate the debugging in finding the problem.

7.1 Installation and Configuration “Gotchas”

Swing is automatically installed and configured as part of the Java 2 platform
installation/configuration.

7.2 Common User Questions

There is no official Swing FAQ, however an external FAQ has useful information:
http://users.vnet.net/wwake/swing/faq.html .

The best way to ask Swing-related questions is to send email to the
swing-feedback@java.sun.com alias, which is read by Swing development
engineers.

Additionally, there is a mailing list dedicated to Swing technical discussions. To join
send email to:swing-subscribe@eos.dk for the general discussion list, or to:
advanced-swing-subscribe@eos.dk for the advanced topic list.

Theswing@eos mailing list is now archived at
http://www.findmail.com/list/swing/ .

Be sure to check out the ongoing Swing discussions in thecomp.lang.java.gui and
comp.lang.java.programmer usenet news groups.

7.3 Error Message Guide

In general there are no standard “error” messages in Swing because error condition
handled using the Java Exception mechanism. Checked Exceptions are documen
part of the API; Runtime Exceptions are in many cases unpredictable and difficult
document.

7.4 Performance and Tuning Recommendations

An article which gives an overview of improvements made to Swing performance c
be found at:
http://java.sun.com/products/jfc/tsc/articles/performance/
index.html .
 SUN MICROSYSTEMS, INC. 19 of 21

http://www.findmail.com/list/swing/
http://users.vnet.net/wwake/swing/faq.html
http://java.sun.com/products/jfc/tsc/articles/performance/index.html
http://java.sun.com/products/jfc/tsc/articles/performance/index.html
mailto: swing-feedback@java.sun.com
mailto: swing-subscribe@eos.dk
mailto: advanced-swing-subscribe@eos.dk

Reference Information
8.0 Reference Information

8.1 Technical Articles on the Swing Connection Web Site

The best documentation exists on the Swing Connection Web site at:
http://java.sun.com/products/jfc/tsc/index.html . This section provides
direct links to some of the key technical articles which are archived on the site:

8.1.1 Swing Component Architecture
A white paper explaining the Swing Model-View-Controller (MVC) and Pluggable
Look and Feel (PLAF) can be found at:
http://java.sun.com/products/jfc/tsc/articles/architecture/
index.html .

8.1.2 Swing’s Threading Model
http://java.sun.com/products/jfc/tsc/articles/threads/
threads1.html

http://java.sun.com/products/jfc/tsc/articles/threads/
threads2.html

http://java.sun.com/products/jfc/tsc/articles/threads/
threads3.html

8.1.3 Understanding Swing Containers
http://java.sun.com/products/jfc/tsc/articles/containers/
index.html

8.1.4 Issues with Mixing Abstract Window Toolkit and Swing
http://java.sun.com/products/jfc/tsc/articles/mixing/index.html

8.1.5 Using the JList Component
http://java.sun.com/products/jfc/tsc/tech_topics/jlist_1/
jlist.html

8.1.6 Using the JTable Class
http://java.sun.com/products/jfc/tsc/articles/jtable/index.html

8.1.7 Using the JTree Component
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

8.1.8 Understanding Swing Text
http://java.sun.com/products/jfc/tsc/articles/text/overview/

http://java.sun.com/products/jfc/tsc/articles/text/attributes/

http://java.sun.com/products/jfc/tsc/articles/text/
element_buffer/
 SUN MICROSYSTEMS, INC. 20 of 21

http://java.sun.com/products/jfc/tsc/index.html
http://java.sun.com/products/jfc/tsc/articles/architecture/index.html
http://java.sun.com/products/jfc/tsc/articles/architecture/index.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads3.html
http://java.sun.com/products/jfc/tsc/articles/containers/index.html
http://java.sun.com/products/jfc/tsc/articles/mixing/index.html
http://java.sun.com/products/jfc/tsc/tech_topics/jlist_1/jlist.html
http://java.sun.com/products/jfc/tsc/articles/jtable/index.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://java.sun.com/products/jfc/tsc/articles/text/overview/
http://java.sun.com/products/jfc/tsc/articles/text/attributes/
http://java.sun.com/products/jfc/tsc/articles/text/element_buffer/

