Conversion of SETOOL to Java Swing
Richard Sherman and Stephanie Taylor

Semester Project

CS-522 Fall Semester 2002 Computer Communications

University of Colorado, Colorado Springs

INTRODUCTION

Part of Dr. Chow’s thesis deliverable was an application called SETOOL. It is a program that performs reachability analyses. It was written in C to run on UNIX and its variants. It uses the Openwindows/Xview package for the GUI functions. Unfortunately Xview, an X Window-System-based environment developed by Sun Microsystems, Inc., is now obsolete. Dr. Chow suggested that it be migrated to Common Desktop Environment (CDE) or Java.

ANALYSIS OF TARGET ENVIRONMENT

The first thing we needed to do was decide whether to use CDE or Java. We determined that CDE was also a GUI package for the X Window system. After using SETOOL on our homework assignment, we both felt that the newly migrated program might be more easily accessible to students if it had the ability to run in multiple operating systems such as Microsoft Windows and Apple OS X in addition to the X Window system. At this point we decided that Java was the logical choice, since it would allow us to run the tool on any system that supported a Java Runtime Environment (JRE).

PORTING VS. REWRITING

We needed to determine if we should attempt to port Dr. Chow’s code to Java, or if it would simply be better to rewrite the project. We could use Java Native Interface (JNI) to leverage the existing code outside of the Java Virtual Machine. However, this would mean using platform-specific code, which we really wanted to avoid. After considering our choices carefully, we decided that a rewrite would work the best. It would be more time consuming, but ultimately provide a more flexible product. It would make the new tool object-oriented, and the code would be easier to both read and modify. We would be able to compile it once and run it on any platform that the JRE can run on. Currently this includes most of the variants of Windows including XP, 2000, Me, NT, 98, and 95. JVM will also run on Solaris, Linux on Intel architecture machines, and the Macintosh OS 8, 9, and X. This would make it much easier for students to use the tool, since it could be downloaded and run over the Internet.

CODE ANALYSIS

The first step we had to take in reviewing the existing code-base was to research Xview. We needed to know what the Xview calls did so that we could navigate to any portion of the code that we needed to reference during the rewrite. This included being able to find the algorithm used in performing reachability analysis. We found some Xview documentation including a programmer’s manual, a reference manual, and programmer’s notes. The best approach we found for navigating through the code was to run SETOOL on a Linux box, find the menu item for the option we were trying to program, and then search through the code to find what code was attached to the menu item.

Since we were no longer trying to port the code from SETOOL, we decided that trying to map the Xview calls to Java Swing calls would be a waste of time. It would be more productive to take screen shots of the SETOOL GUI and then code the Java from the ground up. We did a screen capture of each main menu in SETOOL.

DESIGN

In the design phase of the project, the first thing we thought about was what to call the new tool. We debated for a while and come up with something simple – “Java State Explorer” (JSE). We also had to determine what classes to create, and the objects and methods that belonged to each class. Here’s a list of the classes, their methods, and instance variables added to the base class:

JSE

methods:

main

// App’s main method

exitForm

// Exit the application

formWindowOpened

initComponents

// Initialize the form

menuItemCreateProtoActionPerformed

menuItemLoadActionPerformed

menuItemLoadMouseClicked

menuItemRGfrmInitialStActionPerformed

menuItemSaveActionPerformed

menuProtocolAncestorRemoved

menuQuitActionPerformed

menuQuitMouseClicked

instance variables:

frmMach

frmProto

frmRGInit

machName

protoName

Edge

methods:

getToState

// Get the state the edge goes to

setcommSign
// Sets the + or – sign of the label

setLetter

// Sets the edge label

setToState

// Set the state the edge goes to

instance variables:

commSign

letter

toState

LoadedMachine

methods:

getNumStates
// Gets the number of states the machine has

getState

// Gets a specific state of the machine

setFinalState

// Sets the final state of the machine

setStateIds

// Sets the identifier of each state in the machine

instance variables:

machName

numStates

initState

numFinalStates

Protocol

methods:

main

// Dialog’s main method

cmdBtnCancelActionPerformed

// Do when cancel is clicked

exitForm

// Exit the dialog

initComponents

// Initialize the dialog

instance variables:

jPanel1

jLabel1

jLabel2

jLabel3

jTextField1

jTextField2

jTextField3

cmdBtnEnter

cmdBtnCancel

ReadMachine

methods:

closeInputStream

getInFile

openFile

instance variables:

c

// Variable to read a single character into

file

fis

// File input stream

input

// Data input stream

RgFromInitialState

methods:

main

// Dialog’s main method

cmdBtnCancelActionPerformed

// Do when cancel is clicked

exitForm

// Exit the dialog

initComponents

// Initialize the dialog

instance variables:

jPanel1

jLabel1

jLabel2

jTextField1

cmdBtnEnter

cmdBtnCancel

State

methods:

getEdge

// Gets the requested edge

setId

// Sets the state id

setNumEdges
// Sets the number of edges the state has

instance variables:

edges

id

numEdges

Here is the format of the machine file:

6

// Number of states in the machine

1

// Initial state of the machine

1 1

// Number of final states, list of final states

1 2 -R2 +R3

// state, num edges, list of edges to other states with labels

2 1 +R4

// state, num edges, list of edges to other states with labels

3 2 +B5 -A6

// …

4 1 +A7

5 1 -D1

6 1 +D1

7 1 -D1

// state, num edges, list of edges to other states with labels

// This signals the end of file

The file Implementation was changed in order to provide a file that is easier to read and can be edited if needed. Towards the end of the time allotted for the project, we thought about other ways the file might be represented. An XML representation of the file seemed like an even better idea than the format shown above, since it could track the many different properties the machine might have including the location of edges and nodes on the screen.

