A Comparison of Java Distributed

Communications APIs

CS522

Dr. Edward Chow

By

Eric Lind

Colorado Springs, CO

December 2002
Introduction

Distributed programming can be a challenging task.  Java was designed from the ground up to be a platform for the Internet and thus provides a number of different APIs for distributed communications.  Each new release of the Java SDK has added additional libraries.  The latest and greatest way of doing things is touted as a silver bullet for all programming problems, but little information is presented to prove this, beyond anecdotes and marketing hype.  As a result, it can be a challenge to decide which API to use.


I decided to examine several Java distributed programming APIs to satisfy my own curiosity.  I have developed a bi-directional application using RMI for work, and have used Sockets for CS522.  While familiar with the concepts behind CORBA, I had not actually developed a CORBA application.  My experience with Web Services has been mostly been limited to articles on the web.  I wanted to examine these various APIs and compare them for both ease of development and economy of bandwidth.  Sockets, RMI, CORBA and JAX-RPC were chosen because they are Sun-supported and do not require a J2EE application server. 

Design


In order to facilitate ease of comparison, I decided to use a simple chat application.  Chat applications require both clients to be able to communicate with each other, thus requiring a bi-directional link.  The implementation of a chat program should not prove to be too complex, placing the majority of interest in the architecture of each API, rather than on the details of code.


For Sockets, RMI, and CORBA, each client also acts as a server.  The client requests the server to perform some action, in this case, receive a message, and the server can return some value over the same link.  This is generally known as “client-pull”.  JAX-RPC requires a different approach.  Web Services must be hosted in a web server, and this is generally difficult to provide for a chat client.  As a result, I decided to have a single server that acted as an intermediary between the two clients.  A client en-queues messages on the server and the other client de-queues them.


We will now examine the four Java APIs in more detail.

Sockets

Sockets are the most basic communication API that Java provides.  The Socket classes have been part of Java since version 1.0.  All other APIs ultimately use Sockets for their low-level communications, so it is instructive to examine their independent usage.

The SocketChat application acts as both a server and a client.  The first application begins as a server and waits until another SocketChat contacts it.  This is done by the accept() method, which blocks until a connection is made.  After this occurs, a new Socket object is created on the server and this is used to communicate with the other SocketChat instance.  Once the server is created, another SocketChat application may connect with it merely by instantiating a Socket object with the correct host name and port number.  The connection that is created is bi-directional, so both SocketChat instances may read and write data using the same Socket.


After the Socket is established, SocketChat calls getInputStream() and getOutputStream() to get the data streams used to pass information.  InputStream provides a number of overloaded read() methods which function to transmit a byte or array of bytes.  Similarly, OutputStream has parallel write() methods that write byte data.  Manipulating byte data directly is not very object-oriented, so Sun has provided subclasses that handle reading and writing objects.  These subclasses wrap instances of InputStream or OutputStream and handle the conversion from object to bytes internally.



In order to use the readObject() and writeObject() methods, the object being transmitted must implement Serializable.  This marker interface informs the Java Runtime that the implementing object may be written into a binary form and then read back.  SocketChat passes Message objects, which are Serializable.  This is a very simple object to serialize, since its only data members are both Strings, a serializable object.  This is not an extensive demonstration of Serialization, since a deep copy of a complicated object such as a Swing GUI requires a great deal of class information to be written.  Message, by comparison, is quite small.


One of the trickier problems with Sockets is that the read() and write() methods block until completed.  In other words, the thread that is executing read() or write() will stop running until the method returns.  In order to get around this, I wrote an inner helper class that is responsible for reading data.  StreamReader is basically an endless loop that calls readObject() on the ObjectInputStream.  When it returns, it calls the receive() method, which prints the Message to the command prompt.  If it receives a null value (indicating the connection has been broken), it terminates the loop and the SocketChat application ends.

