Multi-Routing the ‘.Net’

Torres, Francisco Javier & Gigax, Kevin Edward

Gigax, Kevin Edward & Torres, Francisco Javier

CS522 – Computer Communications

University of Colorado at Colorado Springs

Instructor: Dr. Edward Chow

December 14, 2002
Contents

	Introduction
	…………………………………
	3

	
	
	

	Design
	
	

	Sockets
	…………………………………
	5

	Threads
	…………………………………
	8

	Processes
	…………………………………
	10

	
	
	

	Implementation
	
	

	Sockets
	…………………………………
	11

	Threads
	…………………………………
	21

	Processes
	…………………………………
	24

	
	
	

	Lessons Learned
	
	

	Finding available bandwidth
	…………………………………
	25

	
	
	

	Conclusion
	…………………………………
	26

	
	
	

	References
	…………………………………
	28

Introduction

The Microsoft .Net framework is a large set of Microsoft technologies designed to integrate multiple aspects of the internet, web services and software capabilities. The Microsoft .Net framework allows compatability of many different programming languages because it is language neutral and it introduces Microsofts latest object-oriented language, C#. It is the Microsoft answer to Java’s Virtual Machine (JVM). Both of which provide a virtual environment for running software. It is very similar to the J2EE and the Cobra platform, but strives to improve on their technologies. This project aims to use the .Net platform to create a multi-path routing software program.

The program was designed based in the model shown in figure 1. The idea is for the software to find acceptable total bandwidths to route packets from the available proxy servers to the destination server. The project creates stream socket connections to determine these paths. In addition, the project plans to also implement bi-directional routing in the future to allow for improved multi-media communications.

The project uses three major programming techniques as well as a timed outside ftp program call to determine bandwidth. The program uses threading and socket creation to establish connections with the proxy servers. It then uses process creation to find the available bandwidth with an outside ftp program call.

Figure 1

The project follows the following objectives in order:

1. Establish communication between a non-.Net framework environment and

a .Net framework environment using sockets

2. Progress to two .Net framework environments communicating together using stream sockets

3. Get an estimated bandwidth using .Net software by timing a file download

4. Add multiple-threaded creation of sockets to allow us to find the available bandwidths simultaneously

Begin implementing available bandwidth algorithms to improve the ability of finding ‘good’ paths

Design

Sockets

Sequence of events

Before a client can connect, the server must be listening. The following diagram shows the sequence of events that make up an asynchronous socket session.

[image: image1.png]Server

Socket listener created
listener.Bind
listener.Listen
listener.BeginAccept

OnConnectRequest fired

Socket client created

-—
e

Socket m_sock created
m_sock.Connect
m_sock.BeginReceive
ConnectAccept fired

We now have a usable connection

OnRecievedData fired

client.Send

OnRecievedData fired

listener.Close

-—
—_—

We are now done

-—

m_sock.Send

OnRecievedData fired

m_sock.Close

We were working with two application: ChatServer that the clients connect to and ChatClient that connects to the client.

The Server listens for clients to connect; when a connection is requested the server will accept it and return a welcome message. The connections are added to an array of active clients m_aryClients. As client connect and disconnect, this list will grow and shrink. It is not always possible to detect the loss of a connection, so there should be some form of polling to detect if the connection is still working. When data is received on a listener it is broadcast to all connected clients.

Two methods of listening are discussed below one using polling the other events to detect connection requests.

Method 1 - Using polled TcpListener

We used the TcpListener class from System.Net.Sockets to provide a simple method to listen for client connections and process them. The code (in the Implementation Section) listens for a connection, accepts it and sends a welcome message with a time stamp. If another connection is requested the old one is lost.

Method 2 - Using Socket with event

Another method is to setup an event and catch connection attempts. The ChatServer sample uses this method.

The Client is a windows form application that connects to the server and displays messages that it receives and allow messages to be sent.

Stream Sockets in C# .NET

We used stream sockets based on:

· Session (or connection) based service

· Guarantees that packets are sent without errors, sent (and received) in sequence and without duplication

· Unlimited data size in packets

Communication between server and client occurs through streams

· Streams can be used for binary, text, and string data or serialized objects.

