A Study of MS .Net Framework with an Emphasis in Online Gaming

Edward J. Mucker

14 December 2002

CS522

TABLE OF CONTENTS

31. Introduction

2. Online Gaming History
3
3. Technology Behind Online Games
4
3.1 The Game Loop
4
3.2 Multi-Player Game Architectures
5
3.3 System/Data Persistence
6
3.4 Handling Multiple Users
7
3.5 Connection Services Used
8
4. MS .Net Framework
8
4.1 Common Language Runtime (CLR)
9
4.2 MS .Net Framework Class Library
10
4.3 Framework Areas of Application
11
5. Project Implementation
12
5.1 Project Architecture
12
5.2 Project Implementation Language
12
5.3 Namespaces Used For Implementation
13
6. Conclusion
16
7. References
16

1. Introduction

With new technologies coming online at a rapid pace, it’s almost impossible to keep up with them all. One of the newest technologies that will drive future online/distributed program development is the Microsoft .Net framework. At this point in time, the .Net framework is in its infancy in terms of development, but because of Microsoft’s aggressive marketing strategies and support many other companies are already developing tools and utilities that makes this new technology one to keep an eye on.

The purpose of this paper is to explore the Microsoft .Net Framework and the concepts and technologies associated with online gaming. The paper begins with an introduction to online gaming providing an overview of the basic architecture, types of protocols used, and how multi-player environments are maintained. Once the basic concepts and ideas of online gaming are identified, the Microsoft .Net framework will be defined in terms of its architecture, the services it can provide, and the classes and namespaces that can be used to develop multi-player online games.

2. Online Gaming History

Over the past five to ten years, the gaming industry began moving away from the single player game concept and started developing technologies to create games that not only immersed a single person into a virtual environment, but many. In the early 1990’s, game programmers began developing the concept of multi-player online game environments.

In the beginning, multi-player games supported a very small number of users and were typically very simple. The first of these games were known as Multi-User Dungeons or MUDs and Bulletin Board Systems. These games were text based and allowed multiple users to log into a remote server and navigate through a text based virtual world or play through a turn based game restricting the number of turns a user could play in a given day. The worlds in these games were easily developed and could be grandiose because they were all described using text. By using text based worlds, it was almost like the players were reading a book because they had to use their imaginations and weren’t restricted to a developers rendition of what the world is supposed to look like.

Up until the introduction of the modem, multi-player games existed mostly on University networks and were more academic. As their popularity grew and more people bought modems for their computers, the style and types of multi-player games grew also. With the introduction of the modem, users were now able to connect via a remote server or directly to another computer and play these games with people that were geographically separated by a couple blocks down the street or hundreds of miles across the country. This opened up the online gaming industry to introduce real time strategy/simulation games (RTS), massively multi-player online role-playing games (MMORPG), and enhanced MUDs. Because the first modems were slow, online games were still text based and allowed only for simple commands to be issued and basic communication with other users. Over time as modems and computers began to get faster, online gaming moved from text-based virtual worlds to graphic based games. These new worlds allowed a user to navigate through virtual worlds first, in two dimensions and then three dimensions. Some of the more popular games that have been developed over the years that utilized graphics are Command and Conquer (RTS), Asheron’s Call (MMORPg), Ultima Online (MMORPG), and Everquest (MMORPG). Each of these games has their own advantages and disadvantages about them, but what they have in common is the architecture and ideas of the technology that they run on top of.

3. Technology Behind Online Games

3.1 The Game Loop

In order to understand how multi-player games work, there are a couple of things that must first be introduced. The first is the basic game loop that all games, including single player games, share. This loop, shown below, is the basic fundamental that drives the entire design.

