Secure Transmission of Instant Messages
Introduction

Instant messaging is designed to support message exchange at a rate that supports chat-like conversations. An instant message is delivered quickly to a recipient if the recipient is listening for messages, otherwise the message is dropped and the sender is informed of the delivery failure. Instant Messaging (IM) has become an essential business and home computing tool. It allows you to avoid long-distance charges you might otherwise incur while speaking on the phone, and it lets you know right away whether the person you're trying to reach is at his or her computer. Because you’re communicating in real time, exchanging messages with people via IM is as simple as typing in the text and hitting enter.

A user of an instant messaging service can employ a presence service to keep track of the listening status of a set of users. By consulting this service, a user has a good chance of predicting if a message will get to its recipient.

This implementation of instant messaging is designed so that the service can be provided by a set of lightweight distributed servers spread across many administrative domains. The vision is a service provided by a large number of sites much in the way that electronic mail service is provided today.

The protocol is similar to email protocols. Users are identified by an Instant Message Address (IMA), which has the same syntax as an Internet email address. A message is delivered by connecting to the user's home server.

Unlike most email systems, a user listening for instant messages remains connected to their home server. This connection is used to deliver messages in a timely fashion. Another difference with email systems is that an instant message is never queued, rather it is dropped if there is any obstacle to immediate delivery. Fundamentally, email is built on one way message passing, while most of this protocol is built on request-reply pairs.

The Potential Dangers of Instant Messaging

In most of the messenger services only the password is sent across in an encrypted fashion. All other messages are sent as plain text. The basic reason for this is to improve response time. Since the premise of messaging is providing real time conversation, security is most often not viewed as a primary consideration.

There are many ways in which an Instant Messenger conversation can be intercepted. One of the simplest way is to run a packet analyzer tool somewhere in the path between the client and the messenger server. this displays each packet as it comes in. since IM services use UDP packets, an attacker can filter for these and read the data directly off the tool. Other possibilities are to run an agent that listens for UDP packets and sends them to the attacker.

Requirement gathering and Analysis
We decided early on the analysis stage to work on the Yahoo! ™ IM service client. The basic reason for this was the popularity of the service itself. This has led to many open source efforts to create clients for this service. We hoped to capitalize on this fact to get the base code for this project.

Some of the requirements that we sought to implement were:

· There should be provision for both secure and non-secure messaging.

· The basic reason for this was that secure messaging as we conceived it would require a modified client. Since this would perhaps not be globally available, this was an essential requirement.

· The basis of secure transmission should use the existing protocols

· There should use Yahoo! ™ IM protocol without needing any changes.

· Basic mechanism

· The data is encrypted at one modified secure IM client, marked as encrypted, sent across thro the server as a normal text message and deciphered by another similar modified client.

· There should be a mechanism for key transport.

· Since our basic idea was to create a new key for encrypting messages for each session, there was a need for transporting the random key that was generated by one client to the other securely. This presented us with a set of unique challenges.
Symmetric key Cryptography

There are two kinds of cryptosystems: symmetric and asymmetric. Symmetric cryptosystems use the same key (the secret key) to encrypt and decrypt a message, and asymmetric cryptosystems use one key (the public key) to encrypt a message and a different key (the private key) to decrypt it. Assymetric cryptosystems are also called public key cryptosystems.

Symmetric cryptosystems have a problem: how do you transport the secret key from the sender to the recipient securely and in a tamperproof fashion? If you could send the secret key securely, then, in theory, you wouldn't need the symmetric cryptosystem in the first place -- because you would simply use that secure channel to send your message.
Data Encryption Standard (DES)

The most widely used encryption scheme is based on the Data Encryption Standard (DES) adopted by National Bureau of Standards. For DES, data are encrypted in 64-bits blocks using a 56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the same key, are used to reverse the encryption.

Advantages:

· It is a powerful encryption method

· Fast encryption and decryption

Weaknesses:
The thought behind DES is " security using complex permutations and operations". As a sad known fact DES cant stand brute force attacks, because there are only 2^56 different keys. 1998 a DES encrypted message got broken within only 4,5 days, using a self-build computer called deep crack.

Public Key Cryptography

Traditional cryptography is based on the sender and receiver of a message knowing and using the same secret key: the sender uses the secret key to encrypt the message, and the receiver uses the same secret key to decrypt the message. This method is known as secret-key cryptography. The main problem is getting the sender and receiver to agree on the secret key without anyone else finding out. If they are in separate physical locations, they must trust a courier, or a phone system, or some other transmission system to not disclose the secret key being communicated. Anyone who overhears or intercepts the key in transit can later read all messages encrypted using that key.

