MULIPATH ROUTING

(Design & Implementation)

Reena Hans

CS 522

Fall 2002

CONTENTS

1. Introduction…………………………………………….

2. What is Multipath Routing…………………………….

3. Difference between Multipath Routing……………….

 and Singlepath Routing

4. Description of Multipath Routing……………………..

5. Multipath Sender and Router………………………….

6. Design and Implementation…………………………….

7. Issue of Protocol………………………………………….

8. Conclusions…………………………………………….…

9. References……………………………………………….

INTRODUCTION

Present Scenario :

Current internet transmissions normally rely on a single path between the two end points. The single path can, in turn become the bottleneck of the system:

1. due to high traffic

2. some technical failure of this path

Keeping in view the demands of the present internet services, a single path does not seem to be a viable solution.

Previous implementations of dynamic metric routing suffer two problems: routing instability and high routing overheads. Routing instability occurs when paths are constantly being recomputed and do not stabilize. This instability degrades network performance and increases the probability of network congestion and failures. The second problem is high routing overheads. The overheads are in terms of the CPU cycles and messages required for path re computation. Because routing overheads in traditional dynamic metric algorithms depend on network traffic patterns, mechanisms such as thresh holding and hold-downs are needed to limit the amount of routing overhead.

The new dynamic metric routing algorithm developed by Johnny Chen in his thesis, reduces the above problems. The hybrid-Scout algorithm, reduces routing instabilities by using two techniques: time staggered and selective dynamic metric path computation. The new algorithm promises to provide the benefits of dynamic metric routing without the undesirable side-effects.

What is Multipath routing :

Multi Path routing seems to be a good candidate as a solution. Multipath routing is an approach proposed to increase network performance. In this approach, any two nodes can have multiple paths between them and the network performance is increased by allowing nodes to have an aggregate bandwidth of the multiple paths.

In a multipath scenario the way in which nodes transmit data has an even greater performance impact because nodes not only have to decide how much data to send on each path as in the single path environment, they also have to decide how to distribute the data over multiple paths. One of the main challenges of multipath routing is the forwarding of data on their intended paths. In Multipath routing nodes have to label data packets to indicate which path a packet should travel.

The appropriate usage of the paths end-hosts use varies as applications vary. For example, an FTP application needs to use multiple paths to increase throughput, whereas a telnet application needs to use paths to decrease delay. The proposed protocol MPTCP stands for multipath TCP operates by opening TCP connections on different paths and multiplexing data among them. The receiving MPTCP protocol coalesces data from the different connections to restore the original message stream. This protocol demonstrates that immediate end-to-end performance gains can be obtained from multipath networks.

What makes multipath routing different from single path routing:

For single path routing, normally to set up a connection, the server begins by carrying out a passive open as follows:

a) calls socket() – to create a TCP socket,

b) bind() – this call will bind a well known port number of the server to the socket,

c) listen() – this call makes the socket a listening socket so that socket accepts incoming connections from the clients,

d) accept() – this call puts the server process to sleep until the arrival of a client connection.

The client does an active open by:

a) calling socket() – which creates a socket on the client side,

b) connect() – which establishes TCP connection to the server with the specified destination socket address.

When the TCP connection is completed, the accept function at the server wakes up and returns the descriptor for the given connection, the source IP address, source port number, destination IP address and destination port number. The client and server are now ready to exchange information.This in the normal Internet case. To provide multi path connection service, one approach is to modify some of these function calls, or to develop a new set of function calls based on these basic ones, so that data written by the sender can be distributed or spread across multiple connections at the sending side. On receiving side, packets from multiple connections need to be correlated and delivered to the receiver in the right order. One possible design is to provide a multipath connection layer which supports the socket connection by routing packets through a set of direct routes, and indirect routes via proxy servers. This project will focus on designing a set of library calls, mp_socket(), mp_bind(), mp_listen(), mp_accept(), mp_connect(), mp_write(), mp_read(). These new function calls should allow the sender to express the use of list of connection relay proxy servers as one of the parameters and should be able to set up multiple socket connections through those proxy servers. Also the API is responsible for spreading the data across those connections based on their data transfer performance. Some function calls should accept those multiple connection requests from the same multi path connection. The library of calls should be responsible to ordering the packets and deliver to the application that calls it.