With any game that utilizes graphics and sound, the first step that must be taken is for the graphics and sounds to be initialized based on the hardware that is present for a given system. This is usually done through thre drivers associated with the video and sound card for a given system. Once the graphics and sounds have been initialized, the next step is to determine whether the initial input is a request for the game to end. If it is, then the program proceeds to the clean up phase and frees any resources (grpahics, sound, memory, …) that were in use before exiting the program. If a user wants to play the game, then the system waits for some form of user input. This input can come from a number of places. The three most common forms of input for PC or console games is the keyboard, mouse, and joystick/controller. Once the input is received, the system processes the request based on its Aritificial Intelligence. After processing the request, the system determines if an update for any graphics resources in use are necessary. This usually consists of recalculting a world view and refreshing/updating the monitor or screen for PC and console games. After this step, the system then determines if the game has ended or not. If not, the system waits to receive the next user input and then enters the processing loop all over again. This loop continues until the user indicates that he or she wishes to end the current session or game.

3.2 Multi-Player Game Architectures

Due to the low cost and development of the modem and network interface cards, the architectures for online games grew from an Intranet or internetwork based scheme, to architectures built on multiple networks and remote machines that had the capability to communicate across some type of transmission medium. The two most common architectures used in online gaming are client/server and peer-to-peer architectures. Below are diagrams depicting how these architectures are built and how messages are passed between them.

Figure two shows how data is communicated within the client/server architecture. In this setup, the server is solely responsible for ensuring that all users receive all data and messages on the status of each user in the system. There isn’t any type of communication between users unless it is through the server it is allowed. In addition to keeping all client machines updated, all messages are processed by the server only. Before a client can move within the world or complete any type of action, the server must provide the client with an acknowledgement message for the requested action. This ensures that all users are subject to the same rules across the game. Both for character attributes and world movement. The acknowledgement message is simply a message that provides permission for a user to perform a requested action. The action could be as simple as move forward one space, talk to another player, or to manipulate/use an object within a user’s inventory. Whenever a command is accepted by the server, the server not only sends a message back to the client where the request originated from, but also to all other users on the server so their world data is current. This way, there is only a single system that maintains the world data. Because of this, a client system can not process another move/command until the server has responded.

Figure three shows how data is communicated within a peer-to-peer architecture. In this setup, a dedicated server does not exist. A client machine starts the online game session that is responsible for hosting other users. Unlike the client/server architecture, data is allowed to flow between any user/system that is logged in to the hosting machine. In addition, there is not a single entity responsible for maintaining the world-state. Because of this, all users within the system are allowed to make a move and process any commands without regard to the other users. This means that users on the system can make several moves before another user knows what is happening. Although a single machine doesn’t maintain the world-state, all users still need to know what the others are doing. To ensure this, every time a client machine updates or changes its world-state, a message is sent out to all users on the system. This is similar to how machines in the client/server architecture are updated, but because the actions are not processed through a dedicated server, there is a large potential for hacking in the system. The hacking is focused more on manipulating game files and world rules. If a user was able to change a character creation file or world travel file, a user could gain an unfair advantage in the system by making himself invincible or allow for movement over rough terrain or natural objects such as mountains as easy as crossing a grass field.

3.3 System/Data Persistence

Although the client/server architecture seems to be better for users in terms of fair game play, there is one major problem that exists. This problem is system failure. Because the client/server architecture depends on a single machine to store/process/update users on the system, if it crashes then all world state data can be lost. To keep this from occurring, most systems using the client/server architecture have ready back up servers that can take over in the case of a failure and a data server that is separate from the game server. With the peer-to-peer architecture, system failure isn’t such a huge factor. This is because when an online game session is started, the host machine is host only for the duration that the user is on the system. If the host decides to end the session on its machine, then the first user that logged into the host machine would then become the new host machine. This dynamic nature allows for quick recovery in the event that the host machine goes down and reduces the potential for loss of data.

In peer-to-peer architectures, the world-state exists only for the duration of the online session. Once all users have terminated their session, all world-state information is lost. This is not the case with client/server architectures. The game server maintains the world-state. Even when no users are online, the world-state still changes based on non-playable characters and time-based events programmed into the system artificial intelligence. This is known as a persistent world. This is another reason why world-state data and player data is usually stored on a remote server.