Scenario for Stream Sockets

Sockets are created by both client and server,

· Server specifies a port number

· Server may customize aspects of connections (wait queue, etc)

· Client specifies the internet address and port in creating its socket.

Server listens for arriving requests to establish a session (connection) with a client.

· If no connections are pending, the server blocks . If one or more clients are waiting, they are queued and in turn, the server creates a new thread (stay tuned) to service each client. The parent thread re-issues the accept to service another client on the same socket.

The client and server identify input and output streams for passing information according to a protocol they both agree to. The input and output streams perform the work of the application.

The client and server must both close the connection to allow resources to be used in another connection.

Threads
How does a threaded socket server, for protocols such as http or ftp, allow multiple clients to be simultaneously connected to the server?

This questions let us understand the importance of Threads in this project. We can say that a thread is a lightweigh process or a single sequential flow of control within a program.

A multi-threaded program:

· Two or more threads seemingly active simultaneously.

· All within the overhead of a single executing program.

· A single starting point and an ending point for all threads in the program and for the program itself.

Issues with multi-threaded programs:

· Synchronization

· Concurrency

· DeadLock

· Shared Data

· Scheduling and Blocking operations

· Performance

Threading capabilities:

· Join - used to wait for another thread to complete.

· Sleep - suspend for a number of milliseconds

· Thread States , are shown below; Thread includes a property to query a state:

[image: image2.png]Resurned or Interrupted

/Wansleepjnm
]

Sleep() or
Wait() or Join

nest Thread()
run() method exits
or Abori() called

Stopped

· Priorities.

Processes

The multi-path routing takes advantage of system processes to implement a file download. The system process makes a system call to the ftp program and then the process waits for the system call to finish downloading a file. A timer is implemented to monitor the time it takes to download the file. At this time the file is set at almost one megabyte in an effort to get more realistic times. Once the ftp file finishes, the process is notified and the timer is stopped. We use the same file (meaning same file size) for every findBandwidth() call. We therefore just use the time it takes to download the file as the estimated bandwidth. We could divide the filesize by the estimated time, but since the file size is constant, we would produce the same results.

Implementation

Sockets

Method 1 - Using polled TcpListener (Server)

private Socket client = null;

const int nPortListen = 399;

try

{

 TcpListener listener = new TcpListener(nPortListen);

 Console.WriteLine("Listening as {0}", listener.LocalEndpoint);

 listener.Start();

 do

 {

 byte [] m_byBuff = new byte[127];

 if(listener.Pending())

 {

 client = listener.AcceptSocket();

 // Get current date and time.

 DateTime now = DateTime.Now;

 string strDateLine = "Welcome " + now.ToString("G") + "\n\r";

 // Convert to byte array and send.

 Byte[] byteDateLine = System.Text.Encoding.ASCII.GetBytes(

 strDateLine.ToCharArray());

 client.Send(byteDateLine, byteDateLine.Length, 0);

 }

 else

 {

 Thread.Sleep(100);

 }

 } while(true); // We should have something that let us to finish the Server…

}

catch(Exception ex)

{

 Console.WriteLine (ex.Message);

}

Method 2 - Using Socket with event (Server)

IPAddress [] aryLocalAddr = null;

string strHostName = "";

try

{

 // NOTE: DNS lookups are nice and all but quite time consuming.

 strHostName = Dns.GetHostName();

 IPHostEntry ipEntry = Dns.GetHostByName(strHostName);

 aryLocalAddr = ipEntry.AddressList;

}

catch(Exception ex)

{

 Console.WriteLine ("Error trying to get local address {0} ", ex.Message);

}

// Verify we got an IP address. Tell the user if we did

if(aryLocalAddr == null || aryLocalAddr.Length < 1)

{

 Console.WriteLine("Unable to get local address");

 return;

}

Console.WriteLine("Listening on : [{0}] {1}", strHostName, aryLocalAddr[0]);

//With the address identified we need to bind the listener to this address. Here we are

//listening on port 399. Hint: It is good practice to read the port number from the Services

//file located in "C:\WinNT\System32\drivers\etc\Services". The following code binds

//the listener and begins to listen. An event handler is added pointing all connection

//requests to OnConnectRequest. The application can now go about its business without

//having to wait or poll for clients to connect.

const int nPortListen = 399;

// Create the listener socket in this machines IP address

Socket listener = new Socket(AddressFamily.InterNetwork, SocketType.Stream,

 ProtocolType.Tcp);

listener.Bind(new IPEndPoint(aryLocalAddr[0], 399));

listener.Listen(10);

// Setup a callback to be notified of connection requests

listener.BeginAccept(new AsyncCallback(app.OnConnectRequest), listener);

//When a client requests a connection, the connection request event handler is fired as

//follows. The following code creates a client sends a welcome message and and

//reestablishes the accept event handler.