Description of Multipath Routing:

The above picture in Fig 1 describes multi path routing scenario. Here the multipath connection layer supports the socket connection by routing packets through a set of direct routes, and indirect routes through proxy servers. First Sender sends request to the Multipath Sender in the local machine, indicating the IP address and port number of the Receiver. The Multipath Sender then chooses a set of Proxy Servers, establishes multipath connections through these Proxy Servers to reach the Multipath Receiver. The Multipath Sender is also responsible for distributing data packets which it eventually receives from the Sender, across the multipath connections based on the data transfer performance of the connections. The Multipath Receiver collects the data packets from the different proxy servers, correlate them and send them to the Receiver in the right order as they were sent.

 Multi Path Sender and Multi Path Receiver:

The diagram shown in Figure 2 on the next page gives a more detailed picture of the Multi Path Sender and the Multi Path Receiver. This is very similar to the Link Aggregation model. The Transmit Queue in the Multi Path Sender consists of data frames from the Sender. Here a very simple proxy server is assumed that just takes a connection request from the Multi Path Sender, with message indicating the destination, issues a connection request to the Multi Path Receiver.

After being connected to the Receiver, the proxy server just waits for the data coming from either sides and relay the frames through the sockets. In the case where the data can come from both sides, select() can be used to wait for those two connections. Since packets arrive on the Multipath Receiver could be out of order, in the message format we may need to design the sequence number and efficient buffering mechanism for merging the data before delivering it to the Receiver.

The next one is application usage layer – offers greatest flexibility and information to achieve high performance, but requires that application developers have expert knowledge in path management such as congestion and flow control.

After considering the possible usage layers, transport usage layer was chosen to develop multipath protocol. The protocol developed, MPTCP, maximizes end-to-end throughput. When a sender opens an MPTCP connection to a destination, MPTCP opens k concurrent and independent TCP connections to the same destination, where k is the number of paths the network provides between the Sender and Receiver. Whenever the Sender wishes to send a data stream, it passes it to MPTCP which then divides this data stream into MPTCP segments and sequence numbers each segment. When a destination TCP connection receives segments from its TCP sending peer, it reconstructs the received messages in the usual manner. The MPTCP receiver then reads the TCP data stream to recover MPTCP control data using which it reconstructs the original MPTCP data stream from all its sub-TCP connections.

MPTCP is supposed to provide a reliable bit stream service as in single path TCP.

Design and Implementation:
The initial design of the system incorporates multipath proxy server software at both the source and destination as well as multiple relay servers distributed around the internet. The concept is that all communication from the client software such as an ftp client, web browser, instant messaging, etc, will be routed to a multipath proxy server in the source's immediate subnet. The multipath proxy server will determine whether or not a known mulitipath route exists to the destination by checking an internally managed database. If a multipath route is known, the multipath proxy server will open multiple connections through the known routes and distribute the data. If a multipath route is not known, the proxy server could be configured to either forward the request on a single route as normal, or to query the other known multipath servers in order to construct a multipath route.

 Each multipath route will consist of more than one multipath connection. Each of these connections will be set up through an intermediate proxy server known to have acceptable bandwidth to the destination. The source proxy server will distribute the message across several of these connections in order to take advantage of the aggregate bandwidth. A new MPP protocol will be used on top of TCP/IP between the proxy servers in order to establish the multipath connections and relay the data. The proxy server in the immediate subnet of the destination will relay the data to/from destination through the multipath connections using MPP. The connection between the proxy servers and destination host or between the proxy servers and source host will not utilize the MPP protocol.

 This design allows for implementation within the current internet and requires no modifications to the end host software. Only the development of a new proxy server that can set-up, accept, relay, and manage multipath connections is required.

The proxy server can be implemented using fork() so that it can handle different requests from different Multipath Senders.
a) mp_socket(): This function call creates multiple TCP sockets.

mp_socket(){

/*Creating multiple sockets from which to read packets*/

for(i = 0;i < n; i++)

sock[i] = socket(AF_INET,SOCK_STREAM,0);

}

where 'n' is the number of Proxy Servers.