3.4 Handling Multiple Users

Until recently, maintaining online worlds with hundreds of users has been fairly difficult task for the gaming industry. What makes this difficult is the amount of traffic generated by users, the presentation media for the game (two/three dimensional graphics), and the processing that the server must do to validate user actions. Several approaches to address these issues have been developed over the years. The first approach handles the issue with the number of users able to be on a server at any given time. Because a server can handle only so many users based on its hardware and software configurations, the concept of zoning was developed. What zoning does is to allow only a predefined number of users within a certain virtual space within the world-state. Simply put, it is crowd control for a server. When the maximum number of users have been reached on a specific server, the server sends the login request to another server or denies the request. In addition, during game play, bounds are set on the zones that each server handles. As a user is navigating through the world and crosses the bounds of a zone, the server hands over the user to the next server that maintains the zone the user is located in. The active server can also warp users away to another area if a predefined user thresh hold is reached. This results in a user being magically transported to a new area in game. The boundaries discussed earlier are typically represented by country borders, city borders, or continent borders within the virtual world. By using this logical connection between continental, country, or city borders the passing of a user from one zone to the next is transparent to the user.

The second approach addresses the issues of world-state representation and handling user messages. As mentioned above, maintaining a virtual world populated with hundreds to thousands of users is a tremendous task. In client/server architecture, the server is responsible for maintaining the world-state and processing messages. As the number of users increase, so do the number of requests. In order to process all of these messages efficiently, the messages are limited in size by limiting the information that is passed in them. In order to produce two and three-dimensional graphics on-screen, there are a lot of calculations that must be done that not only use of processing time, but resources as well. Once the calculations are complete, the client system must know how to represent the change in the world-state. Because sending all current world-state data across a network would cause the network to come to a halt, the server takes a user request for movement and determines if a move is valid. It does not send back the data that represents the entire world state or the data needed to represent the move in the world state, but sends back a confirmation that the move can take place. This reduces the size of the messages that transferred and requires the user’s client machine to perform the world-view change so precious resources in producing on screen graphics aren’t used up on the server machine. In addition, the server only needs to send out a message to all users that character X, has moved to location Y and lets the other client machines make this change.

In addition to reducing the size of the messages sent across the network, most online games today require that a user maintain a minimum connection speed. This minimum speed is typically 56Kbps since 56K modems are so common and standard equipment on most desktop PCs and laptops. By doing this, lag time is significantly reduced because user requests can be received and sent out using a standard connection speed. Broadband and DSL modems are also supported and several years down the road may become the minimum connection standard.

3.5 Connection Services Used

The type of communication protocols used within online games depends on the need for messages to get passed correctly. For client/server architectures, it is important for all users to be able to send and receive message using some type of guaranteed delivery service. In this instance, the best protocol to be used would be TCP. TCP transport protocol provides a connection-oriented service designed to provide guaranteed delivery and basic error detection correction. In the case of online games where messages are not critical to the flow of the game, the UDP protocol would be more appropriate. This transport method would be used in such applications that allow communication between users such as a chat function or to broadcast messages to a large group of users. Most applications make use of both types of communication methods in one form or another. Its almost like asking, what programming language should be used to implement your network communications. Each has their own pros and cons, but the final choice is dependent on the situation.

4. MS .Net Framework

Over the years, there have been many languages developed and used to create software for many different systems. Although most of the existing languages can be used to generate similar applications, none of these languages can inherit or use classes defined by another. Taking a good look at Sun Microsystem’s JAVA, Microsoft has developed not only a framework that is focused on portability, between systems, but also languages. The new technology is called the MS .Net Framework. The following sections provide an overview of the Microsoft .Net Framework and it’s major components to include the Common Language Runtime, MS. Net Framework Class Library, and the services it provides.

4.1 Common Language Runtime (CLR)

The first step in creating a technology that is not only portable between different types of systems and languages are to define a common foundation on which to start. In the MS .Net Framework, this foundation is the common language runtime. The purpose of the common language runtime is to provide the definition for the data types and structures supported by the MS .Net Framework, how these data types and structures are maintained in memory, and the minimum specifications that are required by a language based on the common language runtime.