Writing data also requires an independent thread.  Reading information from the command line is a blocking operation, so the KeyboardReader was created to read data from the user and then write it to the other SocketChat instance.  Similar to StreamReader, KeyboardReader is an endless loop that reads from the command line, creates a new Message and then writes it to the ObjectOutputStream.  If a null value is read from the command line (indicating the user has killed the application), the loop terminates and ends SocketChat.

Sockets provide a very easy way to transmit data.  Libraries exist for most languages and operating systems, enabling binary communication between platforms.  Obviously, passing serialized objects from Java to C won’t work, but if a well-known data format is used, sockets can be used for cross-platform communication.  Sockets are included in the Java SDK as part of the java.net and java.io libraries and are thus available on every computer that has Java installed.  Finally, Sockets have the lowest overhead of any of the methods examined for this project.

Unfortunately, using Sockets requires one to build all support services from the ground up.  As shown by SocketChat, classes that utilize threads must be written to provide acceptable interaction with the user and with other processes.  Sockets are not type-safe, that is, the Object read by the readObject() method may not be compatible with the type expected by the client.  Since all classes in Java derive from Object, any type can be passed, from Message to an image to a full-fledged GUI.

Remote Method Invocation

Remote Method Invocation (RMI) is Sun’s API for pure Java distributed programming.  As one of it’s primary goals, it attempts to make method calls on remote objects as similar to method calls hosted on a local Virtual Machine as possible.  RMI solves most of the problems associated with using raw Sockets.  Since remote objects appear local, method calls are completely type-safe.  All parameter rules are strictly enforced by the compiler.  Sockets are used underneath the hood, but the code is tool-generated and the connection plumbing is handled by the RMI runtime.  

RMI also provides a few basic services, such as a Registry.  The Registry acts as a central lookup for finding various remote objects.  Servers can be associated with different names in the Registry and, as long as clients know which name they are looking for, it doesn’t matter where the server is physically located.

In order to define a remote object, one must first define an interface that extends the Remote interface.  Only methods defined in a “remote interface” are available remotely.  These methods must be declared as throwing a RemoteException, which is used by the RMI runtime to indicate problems have occurred somewhere in the remote protocol.

Remote objects typically extend UnicastRemoteObject and implement a subclass of the Remote interface.  UnicastRemoteObject has two main benefits: it automatically connects to the RMI runtime and it knows how to check for equality with other remote objects.  This can be a problem if the remote server needs to inherit from another object, but, for this problem, I decided to go the simple route and extend UnicastRemoteObject.   RMIChat merely needs to provide definitions for the methods defined in ChatRemote, and provide at least one constructor that throws RemoteException and calls super() – invoking a constructor on UnicastRemoteObject and thus hooking RMIChat into the RMI runtime.  Providing a constructor that throws a RemoteException was initially a source of some contention (“Why won’t this thing compile?!?!”), but some digging into the Java documentation cleared this up.

The first thing RMIChat (or any Remote object) must do is bind with a Registry server.  Typically, this is done with a call to rebind(), passing a unique name for that RMIChat object.  The rebind() method is used to avoid errors in case an object has already been bound to that name.  After the first RMIChat object is bound, the second also binds itself, using the Registry.  It then performs a lookup on the first RMIChat and tells it to connect with itself, passing the second object’s unique name or port for identification purposes.  In this way, each RMIChat object has a reference to the other and can call remote methods.

Now that all of the setup has been accomplished, it is a simple matter of calling receive(Message) on the other RMIChat object for chatting to occur.  Since receive() can potentially throw a RemoteException, the method call must be wrapped in a try-catch block, but, other than that, it is indistinguishable from normal Java code.  The separate thread required by SocketChat to handle reading data is handled transparently by the RMI runtime.  KeyboardReader is still needed for reading information from the command line, but this is required for all of the different chat implementations.