Public-key cryptography was invented in 1976 by Whitfield Diffie and Martin Hellman in order to solve the key management problem. In the new system, each person gets a pair of keys, called the public key and the private key. Each person's public key is published while the private key is kept secret. The need for sender and receiver to share secret information is eliminated: all communications involve only public keys, and no private key is ever transmitted or shared. No longer is it necessary to trust some communications channel to be secure against eavesdropping or betrayal. Anyone can send a confidential message just using public information, but it can only be decrypted with a private key that is in the sole possession of the intended recipient. Furthermore, public-key cryptography can be used for authentication (digital signatures) as well as for privacy (encryption).

The primary advantage of public-key cryptography is increased security: the private keys do not ever need to transmitted or revealed to anyone. In a secret-key system, by contrast, there is always a chance that an enemy could discover the secret key while it is being transmitted.

Another major advantage of public-key systems is that they can provide a method for digital signatures. Authentication via secret-key systems requires the sharing of some secret and sometimes requires trust of a third party as well. A sender can then repudiate a previously signed message by claiming that the shared secret was somehow compromised by one of the parties sharing the secret. For example, the Kerberos secret-key authentication system involves a central database that keeps copies of the secret keys of all users; a Kerberos-authenticated message would most likely not be held legally binding, since an attack on the database would allow widespread forgery. Public-key authentication, on the other hand, prevents this type of repudiation; each user has sole responsibility for protecting his or her private key. This property of public-key authentication is often called non-repudiation.

Furthermore, digitally signed messages can be proved authentic to a third party, such as a judge, thus allowing such messages to be legally binding. Secret-key authentication systems such as Kerberos were designed to authenticate access to network resources, rather than to authenticate documents, a task which is better achieved via digital signatures.

A disadvantage of using public-key cryptography for encryption is speed: there are popular secret-key encryption methods which are significantly faster than any currently available public-key encryption method. But public-key cryptography can share the burden with secret-key cryptography to get the best of both worlds.

For encryption, the best solution is to combine public and secret-key systems in order to get both the security advantages of public-key systems and the speed advantages of secret-key systems. The public-key system can be used to encrypt a secret key which is then used to encrypt the bulk of a file or message. This is explained in more detail in How is RSA used for encryption in practice? In the case of RSA, Public-key cryptography is not meant to replace secret-key cryptography, but rather to supplement it, to make it more secure. The first use of public-key techniques was for secure key exchange in an otherwise secret-key system, this is still one of its primary functions.

Initial Design

In the initial design, we set up the following process flow:

· When a user wants to communicate securely with another user, he creates a random DES key.

· He then encrypts it using the RSA algorithm with the other user’s public key as a parameter, and sends it across.

· The other user decrypts this encrypted key using his own private key.

· Now both users have the same DES key.

· All IM messages between these two users are now encrypted with the above DES key.

[image: image1.wmf]

Initial Design Fault

Further analysis exposed vulnerability in our initial design. Consider the following sequence of actions, which is described, in the following figure.

· Client A creates a random key, encrypts it in the manner describes in the above section and attempts to send it to Client B.

· An attacker (shown at the bottom of the figure) intercepts this packet and prevents it from reaching Client B.

· The attacker now creates his own random key, encrypts it using Client B public key and sends it to Client B with the yahooed while identifying himself as Client A.

· Client B has no way of knowing that the key received was not from Client A and responds to the attacker.

· Sensitive information might be leaked to an attacker in this fashion.

The above sequence brings to light the lack of authentication in our initial design. Authentication is the mechanism where steps are taken to ensure that a message received from a client is actually from him. A revised design included authentication and is described in the next section.

[image: image2.png]Initial Design Fault

Client - A
PUa. PRa. PUs

Key = RandomKey()
EKey = E(PUB, Key),
Msg = SD(Key, EMsg)

Attacker
PUX, PRX, PUs

Client -B
PUs, PRB, PUa

Key2 = D(PRB, EKey)
/X Msg = SE(Key2, Msg)

Packet
Intercepted

Key2 = RandomKey()
EKey2 = E(PUB, Key2)
Msg = SD(Key2, EMsg)

Revised Design

The revised design has the authentication mechanism in order to prevent flaws of the previous design.

· When a user wants to communicate securely with another user, he creates a random DES key.

· He then encrypts it using the RSA algorithm with the other user’s public key as a parameter.

· He then hashes the encrypted key. Hashing produces a unique bit string for every input.

· This hash is then signed with client A’s public key.

· The signed hash and the encrypted key are sent across.

· The Client B hashes the received encrypted key, and also decrypts the signed hash.

· He then matches the hash received from Client A with the one he just computed.

· If they match, neither the signed hash nor the encrypted key have been modified, else the key is rejected.

· The Client B decrypts this encrypted key using his private key.

· Now both users have the same DES key.