4.1.1 Common Type System

The common language runtime consists of several components. The common type system identifies the basic data types supported by the common language runtime. The data types supported are broken up into two categories. These are value types and reference types. The value types consist of integer, boolean, char, byte, double, and structures to name a few. Some of these types, like integer, can be broken down further to include Int16, Int32, Int64, UInt16, and Uint32. These categories of integer define the number of bits (bytes) used to store these values and whether or not they can represent positive and negative values or just positive. Reference types consist of classes, interfaces, arrays, strings, and delegates. Both value and reference types, like in JAVA, inherit from a common Object type.

The primary difference between reference and value types is how the CLR manages the values associated with these types in memory. Value types are stored on the stack, whereas, reference type values are stored on a managed heap. The actual reference to a reference type value is stored on the stack. Data values stored on the stack only exist while they are in the scope of a method or variable that created them. When the scope changes to another method or the current method returns, all values stored on the stack are automatically freed. For data values stored on the heap, these values exist until they are freed via a process called garbage collection. This is similar to calling a constructor and destructor in C++. Memory is allocated to a class object when it is created and the memory is freed when the destructor is called. In the case of the CLR, the garbage collector handles this process automatically and no action is required by the user. The garbage collector periodically checks the heap for non-used resources when full and is called when a program ends.

4.1.2 Compiling Common Language Runtime Code

Like all other code, CLR code must be compiled before used. The only difference between CLR based languages and languages like C++ and C, when CLR code is compiled, an executable file is not created. Instead, an intermediate language called Microsoft Intermediate Language (MSIL) and metadata is generated. MSIL is similar to JAVA byte code in that it is an intermediate step in the compilation process of a program created using the CLR. Metadata is code that provides information about the MSIL to include names of classes and data manipulated by the program. Together, MSIL and metadata, are used by the host machine to create native code to run the program. The native code generated to run the program is done through a process called Just-In-Time (JIT) compilation. What this means is that the minimum code required to run a program is generated and only when a method inside a program is called or invoked, is the compiled code generated to run the method. In this way, the compiler is only generating what it needs, but once the native code has been created once, it is stored in memory until needed again or the host machine is powered down. Because the CLR utilizes JIT compilation techniques, it will typically run slower than languages like C and C++, but all CLR based languages can be expected to perform in the same amount of time because they utilize the CLR. This is an advantage in the case that other non-CLR languages like C, C++, and VB perform at different rates because performance and compilation techniques differ for each language.

4.1.3 Common Language Specification
Unlike Sun’s Java Virtual Machine, the CLR not only provides a common foundation for a single programming language but several. The current library of CLR languages found in Microsoft’s Visual Studio .Net include C#, VB .Net, C++ .Net, J#, and JScript .Net. Each of these languages contains it’s own syntax and style, but because all of these languages were built on the CLR, classes and objects developed in each of these languages can subsequently be used by all. This is possible because of the Common Language Specification (CLS) defined within the CLR. The CLS defines at a minimum what is required by a language to be compatible with other CLR languages. The CLS was a compromise between the MS .Net Framework developers, as requiring all developers to stick to the CTS for all languages just didn’t make sense. But what makes the CLS great is that it only applies to external usage of code. A CLR language can implement any internal details however it wants. Thus a Common Type System array is allowed to have an index lower than zero, but in order to be CLS compliant, the array must have an index greater than or equal to zero.

4.2 MS .Net Framework Class Library

The primary foundation for the MS .Net Framework is the CLR, but Microsoft has developed a standard class library based on the CLR. This library is collectively known as the MS .Net Framework class library. This library is language independent and can be used by all of the previously mentioned CLR languages. The Class Library is organized by what are called namespaces. Namespaces are collections of CLR defined classes and code that contain many type of functionality. Namespaces within the CLR are similar to the defined packages in JAVA. The root namespace is the System namespace. Within the System namespace are classes and many subnamespaces that each provide powerful, but unique functionality to applications built with the CLR. The following are some of the more widely used namespaces.