Reference Information
http://java.sun.com/products/jfc/tsc/articles/text/
element_interface/

http://java.sun.com/products/jfc/tsc/articles/text/tabs/

http://java.sun.com/products/jfc/tsc/articles/text/editor_kit/
index.html

http://java.sun.com/products/jfc/tsc/articles/text/concurrency/

8.1.9 Swing 1.3 Keyboard Binding Mechanism
http://java.sun.com/products/jfc/tsc/special_report/kestrel/key
bindings.html

8.1.10 Creating TreeTable Components
http://java.sun.com/products/jfc/tsc/articles/treetable1/
index.html

http://java.sun.com/products/jfc/tsc/articles/treetable2/
index.html

8.1.11 Understanding Swing Paint Architecture
http://java.sun.com/products/jfc/tsc/articles/painting/
index.html

8.1.12 Building Accessible GUIs
http://java.sun.com/products/jfc/tsc/articles/accessibility/
index.html

8.1.13 Laying Out a GUI
http://java.sun.com/products/jfc/tsc/articles/cardpanel/
index.html

8.1.14 Using Drag and Drop With Swing
http://java.sun.com/products/jfc/tsc/articles/dragndrop/
index.html

8.1.15 Internationalization and Swing
http://java.sun.com/products/jfc/tsc/articles/bidi/index.html
 SUN MICROSYSTEMS, INC. 21 of 21

http://java.sun.com/products/jfc/tsc/articles/text/element_buffer/
http://java.sun.com/products/jfc/tsc/articles/text/element_interface/
http://java.sun.com/products/jfc/tsc/articles/text/tabs/
http://java.sun.com/products/jfc/tsc/articles/text/editor_kit/index.html
http://java.sun.com/products/jfc/tsc/articles/text/concurrency/
http://java.sun.com/products/jfc/tsc/special_report/kestrel/keybindings.html
http://java.sun.com/products/jfc/tsc/articles/treetable1/index.html
http://java.sun.com/products/jfc/tsc/articles/treetable2/index.html
http://java.sun.com/products/jfc/tsc/articles/painting/index.html
http://java.sun.com/products/jfc/tsc/articles/accessibility/index.html
http://java.sun.com/products/jfc/tsc/articles/cardpanel/index.html
http://java.sun.com/products/jfc/tsc/articles/dragndrop/index.html
http://java.sun.com/products/jfc/tsc/articles/bidi/index.html

	Table of Contents
	Preface
	Java 2 Standard Edition 1.3 Swing
	1.0 Swing Overview
	1.1 Features, Advantages and Benefits
	1.1.1 Pluggable Look and Feel
	1.1.2 Components Provided with Swing
	1.1.2.1 AWT Components
	1.1.2.2 Additional High-Level Components
	1.1.2.3 Menus
	1.1.2.4 Text Application Program Interface

	1.2 New in the Java 2 Platform
	1.3 Changes in Java 2 Standard Edition 1.3
	1.3.1 Summary of Enhancements
	1.3.1.1 Button, JCheckBox, JRadioButton
	1.3.1.2 FileChooser
	1.3.1.3 JFrame
	1.3.1.4 InternalFrame
	1.3.1.5 Menu (Menus)
	1.3.1.6 SplitPane
	1.3.1.7 JTabbedPane
	1.3.1.8 JTable

	1.3.2 Summary of Changes to JTable
	1.3.2.1 JTable
	1.3.2.2 JTableHeader
	1.3.2.3 TableColumn
	1.3.2.4 New Class javax.swing.AbstractCellEditor

	1.3.3 ToolBar
	1.3.4 JTree
	1.3.5 JViewport (Scrolling)
	1.3.6 Text
	1.3.7 Cascading Style Sheets
	1.3.8 Actions
	1.3.9 Borders
	1.3.10 Exposed Listener Lists
	1.3.11 Input Verification
	1.3.12 Printing
	1.3.13 Performance

	2.0 Product Distribution
	3.0 Requirements and Dependencies
	3.1 Product Compatibility
	3.1.1 Versions
	3.1.2 Backward and Forward Compatibility With Other Versions

	4.0 Key File Descriptions
	4.1 The rt.jar File
	4.2 Swing Demos

	5.0 Bugs
	6.0 Using Swing
	6.1 The Swing Packages
	6.1.1 Learning Swing

	7.0 Tuning and Troubleshooting
	7.1 Installation and Configuration “Gotchas”
	7.2 Common User Questions
	7.3 Error Message Guide
	7.4 Performance and Tuning Recommendations

	8.0 Reference Information
	8.1 Technical Articles on the Swing Connection Web Site
	8.1.1 Swing Component Architecture
	8.1.2 Swing’s Threading Model
	8.1.3 Understanding Swing Containers
	8.1.4 Issues with Mixing Abstract Window Toolkit and Swing
	8.1.5 Using the JList Component
	8.1.6 Using the JTable Class
	8.1.7 Using the JTree Component
	8.1.8 Understanding Swing Text
	8.1.9 Swing 1.3 Keyboard Binding Mechanism
	8.1.10 Creating TreeTable Components
	8.1.11 Understanding Swing Paint Architecture
	8.1.12 Building Accessible GUIs
	8.1.13 Laying Out a GUI
	8.1.14 Using Drag and Drop With Swing
	8.1.15 Internationalization and Swing