Socket client;

public void OnConnectRequest(IAsyncResult ar)

{

 Socket listener = (Socket)ar.AsyncState;

 client = listener.EndAccept(ar);

 Console.WriteLine("Client {0}, joined", client.RemoteEndPoint);

 // Get current date and time.

 DateTime now = DateTime.Now;

 string strDateLine = "Welcome " + now.ToString("G") + "\n\r";

 // Convert to byte array and send.

 Byte[] byteDateLine = System.Text.Encoding.ASCII.GetBytes(

 strDateLine.ToCharArray());

 client.Send(byteDateLine, byteDateLine.Length, 0);

 listener.BeginAccept(new AsyncCallback(OnConnectRequest), listener);

}

Client

//The client connects connect to the server when the Connect button is pressed with the //following code

private Socket m_sock = null;

private void m_btnConnect_Click(object sender, System.EventArgs e)

{

 Cursor cursor = Cursor.Current;

 Cursor.Current = Cursors.WaitCursor;

 try

 {

 // Close the socket if it is still open

 if(m_sock != null && m_sock.Connected)

 {

 m_sock.Shutdown(SocketShutdown.Both);

 System.Threading.Thread.Sleep(10);

 m_sock.Close();

 }

 // Create the socket object

 m_sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream,

 ProtocolType.Tcp);

 // Define the Server address and port

 IPEndPoint epServer = new IPEndPoint(IPAddress.Parse(m_tbServerAddress.Text),

 399);

 // Connect to the server blocking method and setup callback for recieved data

 // m_sock.Connect(epServer);

 // SetupRecieveCallback(m_sock);

 // Connect to server non-Blocking method

 m_sock.Blocking = false;

 AsyncCallback onconnect = new AsyncCallback(OnConnect);

 m_sock.BeginConnect(epServer, onconnect, m_sock);

 }

 catch(Exception ex)

 {

 MessageBox.Show(this, ex.Message, "Server Connect failed!");

 }

 Cursor.Current = cursor;

}

//If the connection already exists it is destroyed. A Socket is then created and an end

//point established. The commented out code allows for the simpler blocking connection

//attempt. BeginConnect is used to commence a non blocking connection attempt. Note,

//even if a non-blocking connection is attempted, the connection will block until the

//machine name is resolved into an IP address, for this reason it is better to use the IP

//address than the machine name if possible to avoid blocking. The following method is

//called once the connection attempt is complete, it displays connection error or sets up

//the receive data callback if connected OK.

public void OnConnect(IAsyncResult ar)

{

 // Socket was the passed in object

 Socket sock = (Socket)ar.AsyncState;

 // Check if we were sucessfull

 try

 {

 // sock.EndConnect(ar);

 if(sock.Connected)

 SetupRecieveCallback(sock);

 else

 MessageBox.Show(this, "Unable to connect to remote machine", "Connect Failed!");

 }

 catch(Exception ex)

 {

 MessageBox.Show(this, ex.Message, "Unusual error during Connect!");

 }

}

Recieving data

//To receive data asynchronously, it is necessary to setup an AsyncCallback to handle

//events triggered by the Socket such as new data and loss of connection. This is done

//using the following method;

private byte [] m_byBuff = new byte[256]; // Recieved data buffer

public void SetupRecieveCallback(Socket sock)

{

 try

 {

 AsyncCallback recieveData = new AsyncCallback(OnRecievedData);

 sock.BeginReceive(m_byBuff, 0, m_byBuff.Length, SocketFlags.None,

 recieveData, sock);

 }

 catch(Exception ex)

 {

 MessageBox.Show(this, ex.Message, "Setup Recieve Callback failed!");

 }

}

//The SetupRecieveCallback method starts a BeginReceive using a delegate pointing to