4.2.1 System Namespace

The System namespace is the root level and provides the definition for the core types defined by the CLR. It also contains the Console class used for reading/writing data to and from the screen. It also contains the Math, Random, and Environment, Random, and GC classes.

4.2.2 System.IO

The System.IO namespace contains classes for handling various types of input/output operations to include reading and writing to files, buffering, and networking input and output streams. Some of the commonly used classes include StreamReader, StreamWriter, BufferedStream, and FileStream.

4.2.3 System.Net.Sockets

The System.Net.Sockets namespace contains classes used with socket applications. This includes a Socket class and also high-level socket abstraction classes such as TcpListener, TcpClient, UdpClient, and UdpListener. Each of these classes encapsulates the details needed to invoke or create a TCP or UDP socket. The user only has to provide an endpoint (IP address and port number) to the constructor and then use the predefined methods like start, listen, close, and AcceptXXXClient methods to create a socket application.

4.2.4 System.Threading

The System.Threading namespace contains the classes necessary to create multi-threaded applications. In addition to a Thread class, this namespace also includes several classes and attribute definitions for handling deadlock and racing conditions. The classes/attributes include monitor and mutex classes and the lock attribute.

4.2.5 System.Windows.Forms

The System.Windows.Forms namespace contains classes used to generate windows applications and controls. Each of which can have their own properties and be used to generate forms for user input or respond to user-driven events.

The namespaces listed above are only a very small portion of the many namespaces included within the MS .Net Framework class library. For more information regarding the MS .Net Framework Class Library, visit the MS .Net Home page or see the reference Understanding .Net: A Tutorial and Analysis listed in the bibliography.

4.3 Framework Areas of Application

The MS .Net Framework is a new technology that has many uses. Aside from what has been mentioned thus far, the .Net Framework has many other areas of application. The biggest influence that .Net Framework has in the development of Internet-based Web services. Within the .Net Framework lies support for a variety of web services as well as excellent support for some of the newer transport protocols such as XML and Simple Object Access Protocol (SOAP). In addition the System.Runtime namespace has classes specifically designed for the transport of information based on the protocols. The .Net Framework also support large business applications. This is seen in Microsoft’s System.EnterpriseServices and Globalization namespaces. The EnterpriseServices namespace contains classes used for accessing services provided by COM+ and the Globaliztion namespace provides classes for use in developing international applications. For the personal user, the MS. Net Framework also support web services that can be built to maintain personal financial, contact, or calendar information that can be utilized for online purchases, meeting schedules, and email services. The MS .Net Framework is a leap forward in application development and with support by MS and large businesses world-wide will become the new standard for software development.

5. Project Implementation

The project implementation for this project was to focus on the components of the MS .Net Framework that can be used to develop and implement an online multi-player game. Because the amount of work that is required to complete such an application would take several months, I scaled down the project implementation. The primary goal for this project, aside from the research described previously was to create a simple, multi-user socket program based on the MS .Net Framework. By creating a simple application, I was able to learn the basic fundamentals in developing multi-threaded network applications.

5.1 Project Architecture

The architecture style that I chose for the project was the client/server model described earlier. I chose client/server model because most of the literature and references to network programming with .Net use examples based on this architecture. Although most references only used examples with a single server program and a single client program, with the use of threads in .Net, the code required to generate a simple multi-threaded application wasn’t overwhelming.

5.2 Project Implementation Language

Within the MS .Net Framework there are five readily available languages. These consist of C#, VB .Net, Visual C++ .Net, J#, and JScript .Net. Because of the paradigm behind the .Net Framework and the CLR, the semantics of each the languages were fairly similar. The deciding factor on which language to use came down to two things: syntax and experience. Typically most languages used to generate computer applications are all built on the same fundamental ideas. What makes one language easier to use than another comes down to syntax and the rules associated with each language. Of the five CLR based languages, I found C# the easiest to pick up because its syntax and style are not only based on C and C++, but also JAVA. If an experienced programmer in JAVA was to look at C# code, the programmer might think it was JAVA with the exception of a few extra curly braces. In addition to the familiarity with the syntax and style, experience was another key factor. It was difficult to grasp a lot of the concepts with languages that have not changed too much into the .Net Framework paradigm, specifically C++. I felt that the best way to totally immerse myself into the concepts and ideas was to use a language specifically designed for developing .Net applications. In this case it was C#. Although I didn’t know anything about C#, because of previous background experience with object-oriented languages like C++ and JAVA, I was able to pick up the language fairly quickly.

