Robert Turpin

CS 522 – Computer Communications

December 14, 2002

Porting an Open Source Windows VoIP Application to a PDA Device (Pocket Pc)
Introduction
A recent trend in computer communications and networking has been the development and use of wireless communications (802.11a, 802.11b). These types of connectivity can offer greater mobility to those who need or wish to connect to the Internet. Recently, AT&T, Intel, and IBM announced the creation of Cometa Networks, which has the goal to provide wireless access covering the 50 most populous metropolitan areas in the U.S. in two years. Thus, business travelers will have easier access to the home office through the Internet, and the home user won’t be limited to his/her Internet connection at home.

With the increasing support of wireless through such entities as Cometa, and most likely the increasing demand for these services, the use of PDA (Personal Digital Assistant) devices may also become more prevalent. A PDA device is much smaller and easier to carry then a laptop. Although a laptop offers greater functionality then a PDA, for most people on the move the PDA can fulfill the most desired functionality a user would want.

The demand for both wireless connectivity and PDA devices will most likely increase in the coming years. Thus, it was my desire to port an application to a PDA device (Pocket PC) that would enhance and take advantage of mobile connectivity to the Internet. I found an Open Source application called, ‘Speak Freely’, that is a VoIP (Voice over IP) application that runs on the various flavors of Windows (95, 98, NT, 2000, Me, XP) and various flavors of Unix/Linux. To get to the point, I was unsuccessful in my attempt to port this application over to the Pocket PC. There was a combination of factors that contributed to this outcome. My unfamiliarity with the Windows API, poor documentation of the original source code, and portability issues between a normal Windows application to a Windows embedded device (Pocket Pc). Thus, I will discuss some of the issues in creating a VoIP application such as protocols, compression schemes, and encryption. I will conclude with some of the problems I encountered in attempting to port Speak Freely to the Pocket PC.

Protocols – H.323 and SIP

Two protocols that support VoIP are H.323 and SIP. The Speak Freely application uses the H.323 protocol. H.323 is the more widely used protocol in the many VoIP applications is use, but SIP is gaining more interest. One task of the many tasks these protocols perform is to negotiate the capabilities between user agents. A simple comparison of the two protocols is shown below in table format.

Table courtesy of http://www.vovida.org

	
	SIP
	H.323

	Relationship
	Peer-to-Peer

	Peer-to-Peer

	Origins
	Internet based and web centric.

Borrows syntax and messages from HTTP.

	Telephony based.

Borrows call signaling protocol from ISDN Q.SIG.

	Client
	Intelligent user agents.

	Intelligent H.323 terminals.

	Core Servers
	SIP proxy, redirect location, and registration servers.

	H.323 Gatekeeper.

	Current

Deployment
	Interoperability testing between various vendors’ products is ongoing.

SIP is gaining interest.

	Widespread.

	Capabilities

Exchange
	SIP uses SDP protocol for capabilities exchange.

SIP does not provide as extensive capabilities exchange as H.323

	Supported by H.245 protocol.

H.245 provides structure for detailed and precise information on terminal capabilities

	Control Channel

Encoding Type
	Text based UTF-8 encoding.

	Binary ASN.1 PER encoding.

	Server Processing
	Stateless or stateful
	Version 1 or 2 – Stateful

Version 3 or 4 – Stateless or stateful.

	Quality of Service
	SIP relies on other protocols such as RSVP, COPS, and OSP to implement or enforce quality of service.

	The H.323 gatekeeper manages bandwidth management/control and admission control.

The H.323 specification recommends using RSVP for resource reservation.

	Security
	Registration – User agent registers with a proxy server.

Authentication – User agent authentication uses HTTP digest or basic authentication.

Encryption – The SIP RFC defines three methods of encryption for data privacy.

	Registration – If a gatekeeper is present, endpoints register and request admission with the gatekeeper.

Authentication and Encryption – H.235 provides recommendations for authentication and encryption in H.323 systems.

	Endpoint Location

and Call Routing
	Uses SIP URL for addressing.

Redirect or location servers provide routing information.
	Uses E.164 or H.323ID alias and an address mapping mechanism if gatekeepers are present in the H.323 system.

Gatekeeper provides routing information.

I haven’t gone into any great detail concerning these two protocols, but for the present paper I thought it sufficient to show their simple relationships without getting into too much detail.

Compression Modes
Speak Freely uses a variety of compression modes for sending audio data. Communication over high-speed networks doesn’t really require such computation, but there are still people connected with 28.8 or 56 kilobits/sec. modems. Thus, one has to adapt to the user with the slowest link.

The variety of compression modes is as follows:

Simple compression – This halves the data rate from the normal 8000 bytes per second to 4000 bytes per second. This would be sufficient for a 64-kilobit line. This method requires very little CPU time, but sound degradation is substantial.

GSM compression – This is an algorithm that GSM (Global System Mobile) phones use. The data is compressed by a factor of 5 with very little degradation of voice grade audio. This would be sufficient for a 28.8 kilobits per second modem. The one drawback to this method is that it does require a good bit of processing power.

ADPCM (Adaptive Differential Pulse Code Modulation) compression – This compresses data to the same rate as simple compression, but degradation of voice grade audio is significantly less.