//the OnReceveData method that follows. It also passes a buffer for the receive data to be

//inserted into.

public void OnRecievedData(IAsyncResult ar)

{

 // Socket was the passed in object

 Socket sock = (Socket)ar.AsyncState;

 // Check if we got any data

 try

 {

 int nBytesRec = sock.EndReceive(ar);

 if(nBytesRec > 0)

 {

 // Wrote the data to the List

 string sRecieved = Encoding.ASCII.GetString(m_byBuff, 0, nBytesRec);

 // WARNING : The following line is NOT thread safe. Invoke is

 // m_lbRecievedData.Items.Add(sRecieved);

 Invoke(m_AddMessage, new string [] { sRecieved });

 // If the connection is still usable restablish the callback

 SetupRecieveCallback(sock);

 }

 else

 {

 // If no data was recieved then the connection is probably dead

 Console.WriteLine("Client {0}, disconnected", sock.RemoteEndPoint);

 sock.Shutdown(SocketShutdown.Both);

 sock.Close();

 }

 }

 catch(Exception ex)

 {

 MessageBox.Show(this, ex.Message, "Unusual error druing Recieve!");

 }

}

//When the above event is fired the receive data is assumed to be ASCII. The new data is

//sent to the display by invoking a delegate. Although it is possible to call Add() on the

//list to display the new data, it is a very bad idea because the received data will most

//likely be running in another thread. Note the receive callback must also be established

//again to continue to receive more events. Even if more data was received than can be

//placed in the input buffer, restabilising the receive callback will cause it to trigger until

//all data has been read.

//The AddMessage delegate is created to decouple socket thread from user interface

//thread as follows;

// Declare the delegate prototype to send data back to the form

delegate void AddMessage(string sNewMessage);

namespace ChatClient

{

 . . .

 public class FormMain : System.Windows.Forms.Form

 {

 private event AddMessage m_AddMessage; // Add Message Event handler for Form

 . . .

 public FormMain()

 {

 . . .

 // Add Message Event handler for Form decoupling from input thread

 m_AddMessage = new AddMessage(OnAddMessage);

 . . .

 }

 public void OnAddMessage(string sMessage)

 {

 // Thread safe operation here

 m_lbRecievedData.Items.Add(sMessage);

 }

 public void OnSomeOtherThread()

 {

 . . .

 string sSomeText = "Hi There";

 Invoke(m_AddMessage, new string [] { sSomeText });

 }

 . . .

 }

}

A very simple implementation of Server and Client:

using System.Net.Sockets;

using System;

/// <summary>

/// Example program showing simple TCP socket connections in C#.NET.

/// TCPSocketServer is the socket server.

/// <author>Tim Lindquist ECET ASU East</author>

/// <version>September 8, 2002</version>

/// </summary>

public class TCPSocketServer {

 public static void Main (string [] args) {

 TcpListener tcpl = new TcpListener(9090);

 tcpl.Start();

 Console.Write("TCPSocketServer up and waiting for connections on 9090");

 Socket sock = tcpl.AcceptSocket();

 string msg = "Hello Client";

 Byte[] msgBytes = System.Text.Encoding.ASCII.GetBytes(msg);

 sock.Send(msgBytes, msgBytes.Length, SocketFlags.DontRoute);

 tcpl.Stop();

 sock.Close();

 }

}

//Client

using System;

using System.IO;

using System.Windows.Forms;

using System.Net.Sockets;

/// <summary>

/// Example program showing simple TCP socket connections in C#.NET.

/// TCPSocketClient is the socket client.

/// <author>Tim Lindquist ECET ASU East</author>

/// <version>September 8, 2002</version>

/// </summary>

public class TCPSocketClient {

 public static void Main (string[] args) {

 TcpClient tcpc = new TcpClient("localhost", 9090);

 Stream tcpStream = tcpc.GetStream();

 StreamReader reader = new StreamReader(tcpStream,

 System.Text.Encoding.ASCII);

 MessageBox.Show(reader.ReadLine());

 reader.Close();

 tcpc.Close();

 }

}

Threads

Threaded Socket Server:

using System;

using System.Collections;

using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

/// <summary>

/// Class demonstrates use of multi-threaded socket servers.