5.3 Namespaces Used For Implementation

In section 4.2, some of the more common namespaces within the MS .Net Framework Class Library were described. This section takes a look at some of the namespaces that used to generate the fundamental components associated with creating multi-player online games and samples of code.

5.3.1 System.IO

The System.IO namespace, as described earlier, is used to create data streams not only for file input/output operations, but also reading and writing to and from a network. The type of stream that was used for the project implementation was the StreamReader class. The StreamReader class was used because of its simplicity in reading in data from a network socket. This class provides a Read() and ReadLine() method that are similar to the Console class methods Read and Readline() used for reading input strings from a keyboard. The StreamReader also makes it easy to read from a network socket because it automatically converts the bytes read in into character that can be stored into a string. The following is an example of how to define a StreamReader object and read data in from a network socket provided by a TcpClient object. The TcpClient class will be discussed later in more detail. The TcpClient class can return a network socket that a StreamReader object can read data from.

using System.IO; //define namespace being used

//code for var declarations and main function

//create new StreamReader object

StreamReader read = new StreamReader(client.GetStream());

//read data from network socket

string data = read.ReadLine();

//write data to screen

System.Console.WriteLine(data);

5.3.2 System.Net/System.Text

Like the System.IO class, the System.Net namespace provides for the creation of a NetworkStream object that can be used to read and write data to a network socket. The NetworkStream class is actually derived from the base Stream class defined within System.IO, but is designed with network communication in mind. Unlike the StreamReader class, it is not capable of directly converting a string of text or data directly to bytes for transfer across a network. It does however provide for simple, write methods that take a byte array and its length as parameter. The methods are the Write and WriteLine methods. But before these methods can be used, the data, as mentioned earlier, must first be prepared for transport or turned into a stream of bytes. In order to do this, the Encoding methods within the System.Text namespace must be used to convert characters into a byte stream based on ASCII or many other types of encoding supported by the CLR. Once the data has been converted into a stream of bytes stored into a byte array, the byte array and its length can then be used to write data to the NetworkStream object. The following code demonstrates this:

using System.Text;

using.System.Net;

StreamReader read = new StreamReader(client.GetStream());

string data = read.ReadLine();

//create NetworkStream object

NetworkStream write = client.GetStream();

//convert string data into stream of bytes for transer

byte[] bdata = Encoding.ASCII.GetBytes(data);

write.Write(bdata, 0, bdata.Length);

5.3.3 System.Net.Socket

The System.Net.Socket namespace contains the classes necessary to create sockets for communication over a network or the Internet. Within this namespace there are several ways of creating socket objects. The first way is to create an object of type Socket. This is the weeds and seeds approach and provides the most control to the user in handling the functionality that a socket can provide. This approach requires that a Socket object is created, an IP address is binded to the socket, the socket is set to listen for however many connections, and to accept connections when present. The other method that the System.Net.Socket namespace provides is high-level socket classes for setting up TCP and UDP connections. These classes are TcpListner, TcpClient, UdpListener, and UdpClient. Each of these classes work in a similar fashion and through their constructors allow a developer to create sockets without having to deal with all of the lower level details. The Listener classes are typically used for setting up the server end of a connection and the client classes for the client end. Both the listener and client objects of these classes can be created using one or two statements depending on the constructors used. Below is an example of how to create a TcpListener object and associate a StreamReader and NetworkStream object with the underlying socket by using the method GetStream that returns a reference to the underlying socket created by the TcpListener object.

using System.Net.Socket; //define namespace

using System.Text;

using.System.Net;

//create TcpListener object to listen from any IP address on port 8080

TcpListener listener = new TcpListener(8080);