· All IM messages between these two users are now encrypted with the above DES key.
[image: image3.png]Revised Design

Client— A Client-B
PUa, PRa, PUe PUs, PRB, PUa

H2 = hash (EKey)

H =D (PUa, Sig)

IF H2 = H THEN Verfied
ELSE Reject

Key = D(PRB, EKey)
————— EMsg=SE(Key, Msg)

Key = RandomKey()
EKey = E(PUs, Key)
H = hash (EKey)
Sig = E(PRA, H)

Msg = SD(Key, EMsg)

2>
5‘\‘5*

Provides security and authentication

Libyahoo2 Library

The following has been derived from libyahoo2 documentation.

First include the two headers.

#include <yahoo2.h>

#include <yahoo2_callbacks.h>

yahoo2.h contains functions that you can call. The data structures used are defined in yahoo2_types.h, which is included by yahoo2.h

yahoo2_callbacks.h contains prototypes for functions that you *must*

implement. *All* these functions must be implemented by your code. You can choose at configure time whether these are implemented as callback functions or as a callback structure.

If compiled as a callback structure, you must call yahoo_register_callbacks before doing anything else.

What each function is supposed to do and return is documented in

yahoo2_callbacks.h

1. Login

You must first login by making a call to yahoo_login, and pass the

username, password and initial login status as parameters.

int yahoo_login(char * username, char * password, int initial);

The initial status is one of enum yahoo_status.

yahoo_login returns an id which will be used to identify the connection

in all callbacks and all calls to the library.

yahoo_login will call ext_yahoo_add_handler with the id as the first parameter. This is called before the id is returned by yahoo_login. This behaviour may change at a later date.

When the login procedure is complete, the library will call

ext_yahoo_login_response with a status code. See yahoo2_types for an

enumeration of these codes.

2. Buddies

When the library receives the buddy list from the server, it will call

ext_yahoo_got_buddies with the buddy list as a parameter. The library

will call ext_yahoo_got_ignore when it receives the ignore list.

- To get the buddy list at any other time, make a call to yahoo_get_buddylist, and use the return value of that call.

- Similarly, for the ignorelist, call yahoo_get_ignorelist.

These lists will be returned from the library's cache. To force a reload from the server, make a call to yahoo_get_list.

- To refresh the status of all buddies, make a call to yahoo_refresh.

- To add a buddy, call yahoo_add_buddy:

void yahoo_add_buddy(id, char *who, char *group);

- To remove a buddy, call yahoo_remove_buddy:

void yahoo_remove_buddy(id, char *who, char *group);

Yes, remove buddy also requires the group.

- If a buddy adds you, and you do nothing, that buddy is accpeted (that's the way the protocol works). If you want to reject the buddy, make a call to yahoo_reject_buddy:

void yahoo_reject_buddy(id, char * who, char *msg);

where msg is the rejection message.

- To change a buddy's group, call yahoo_change_buddy_group:

void yahoo_change_buddy_group(id, char * who, char *old_group, char *new_group);

- To ignore/unignore a buddy, call yahoo_ignore_buddy:

void yahoo_ignore_buddy(id, char *who, int unignore);

If unignore is TRUE, the buddy is unignored, if it is FALSE, the buddy is ignored.

3. Sending an IM

To send an IM, make a call to yahoo_send_im void yahoo_send_im(int id, char * from, char *who, char *what); id is the id that the connection is identified with, who is who you want to message, what is the message to be sent.

The parameter from is the identity that you want to use to send the message.

If this is NULL, your default identity will be used.

You can also send typing notifications with yahoo_send_typing.

OpenSSL Library

OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) network protocols and related cryptography standards required by them.

The openssl program is a command line tool for using the various cryptography functions of OpenSSL's crypto library from the shell. It can be used for

 o Creation of RSA, DH and DSA key parameters

 o Creation of X.509 certificates, CSRs and CRLs

 o Calculation of Message Digests

 o Encryption and Decryption with Ciphers

 o SSL/TLS Client and Server Tests

 o Handling of S/MIME signed or encrypted mail

Results

We have successfully implemented the modifications to the libyahoo2 library, which can be downloaded from the following link.

http://cs.uccs.edu/~cs522/projF2002/kchandra/src/
Future potentials

Use of trusted third party for authenticated distribution of public keys

Porting to GUI-based messenger from current command line version
References

Cryptography and Network Security by William Stallings

http://sourceforge.net/projects/libyahoo/
http://www.openssl.org
Yahoo messenger protocol

http://www.venkydude.com/articles/yahoo.htm

_1101316098.doc
[image: image1.png]Secure Transmission of
Instant Messages

Initial Design

Client - A Client — B
PUa PRa PUs PUs, PRe, PUa

Key = RandomKey() / Key = D(PRB, EKey)
EKey = E(PUs, Key) / ;l!;g = SE(Key,
Msg = SD{Key, EMsg)

