NetLEARn:
Network Lightweight Emulation and Activity Rendering

Project Notebook

Purpose: This document contains the project development-related deliverables associated with the NetLEARn project, a semester project conducted by Jim Carole for the UCCS Fall 2002 semester offering of course CS522 with Dr. Chow.

1NetLEARn: Network Lightweight Emulation and Activity Rendering

1Project Notebook

2Requirements

3Design

7Implementation

8Test

9Tools & Platforms

10User Documentation

Requirements

The purpose of the NetLEARn project is to create a tool that can be used by beginning students of computer communication concepts. The tool aims to supplement classroom lecture by giving students a hands-on experience of data flow through a network. The name comes from:

Lightweight Emulation: NetLEARn is not designed to simulate 100% of the activity that takes place in a network, just that portion that enables learning.

Activity Rendering: Unlike tools like Ethereal, NetLEARn maintains a model of the entire network being studied and displays activity in a user-controlled manner, enabling learning at the student’s pace.

Basic requirements for this tool set at the start of the project:

1. User interactivity. The application shall provide means for the user to interact with the network. This interaction shall involve:

· Configuration of end machines

· Configuration of routers

· Viewing of machine status

· Selection of commands to send: ARP and Ping

· Control of command execution flow

· Simple fault injection

2. Activity rendering. The application shall make key network activity visible to the user. This activity shall include:

· Upper-layer send/receive activity

· Transport-layer send/receive activity

· Network-layer send/receive activity

· Link-layer send/receive activity

· Physical-layer send/receive activity

In addition, key elements of headers shall be displayed at each step of the process. To enable narrowing the focus of interest, the system shall support filtering of undesired activity rendering.

3. Exensibility. The application shall be extensible in the following ways:

· Number of networks

· Number of machines per network

· Supported commands

· Graphical user interface used

4. Performance. The application shall respond to user input within < 0.25 sec and shall complete any command in < 1.0 sec.

Design

The NetLEARn application is based on an object-oriented design. Highlights are presented here, while details are contained in the UML model. At the highest architectural level, it employs the Model/View/Controller design pattern to insulate the rendering method from the internal management of network activity and status. To further decouple, the view refers to model objects only through generic object handles and a single interface. The System Manager is a Singleton and provides classes with utility support functions. Commands, such as Ping, are encapsulated in a generic container.

[image: image1.wmf]Observer

(from Utilities)

Model

(from Utilities)

SystemMgr

(from SystemMgr)

NetworkModel

(from SystemMgr)

1

1

1

+Global Accessor

1

ClientInterface

(from SystemMgr)

NetworkComponent

(from SystemMgr)

1

1..n

1

1..n

MainDlg

UserHandle

(from Utilities)

1

0..1

1

0..1

0..1

1..n

0..1

1..n

Command

(from SystemMgr)

The next major level of design resides in the network model. It’s major feature is the Composite design pattern, which enables networks of networks. The physical layer emulates real-world connections, with NIC cards directly connected to each other via a thin Link class.

Note: In the initial implementation of this design, only the first layer of the Composite pattern is implemented; thus only 1 router’s worth of networks can be created.

[image: image2.wmf]Network

NetworkElement

NetworkComposite

NetworkComponent

SystemMgr

Link

ProcessingMachine

(from EndMachine)

NetworkModel

1..n

1

1..n

1

1

1

+Global Accessor

1

1

NIC

(from EndMachine)

1

n

1

n

1..n

1

1..n

1

Command

Next is the Processing Machine, which includes end machines and routers. These are presented in 2 diagrams, hardware and software. Hardware and Software modules communicate to each other through a single interface.

[image: image3.wmf]Link

(from SystemMgr)

Frame

Network

(from SystemMgr)

NIC

n

1

n

1

ProcessingMachine

1..n

1

1..n

1

HwSwInterface

OperatingSystem

The TCP/IP layers are handled by individual modules which communicate to each other only through the corresponding interfaces. The data being transmitted is encapsulated in successively larger objects, and header data is limited to just that required for basic communication. The Operating System class partially serves as a Façade for functionality handled by the individual modules.

[image: image4.wmf]Segment

Packet

1

0..1

1

0..1

Frame

1

0..1

1

0..1

ProcessInterface

NetworkLayerInterface

TransportLayerInterface

UserProcess

HwSwInterface

EthernetModule

TcpModule

UdpModule

IpRouterModule

IpEndMachineModule

LinkLayerInterface

OperatingSystem

RoutingTable

ArpCache

IpModule

1

1

1

1

1

1

1

1

A typical network simulation would consist of the following elements. Note that there are 2 distinct communication paths. Black lines represent simulation control paths, which enable manipulation of the objects, run control, etc. Orange lines represent data communication paths, used whenever machines send or receive frames.

[image: image5.wmf]User 2 :

ProcessingMachine

User 1 :

ProcessingMachine

 : NIC

 : NIC

 : Link

DNS Server :

ProcessingMachine

 : Link

Subnet

1:Network

Subnet 2:

Network

 : NIC

 :

NetworkModel

Router :

ProcessingMachine

Run control is handled by managing a worker thread. Every simulation command requested by a client, such as ARP an IP or Ping an IP, spawns a thread that runs until it reaches a non-filtered point of focus, at which point it suspends itself. When the user requests a single step, the thread is resumed and runs to the next point. This continues until the thread exhausts its flow. To prevent simultaneous multiple worker threads, only one user command is allowed at a time.

Implementation

NetLEARn is implemented in C++. Private data is insulated in order to decrease cross-class dependencies and to improve information hiding.

The view was created using MFC, but this is not a requirement. Since all network model state is contained outside of the view, any graphics package can be used to render the activity, as long as it can communicate with SystemDLL to manipulate the model and receive messages from it.

Source code is delivered under separate cover.

Test

I started out implementing classes with a self-test feature to handle unit testing. I quickly realized that I would not have sufficient time in one semester to do this across the board. Thus, I had to limit myself to system testing.

	Test
	Expected Result
	Result

	Arp a valid machine
	Cache updated
	PASS

	Arp an off machine
	No cache update
	PASS

	Arp an invalid machine
	No cache update
	PASS

	Ping a valid machine in-network
	Cache updated with target’s MAC, response received
	PASS

	Ping a valid machine out-of-network
	Cache updated with router’s MAC, response received
	PASS

	Ping an off machine
	No response received
	PASS

	Ping an invalid machine
	No response received
	PASS

	Change IP address of a machine; ARP it
	Cache updated with new IP address
	PASS

	Change IP address of a machine; Ping it
	Cache updated with new IP address; response received
	PASS

	Change IP address of an entire subnet, including the router’s port and all connected machines
	Newly changed machines can be pinged by machines outside their network
	PASS

Tools & Platforms

The following tools and platforms were used in the development of NetLEARn:

	Purpose
	Product
	Version
	Company

	Document requirements & process
	Word
	2000
	Microsoft

	Document design
	Rose
	2001
	Rational

	Create & analyze source code
	Source Insight
	3.1
	Source Dynamics

	Compiling, linking, resource editing, runtime debugging
	Visual C++
	6.0
	Microsoft

	Execution & testing
	Windows
	98, 2000
	Microsoft

User Documentation

Delivered under separate cover.