Listener.Start(); //begin listening for network connections

//create a client on the server to talk with incoming connection requests

TcpClient client = listener.AcceptTcpClient();

StreamReader read = new StreamReader(client.GetStream());

string data = read.ReadLine();

//create NetworkStream object

NetworkStream write = client.GetStream();

//convert string data into stream of bytes for transer

byte[] bdata = Encoding.ASCII.GetBytes(data);

write.Write(bdata, 0, bdata.Length);

listener.Stop(); //end connection

5.3.4 System.Threading

The last namespace used in the project was the System.Threading namespace. This namespace is what allows for the multi-user capability of for the project. Like all of the other namespaces, the Threading namespace provides classes to help a developer easily create multi-threaded/user applications. The primary class used to generate a thread for a user is the Thread class. Every time a new user/connection is added to the server, a Thread object is created to handle it. The only problem is, that in order to start a thread, a method has to be passed in the constructor of the Thread object to tell the object what it is going to do once the thread is started. Because the CLR languages are safe languages, a developer cannot explicitly send a reference to a method. To get around this, the .Net Framework developers came up with the idea of a Delegate. A delegate is a special class that acts like a wrapper around a method. The delegate is the only type of object that is allowed to point to a method. By using a special delegate called ThreadStart defined within the System.Threading namespace, a ThreadStart object can be passed in the constructor for a Thread object to tell it what method to run when started. Below is an example of how this is done. This is only a piece of the code to show the ideas described above. Assume that the RunClient method is already defined in a separate class.

using System.Threading; //define namespace

using System.Net.Socket;

using System.Text;

using.System.Net;

TcpListener listener = new TcpListener(8080);

Listener.Start(); //begin listening for network connections

TcpClient client = listener.AcceptTcpClient();

ClientHandler handler = new ClientHandler();

Handler.clientsocket = client;

//create ThreadStart delegate that points to handler.RunClient()

ThreadStart t = new ThreadStart(handler.RunClient);

//create new thread object that passes ThreadStart delegate t

Thread clientThread = new Thread(t);

//start thread

clientThread.Start();

listener.Stop(); //end connection

Complete code for the project implementation can be found online on my class web page at http://cs.uccs.edu/~ejmucker or ~cs522/public_html/projF2002/ejmucker/src. The two files are server.cs and client.cs. In order to run them, you will need to be on a PC loaded with MS XP or Windows 2000 and have the MS .Net Framework SDK loaded. To compile the code, use the command line compiler “csc filename.cs”. After compiling, to run the programs, type in “server” to run the server and “client” to run the client program. Both are setup to run on the host machine. Make sure that the server program is started before the client program or an error will occur and the client program will terminate prematurely.

6. Conclusion

This project was primarily researched focused. Given more time and experience with the MS .Net Framework, a more robust project application would have been developed. Although the program was simple, the fundamental concepts learned through research and implementation will carry forward into a Master’s project. My recommendation for future students is to read through this paper to get a quick look at what the .Net Framework has to offer and then read through the references provided for greater detail. At the time this project was done, the literature was limited and thus hindered research. Future students studying the .Net Framework hopefully won’t run into this problem. Overall, the project was an excellent way to get introduced into a new technology and build a foundation for future skills that will be useful for students interested in network and Internet applications.

7. References

Barron, Todd. Multiplayer Game Programming. Roseville, CA: Prima Publishing, 2001.

Chappell, David. Understanding .Net: A Tutorial and Analysis. Boston: Addison-Wesley, 2002.

Gunderloy, Mike and Price, Jason. Mastering Visual C# .Net. Alameda, CA: SybexInc., 2002.

Krowczyk, Andrew, et al. Professional .Net Network Programming. Birmingham, UK: Wrox Press, 2002.

Graphics and Sound

Initialization

Game over?

Get User Input

Clean Up

Exit Game

Process AI

Update Graphics

Figure 1: Game Loop

Figure 2: Client/Server

Figure 3: Peer-to-Peer

- 17 -