The underlying code that handles the unpleasantness of network communication is handled by stubs and skeletons.  These classes are generated by the rmic compiler.  The client obtains an instance of the stub class which implements the same methods as the server.  The client calls the stub locally, which then either creates a new socket or reuses an existing connection.  All necessary information for the method call is marshalled, including the name of the method and the arguments and sends this information to the skeleton.  Marshalling basically breaks down to serializing the appropriate objects in the correct order.  The skeleton demarshalls the data and calls the correct method on the server.  It gets the return value (if any), marshalls it, and sends it back to the stub.  The stub demarshalls the return value and passes it to the client.  Neither the client nor the server have any direct knowledge that this process is occurring – to them it is a normal method call.


RMI has some distinct advantages over raw sockets.  Type-safety is a large benefit, as is normal, method-call semantics.  The RMI Registry is also useful, although, for enterprise-level applications, a more robust name service such as JNDI should be used.  RMI forms the basis for several other distributed communications protocols, including Enterprise JavaBeans (EJB) and JAX-RPC, which we’ll examine later.


On the downside, RMI does involve more data that must be transferred over the network than normal Sockets, although, in this example, not much.  Marshalling is not a simple process and can take a fair amount of time.  Conventional wisdom also holds that the RMI transport protocol is slower than IIOP, the comparable protocol used by CORBA.  Sun has recently provided an implementation of RMI that uses IIOP, which may improve its performance.  Finally, the setup code for RMI is somewhat arcane and is not readily intuitive.  It took me several days of trial and error on a project at work that utilized RMI before finally arriving at a viable solution.  This is mitigated by the fact that RMI applications are generally similar in architecture, so the knowledge gap is a one-time hit.

CORBA

The Common Object Request Brokerage Architecture (CORBA) is an industry-standard distributed object model.  It supports cross-platform and cross-language communication using the Interface Definition Language (IDL) to define data-types and operations.  Languages that support CORBA have their own IDL mapping that translates the IDL specification to language-specific code.  Java provides the idlj compiler for this purpose.


Distributed communication is accomplished via the use of an Object Request Broker (ORB) and the Internet InterORB Protocol (IIOP).  This model is similar to the one employed by RMI, except the ORB is responsible for handling the details of the stubs and skeletons.  The client makes a method call on the stub, which is wired directly into the ORB.  The ORB forwards the method invocation on to the server’s ORB.  Its skeleton translates the call into the appropriate format for that platform and calls the method on the server.  Any return values or errors are returned via the same process in reverse.


As with RMIChat, the first CORBAApp acts as a server and waits for a register() method call from another CORBAApp.  It first gets a reference to the ORB server (already running as a separate process), and connects an instance of ChatImpl with a specific name in the ORB.  This is done by registering a Portable Object Adapter with the ORB that provides an interface between the outside world and the ChatImpl object that actually performs the work of method calls.  This differs from RMI, where the server itself implements the interface, rather than deferring the details to a servant object.  For a full discussion of Portable Object Adapters and ORBs, I refer the reader to the references section.




The second CORBAApp object registers itself with the ORB, then acquires a reference to the first object, using the name passed in as a command line parameter and calls register() remotely with its own name.  Both objects now have handles on each other.  The architecture is similar to RMI, but the coding details differ somewhat dramatically.  Finally, KeyboardReader operates nearly identically to the RMI implementation.  Upon reading information from the command line, it calls receive() on the remote reference to a Chat object.


CORBA provides a very comprehensive distributed computing platform, but the complexity of development is very off-putting for most Java developers.  If the application must be cross-platform, then CORBA is really the only way to go, but if it is pure Java, then RMI is definitely preferable.  The implementation code is more intuitive to Java developers and if platform neutrality is not necessary, the costs of CORBA outweigh the benefits.