This function will populate array sock[i] with a non-negative integer value called a socket descriptor or handle on success, on failure, the corresponding array value of sock[i] will be -1.

The socket system call returns a file descriptor which will be used to reference the socket in later requests by the application program. If the call fails, however (due to lack of resources) the value returned will be negative (note that file descriptors have to be non-negative integers).

b) mp_bind(): Binds port numbers to different sockets.

c) mp_connect(): This function takes the list of connection relay proxy servers specified by the user as a parameter, establishes multiple socket connections through those proxy servers.

d) mp_write(): This function call is responsible for spreading the data across those connections based on their data transfer performance.

e) mp_listen() and mp_accept() are responsible for accepting those multiple connection requests from the same multipath connection.

f)mp_read(): This is responsible to ordering the packets and delivering to the application that calls it.

(The code supporting this is in the src directory).

Issue of prtocol layer :
In Multi Path routing, the usage layer is the protocol layer responsible for distributing data over multiple paths. The choice of which layer should manage multiple paths depends on performance issues as well as software engineering concerns such as compatibility, maintainability, and clean layering abstractions. There are three possible usage layers in the current TCP/IP namely – network, transport and user/application. The lowest usage layer is the network usage layer. The advantage of this usage layer is that protocol layers above the network layer do not need modifications in order to use the multiple paths. The limitations of this layer are – since the network layer is unaware of the demands of the user/application, the IP layer does not have the necessary information to properly distribute data onto paths that best improves application performance. Also because higher level protocols are unaware of the multipath capabilities of the network layer, events such as out of order deliver and large delay variances may adversely affect the performance of these protocols.

The second possible usage layer is the transport usage layer. This usage layer shifts the responsibility of multipath management one level up in the protocol stack to the transport layer. The main disadvantage of this layer is the required modifications to the transport and network protocols. This layer has many advantages – 1) the transport layer has the proper information to efficiently use multiple paths because it is already responsible for connection based congestion and flow control. 2) Unlike the network usage layer, the transport protocol performance will not be degraded by side-effects of using multiple paths (out of order deliveries) because the protocol itself knows that it is transmitting on different paths. 3) Since the transport layer is responsible for packet fragmentation and reassembly, it is able to use multiple paths with great flexibility.

The next one is application usage layer – offers greatest flexibility and information to achieve high performance, but requires that application developers have expert knowledge in path management such as congestion and flow control.

After considering the possible usage layers, transport usage layer was chosen to develop multipath protocol. The protocol developed, MPTCP, maximizes end-to-end throughput.

When a sender opens an MPTCP connection to a destination, MPTCP opens k concurrent and independent TCP connections to the same destination, where k is the number of paths the network provides between the Sender and Receiver. Whenever the Sender wishes to send a data stream, it passes it to MPTCP which then divides this data stream into MPTCP segments and sequence numbers each segment. When a destination TCP connection receives segments from its TCP sending peer, it reconstructs the received messages in the usual manner. The MPTCP receiver then reads the TCP data stream to recover MPTCP control data using which it reconstructs the original MPTCP data stream from all its sub-TCP connections.

MPTCP is supposed to provide a reliable bit stream service as in single path TCP.

Conclusions :

Multipath Routing seems to be a very plausible solution for the present needs of the internet communication. On the other hand some more issues need to be taken care of before one really decides to implement the idea:

· How does a host determine the set of connection-proxy servers to use that will provide the best service?

· How to measure "best service"?

· How the sending host determines the quality of service each connection-proxy server can provide

· How does the network designer place the connection-proxy servers on the internet to provide the most robust service?

Some algorihms need to be finalized first, giving the best performance.

These issues have a great impact on the performance of the setup and need to be resolved before the final implementation.

References:

a) http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf.

b) Johnny Chen's - New Approaches to Routing for Large Scale Data Networks.

c) The Switch – Rich Seifert(Chapter on Link Aggregation).

Sender

Receiver

Multi path

Sender

Proxy

Server

Proxy

Server

Multi path

Receiver

PAGE
10