An Example of the proposed file is provided below:

<?xml version="1.0" ?>
<Machine>

<name>M</name>

<numStates>7</numStates>

<initialState>1</initialState>

<numFinalStates>1</numFinalSates>

<state x=100 y=100 finalState=true>1

<edgeToState>2

<label>-R</label>

</edgeToState>

<edgeToState>3

<label>+R</label>

</edgeToState>

</state>

<state x=100 y=200 finalState=true>2

<edgeToState>4

<label>+R</label>

</edgeToState>

</state>

<state x=100 y=-100 finalState=true>3

<edgeToState>5

<label>+B</label>

</edgeToState>

<edgeToState>6

<label>-A</label>

</edgeToState>

</state>

<state x=100 y=200 finalState=true>4

<edgeToState>7

<label>+A</label>

</edgeToState>

</state>

<state x=100 y=200 finalState=true>5

<edgeToState>1

<label>-D</label>

</edgeToState>

</state>

<state x=100 y=200 finalState=true>6

<edgeToState>1

<label>+D</label>

</edgeToState>

</state>

<state x=100 y=200 finalState=true>7

<edgeToState>1

<label>-D</label>

</edgeToState>

</state>

</machine>

As shown in the example above, the file becomes much easier to read. In order to use XML, a parser is needed. Xerces or JDOM can be used for this purpose. Xerces 1.4.4 supports XML 1.0, as well as W3C’s XML Schema recommendation version 1.0, DOM Level 2 version 1.0, and SAX version 2. It also supports the industry standard DOM Level 1 and SAX version 1 APIs. It can be freely downloaded at http://xml.apache.org/xerces-j/. JDOM is a Java-based “document object model” for XML files. It serves the same purpose as DOM, but is easier to use. JDOM can use Xerces or most any other parser, and it presents the results using the JDOM API. More information on JDOM and its source code and binaries can be found at http://www.jdom.org/index.html. In the case of the JSE, either parser will work since a given machine’s XML file will likely be fairly small. If very large machines are expected, SAX might be the preferred solution since DOM loads the entire XML file into memory.

IMPLEMENTATION

The IDE used to build the Java State Explorer (JSE) was Sun ONE Studio 4, Community Edition. It can be downloaded for free at http://java.sun.com/j2se/1.4.1/download.html#j2sdk-s1studio_ce. Versions are available for Windows, Linux, and Solaris SPARC platforms.

At the very beginning of the project, we were hoping to be able to do a simple transition from the C-coded functions in SETOOL to the Java methods in the JSE. We found a simple program called C2J that we thought might make the translation easier. It turned out that we were unable to use it, since it required a single source file and a single header file. Due to the many pointers and complexity of the C-code in SETOOL, it became evident that it would be more work trying to convert the existing code to Java than to re-write it from scratch and use the C-code as a reference for algorithms.

The major problem with the conversion was going from a structured programming language using structures and pointers to an object-oriented programming language where many of the details for memory allocation, memory deallocation, and references (pointers) have been abstracted. Just from looking at the code that has been written so far, it is already obvious how much easier the object-oriented solution is to read and maintain.

FUTURE WORK

Although we made considerable progress on the project in the time allotted, there are still vast amounts of work to be done. Upon further inspection of the design, we have noticed that more classes may need to be added along the way.

Many functions from the protocol menu still need to be implemented. These include “RG from specific state”, “Show details”, “Show RG”, Show message table”, “Move RG”, “Store RG to file”, and “Load RG from file.” The “Redisplay” option can probably be eliminated. The “Save protocol” option is not entirely working correctly. The “RG from initial state” has not yet been implemented.

None of the functions on the machine menu have been implemented. Functions on SETOOL’s machine menu include “create machine”, “load machine”, “save machine”, “place node”, “move node”, “remove node”, “change node label”, “change initial node”, “place edge”, “move edge”, “remove edge”, “change edge label”, “save subgraph”, “place subgraph”, “move subgraph”, “remove subgraph”, “move machine”, “change machine name”, and “edit another machine.” Again, the “redisplay” option can probably be eliminated.

None of the options in the zoom, comment or edge-type menus have been implemented either. Refer to the screen captures included with this documentation for the options listed on those menus.

We have included the Xview documentation files in our project documentation for future reference. They were very useful in learning the basics of Xview in order to understand the structure of the code in SETOOL.

CONCLUSION

This was an interesting project to work on. We had a lot of fun working on the design and implementation phases. Neither of us had worked with Xview or Java Swing, so there was much learning we had to do. Java Swing proved to be more difficult to learn than we both had guessed. Nevertheless, we found the experience to be rewarding. We were able to gain some useful skills for possible future employment opportunities. We are hopeful that other students will see the merit of continuing this project to completion so that future computer science students might have the benefit of running this tool on virtually any platform.