JAX-RPC

The Java-API for XML-based Remote Procedure Calls (JAX-RPC) is one of the many APIs currently under development for implementing Web Services.  It makes remote calls using the SOAP XML specification.  SOAP specifies the infrastructure needed for transferring method call semantics, encoding rules and return values.  This information is transferred over HTTP.  Since SOAP is an open XML specification and HTTP is a nearly universal transport protocol, the client and server can be on completely different platforms, using different languages.  For this project, both client and server are implemented in Java using JAX-RPC, but the possibility exists for true cross-platform development.




The actual coding for JAX-RPC is, effectively, a simplified form of RMI.  First, a service definition interface is defined.  It must extend the Remote interface and the methods defined in it must throw RemoteException.  In addition to the basic RMI rules, the method parameter and return types must be JAX-RPC supported types.  These types are limited to primitive types, their wrapper classes, String, Calendar, Date, a subset of the collection classes, and arrays of these types.  Additionally, application classes that are comprised of supported types can also be used.

The server class that implements the service definition interface is responsible only for providing method bodies.  It does not need to establish any remote connections or interact with the JAX-RPC runtime directly.  All of the underlying network communication details are handled by automatically generated tie classes.  These classes are created using the wsdeploy tool which reads the jaxrpc-ri.xml file and uses the information contained in it, along with the interface definition file to generate the required tie classes and a WSDL file.  The Web Services Definition Language is used by Web Services to determine what remote procedures can be called and their interfaces.  All of these classes are then deployed into a Servlet container and can be accessed over the web.

The client has more knowledge of the underlying JAX-RPC infrastructure, in that it must get a reference to a stub in order to make remote calls.  The stub is generated using the wscompile tool, which uses the generated WSDL file and the information found in config.xml.  The config.xml file contains the URL of the expected server.  Once the stub files are compiled, the client makes an implementation-specific call to acquire a reference to the stub file.  This stub is then cast to conform to the remote definition interface and calls can be made on it as if it were a normal object.

Web Services, in general, and JAX-RPC, specifically, share the same benefits and drawbacks of the World Wide Web.  HTTP is open and well-defined.  Most network administrators allow port 80, the standard port for HTTP, to be open, allowing remote procedure calls to be made without having to use a complicated tunneling scheme to get through a firewall.  Many developers are familiar with web development, so the Web Services model is easy to understand.  SOAP is an open standard, allowing an organization to swap vendors if circumstances change without having to fully replace existing clients or servers.

Because JAX-RPC piggy backs on HTTP, it also introduces a host of security problems.  All bugs in a web server become potential bugs for Web Services.  An improper design can expose vast quantities of sensitive information to the entire web.  Web Services, by design, are intended to be widely available, so exposing port 80 is asking for trouble.

XML, though easy, is also very verbose.  It is intended to be descriptive and human-readable, thus the format is built on text and the XML tags can be quite lengthy.  Data must be converted from binary to text and everything must be wrapped in descriptive tags.  This overhead, while easy for humans to comprehend, is extremely inefficient.  To transfer a single Message object using JAX-RPC requires 19-20 times more data than Sockets or RMI.

Finally, JAX-RPC requires a web server to host the server classes.  Client classes request the server to perform some action.  If bi-directional communication is needed, then the client must also act as a server, requiring clients to also have a web server running.  While some J2EE vendors like BEA provide a lightweight web server specifically for this purpose, it may not be acceptable for many applications.  The alternative is for the web service to maintain state for all clients and to pass information back when available.  Unfortunately, this requires the clients to poll the web server for new data.  As the server does not block until new information is available, a great deal of data is transferred, merely to communicate the fact that the other chatter has not said anything.

Benchmarks


I was primarily interested in comparing the amount of application-level data that was transferred for each of the different architectures.  As all of the architectures layer on top of TCP/IP, I felt the information actually sent between client and server would be more illuminating.  To track this information, I wrote a set of custom, wrapper classes that recorded all data read and written.  The basic classes sub-classed InputStream and OutputStream, accepting instances of those classes in their constructors.  All read and write calls were deferred to the delegate classes and the amount of data transferred was recorded.  This methodology was used for SocketChat and for RMIChat.