/// <author>Tim Lindquist ECET ASU East</author>

/// <version>June 15, 2002</version>

/// </summary>

/// <remarks>

/// This server is multi-threaded in that it creates a new thread to handle

/// each incoming client connection. Note that .NET supports this directly,

/// if you use the asynchronous server sockets (see Using an Asynchronous

/// Server Socket in the .NET Framework Developer's Guide).

/// Each incoming connection causes the server to allocate a new

/// thread object. The communication protocol in this example is simple.

/// The client reads a string from standard input to send to the server.

/// It then reads a string from the server and displays the string

/// on standard output.

/// </remarks>

public class ThreadedServer {

 private TcpClient threadClient;

 // the connection number of this client

 private int connNo;

 public ThreadedServer(TcpClient client, int connNo){

 this.threadClient = client;

 this.connNo = connNo;

 }

 /// <summary>

 /// This method is started in a new thread to service a client

 /// request.

 /// </summary>

 public void handleConnect(){

 string msg = "Hello Client, you are client number: "+connNo;

 byte[] msgBytes = System.Text.Encoding.ASCII.GetBytes(msg);

 byte[] readBytes = new byte[1024];

 // get the network stream associated with this client. The network

 // stream can be used for both receiving data from and sending data

 // to the client and can be used either synchronously or asynchronously

 NetworkStream ns = threadClient.GetStream();

 // Show the methods to read and write the stream directly rather than

 // creating a StreamReader and StreamWriter as in the client.

 // Using this method, must read the correct number of bytes for the

 // appropriate type and do the conversion from byte array to type.

 // Client is sending a string, so read it all (less than 1025 bytes).

 int howMany = ns.Read(readBytes, 0, readBytes.Length);

 ASCIIEncoding AE = new ASCIIEncoding();

 char[] charArray = AE.GetChars(readBytes, 0, howMany);

 String myString = new String(charArray,0,charArray.Length);

 Console.WriteLine("Received from client {1} the string: {0}",

 myString, connNo);

 ns.Write(msgBytes, 0, msgBytes.Length);

 ns.Flush(); //doesn't seem necessary since its next closed.

 ns.Close();

 threadClient.Close();

 }

 public static void Main (string[] args) {

 // count connections

 int connCount = 0;

 TcpListener tcpl = new TcpListener(9090);

 tcpl.Start();

 Console.WriteLine("ThreadedServer waiting for connections on 9090");

 while (true){

 // accept a connection. Note connection is completed before Accept

 // method returns. The alternative is an asynchronous accept.

 TcpClient tcpClient = tcpl.AcceptTcpClient();

 // create an object to start a thread in to handle the connection

 ThreadedServer tcs = new ThreadedServer(tcpClient, connCount++);

 Thread cThread = new Thread(new ThreadStart(tcs.handleConnect));

 cThread.Start();

 }

 //tcpl.Stop(); not necessary since the loop doesn't have an exit

 }

}

Threaded Client:

using System;

using System.IO;

using System.Windows.Forms;

using System.Net.Sockets;

/// <summary>

/// Example program showing simple TCP socket connections in C#.NET.

/// ThreadedClient is the socket client to a sample threaded server.

/// <author>Tim Lindquist ECET ASU East</author>

/// <version>September 8, 2002</version>

/// </summary>

/// <remarks>

/// This server is multi-threaded in that it creates a new thread to handle

/// each incoming client connection. Note that .NET supports this directly,

/// if you use the asynchronous server sockets (see Using an Asynchronous

/// Server Socket in the .NET Framework Developer's Guide).

/// Each incoming connection causes the server to allocate a new

/// thread object. The communication protocol in this example is simple.

/// The client reads a string from standard input to send to the server.

/// It then reads a string from the server and displays the string

/// on standard output.