LPC (Linear Predictive Coding) compression – This scheme compresses data by a factor of 12; however, this comes at the expense of being computationally intense. Also, this method can have problems with high frequency sounds. This method should be avoided because it can cause a good bit of distortion. Only use if there is a very slow link, and none of the other methods work.

LPC–10 compression – This method compresses data by factor of 26 to 1. The audio fidelity is less then that of the GSM method, but still good enough for voice communications. With such a high rate of compression this is the most CPU intensive method for compression.

Simple compression can be used in combination with ADPCM or GSM. The capabilities, and pros and cons of each mode are summarized in the table below.

Table courtesy of http://www.speakfreely.org

 Bytes per Kilobits per Need fast Sound

Compression second second CPU? fidelity
--

No compression 8000 80000 No Best

Simple 4000 40000 No Poor

ADPCM 4000 40000 No Good

Simple + ADPCM 2000 20000 No Lousy

GSM 1650 16500 Yes Good

Simple + GSM 825 8250 Yes Lousy

LPC 650 6500 Yes Depends

LPC-10 346 3460 Extremely Okay

Even though any VoIP application on a PDA would be using a wireless connection, compression schemes are still necessary. The user on the other end may have a slow link, so the need for creating functionality to users of various network connection speeds is a desired component.

Encryption
Data transmitted across the Internet is susceptible to packet capture and analysis.

Thus, encryption is a desired component because it provides secure communications.

Using encryption with a VoIP application can provide more secure communications then is normally available when using a telephone or cell phone.

Speak Freely has three options to use encryption, DES, IDEA, and key file. Present concerns for using encryption on a PDA device is that it increases the demand on the CPU. Two commercial VoIP applications for PDA’s I’ve come across don’t support encryption. I’m not sure at the present moment if this is due to the limitations of a PDA, or the possibility that the commercial entities wished to get their applications quickly into the marketplace. Perhaps they will implement encryption in their products at a future date. Even if these drawbacks are due to the limitations of a PDA device; I’m sure in the very near future CPU power will improve, and any performance issues associated with encryption will be resolved.

Problems Associated with Porting Speak Freely to a Pocket PC
As mentioned in the introduction I encountered a variety of problems when attempting to port Speak Freely to a Pocket PC device. By no means are they insurmountable, but due to the limited time frame I had to work on this I wasn’t able to accomplish the task.

The first problem encountered was my unfamiliarity to the Windows API, and the limited API of the Pocket PC. Since Speak Freely is a cross-platform (Unix, Windows) application it implements many POSIX compliant functions. Whereas normal Windows OS’s support POSIX to one degree or another, the Pocket PC only implements a stripped down version of Windows only API. Thus, Windows API functions that provide equivalent functionality must be found as replacements. My lack of the Windows API made this process much more difficult and time consuming.

Another difference with the Pocket PC is that it only supports Unicode strings. The problem is that Speak Freely represents the audio data in character arrays that are 8-bits each. Unicode type characters are 16-bits. Obviously there must be an 8-bit data type with the Pocket PC, but to this time I haven’t discovered how it is declared. Within the Windows environment there is a data type defined as BYTE. Declaring this data type in the Embedded Visual C++ environment and trying to compile produced an error. Perhaps declaring a data type as char within the Embedded Visual C++ environment is sufficient, but since I was unable to test any code I’m not sure if this is correct.

Another source of difficulty is poor documentation of the Speak Freely source code. Source code is under commented, and it was difficult to determine dependencies of the various modules. The present developer of this software has one file, ‘netfone.h’, that has all of the necessary includes. Then this one .h file is declared in all the modules. I can’t see the necessity of this, and as mentioned it obscures the dependencies. I realize this is Open Source code developed by someone on his own time, but publishing well-documented code should still be a desired goal.

Conclusion
Although I was unsuccessful of my goal to port Speak Freely to a Pocket PC, I became familiar with the protocols used to accomplish VoIP, and some of the compression and encryption schemes that can be used in such an application. Also, I have more to learn about the various audio codecs used to represent analog sound. I’m still determined to port Speak Freely, and I’ve also come across an application, ‘Sipset’, from http://www.vovida.org that uses the SIP protocol. Sipset hasn’t come to be a working application on a Windows machine yet, but probably will in the very near future. Also, on the Vovida website is the expressed desire to have this application ported to a PDA device. Thus, this could become another option for porting a VoIP application to a PDA.

With the current interest in wireless technologies, and what looks like the commercial interest to develop and provide these services; there will be a greater interest and desire for mobile computing devices. VoIP applications on PDA devices may very well provide a better quality of service under certain circumstances than the ubiquitous cell phone, and at the least it would provide more secure communications. The demand for quality made VoIP applications for PDA’s will increase, as the move to more mobile communications continues and expands.

Bibliography

Dang, Luan, and Jennings, Cullen, and Kelly, David, Practical VoIP, O’Reilly, Cambridge, 2002.

Krell, Bruce E., Pocket PC Developer’s Guide, McGraw-Hill/Osborne, New York, 2002.

Leon-Garcia, Alberto, and Widjaja, Indra, Communication Networks – Fundamental Concepts and Key Architectures, McGraw-Hill, Boston, 2000.

http://www.speakfreely.org
http://www.vovida.org