JAX-RPC proved to be somewhat more difficult to monitor.  Its strength is the abstraction it provides the developer from the actual details of network communication.  I was beginning to worry, until I came across a tool developed as part of the Apache SOAP project, the TcpTunnelGui app.  This simple tool intercepts all traffic to and from a web server and displays the information on screen.  The only change to the client is a different port number, and the server is not changed at all.  I used TcpTunnelGui to capture client requests and server responses and used this information for my analysis.


Finally, the CORBAApp gave me some problems that I was not able to overcome.  I had planned to follow a similar strategy to the one I had used for RMI – a set of wrapper classes that tracked reads and writes.  Unfortunately, this did not work as expected.  The code with wrapper classes in place compiled properly and initial connections between ORBs seemed to work, but runtime exceptions were thrown as soon as remote calls were made, and I could not figure out why this occurred.  A modification to the code as simple as a println at the beginning of a method threw runtime exceptions.  Undoubtedly, I made a mistake somewhere in my implementation, but I could not rectify it before the project deadline arrived.  As a result, CORBA was left out of the benchmarks.

[image: image1.png]3500

3000

2500

2000

1500

1000

500

mSackets
Rl
DJAX-RPC|

2022
2494 2399 2m
126 169 38 1
I ="
Setip (35 bytes) “Test Message" (47

bytes)






I was somewhat surprised by the similarity between the Sockets and the RMI implementations.  RMI added only 43 extra bytes of overhead to Sockets.  This is probably due to additional data relating to RemoteExceptions being included in the marshalled data, but I am not positive about this.  Regardless, the difference is minimal enough to be negligible.

Clearly, JAX-RPC requires the most overhead, roughly 19 times more than Sockets.  Additionally, I did not take into account the polling that was required by my implementation for retrieving information from the server.  This would have skewed the numbers even more, and I felt that the including the polling numbers was unfair, given the sub-optimal implementation.

Conclusion


 Java does provide a bewildering array of options for distributed communications, but it is clear that most are intended for different purposes.  Sockets are low-level and intended to be the basis of other, more robust libraries.  RMI is the preferred method for pure-Java, distributed programming.  It is easy to use, with the exception of the initial setup code, and appears frequently as the basis for other industrial-strength platforms such as Enterprise JavaBeans.  CORBA provides the same, basic operations as RMI, but the CORBA-specific code is not very Java-friendly and the implementation details can be quite complex.  Cross-platform development practically requires CORBA, but pure-Java applications will probably benefit more from RMI.  Finally, JAX-RPC applications are extremely easy to develop, but are aimed at easy data retrieval, rather than bi-directional client-server programs.
References
Chappell, David A. and Tyler Jewell. Java Web Services. Sebastopol, CA: O’Reilly & 
Associates, 2002.

Grosso, William. Java RMI. Sebastopol, CA: O’Reilly & Associates, 2002.

The Java Tutorial, IDL Trail. 9 Dec 2002


<http://java.sun.com/docs/books/tutorial/idl/index.html>

The Java Tutorial, RMI Trail. 10 Dec. 2002

<http://java.sun.com/docs/books/tutorial/rmi/index.html>

The Java Web Services Tutorial. 12 Dec. 2002


<http://java.sun.com/webservices/docs/1.0/tutorial/index.html>

Bi-Directional Connection





Connection Request





Port





Port





Port





Client





Server





Figure 1





Stub





Stub





receive(msg)





receive(msg)





Get Remote


Reference





Registry





Get Remote


Reference





Skeleton





Skeleton





RMIChat








RMIChat








Figure 2





IIOP








ORB





ORB





CORBAChat





CORBAChat





Figure 3





Runtime





Stubs





JAXChat





SOAP Message





SOAP Message





HTTP





HTTP





Runtime





Ties





Chat Service





Runtime





Stubs





JAXChat





Servlet Container

















Figure 4





Table 1








PAGE  
9