/// </remarks>

public class ThreadedClient {

 public static void Main (string[] args) {

 TcpClient tcpc = new TcpClient("localhost", 9090);

 Stream tcpStream = tcpc.GetStream();

 StreamWriter writer = new StreamWriter(tcpStream,

 System.Text.Encoding.ASCII);

 StreamReader reader = new StreamReader(tcpStream,

 System.Text.Encoding.ASCII);

 Console.Write("string to send>");

 String myStr = Console.ReadLine();

 writer.Write(myStr);

 writer.Flush();

 String fromServer = reader.ReadLine();

 Console.WriteLine("Received from server: {0}", fromServer);

 reader.Close();

 writer.Close();

 tcpc.Close();

 }

}

Processes

The process creation is rather simple. The process object is in the System.Diagnostic library. To create a process, we use the following code:

 int start;

 //Keep the time

int bandwidth = 1000000;
//Set large for failure

Process p = new Process();
//Create a process obj

p.EnableRaisingEvents=false; //Disable events from interrupting

//Set the directory to find the batch file for ftp’ing

p.StartInfo.WorkingDirectory="c:/Inetpub/ftproot/kegigax";

//Set arguments: -s: reads a file of commands for ftp

p.StartInfo.Arguments="-s:ftp_batch.txt" + server;

//Designate the program to execute

p.StartInfo.FileName="ftp";

start = System.Environment.TickCount;
//Start the timing

p.Start();

//Start the process

p.WaitForExit();

//Wait for process finish

//Calculate time for ftp call

bandwidth = System.Environment.TickCount - start;

p.Close();

//Close the process
The major problem with the implementation is the timing. The actual time to download the file is much smaller then the time found. The reason is because we are executing an external function and calling a process before the download even occurs. The overhead for these is large and takes up more time then the download. We use a rather large file (1MB) to try to compensate for overhead timing errors. At this time, we are using the findBandwidth() function to find an available bandwidth from the host computer to the wind.uccs.edu server. We were not able to implement the actual socket connections with the findBandwidth() because we need three .Net servers with ftp capabilities. At this time we only have two available servers with ftp because of problems with the wait.uccs.edu server, it seems it is blocked by a firewall. To understand the ftp program call, see the ftp_batch.txt file at http://cs.uccs.edu/~cs522/projF2002/kegigax/doc/ftp_batch.txt.

Lessons Learned

Finding available bandwidth

An interesting fact was observed with finding the estimated bandwidth. Our intitial plan was to use a system call to ftp. However, during implementation we experienced difficulty in getting the ftp function to work. We therefore tried using a timed ping to estimate the available bandwidth. After some testing, it was interesting to observe that at times, the function call using ping would be faster to servers in Mexico then servers in Colorado Springs from system calls in Colorado Springs. It was observed that there is no direct relationship between the ping program and available bandwidth. This was confirmed by Dr. Chow (2002). The main problem is that ping tries to find the distance of the path, while ftp is downloading actual bytes from the destination server.

Conclusion

We started from this picture: “Let’s find the way to establish communication between two machines, finding the best bandwidth between them, and that’s all”. We were right and we were wrong. Right because those two points are the background of this project: do the communication and find the way of calculate the bandwidth. Wrong because it is not as easy as we were thinking. Establishing communication in a way that is useful for the project involves some issues: multi-threaded servers, concurrency, process, detailed design of the frame’s headers… And finding a way to calculate bandwidth is not trivial.

We think the headers should have the follow information:

[image: image3.jpg]| g |

igin adgress

B g S
] o e |

b D | reauestor banawiatn
machine origin address
. " answer to the
Lmachlne: origin address request of bandwidth

amount of bandwidth

We were able to implement those issues but not to put them together. An interesting project that let put those concepts together is a program who sends and receives voice and sound based in the bandwidth that let do this in the fast way. We hope that this first step can be useful for the develop of future research.

References
· Albahari, Ben, Peter Drayton & Brad Merril, C# Essentials, 2002, O’Reilly
· C#-Corner, http://www.c-sharpcorner.com/
· Lippmen, Stanley B., C# Primer – A Practical Approach, Addison-Wesley, 2002 Pearson Education
· O'Reilly Network: Multithreading with C#, http://www.ondotnet.com/pub/a/dotnet/2001/08/06/csharp.html
· Programing with threads in C#, http://pooh.east.asu.edu/Cet556/ClassNotes/Serial/cnSerialThreadSocket-25.html
· Stream Sockets in C#.NET, http://pooh.east.asu.edu/Cet556/ClassNotes/Serial/cnSerialThreadSocket-18.html
· The Code Project, http://www.codeproject.com/csharp/workerthread.asp
· VisualC Ideas: Using Sockets in C#, http://www.mctainsh.com/Csharp/SocketsInCS.aspx
PAGE
25

