Using Multiple Gateways to Foil Distributed Denial of Service Attacks

David Wilkinson

cs522 project

December 14, 2002

Introduction

Distributed Denial of Service (DDOS) attacks on computer systems connected to the Internet poses a threat to e-commerce and the security of the Internet. In early 2000 prominent web sites such as Ebay, Amazon.com and Yahoo were shut down after their servers were flooded with millions of packets, overwhelming bandwidth and preventing access by legitimate users[1]. The attacks came from thousands of computers whose operating systems had been compromised and used as a staging ground to direct a coordinated attack against the target host, or “victim.” In late October of this year, the thirteen root Domain Name System (DNS) servers that help Internet users locate addresses of host machines were flooded with IP traffic. Even though these attacks were not severe enough to cripple the backbone of the DNS system, experts fear that miscreants will learn from the episode to launch more powerful attacks in the future[2].

The synchronization of such a large number of machines, across the Internet and spanning numerous networks, is the essence of the “distributed” nature of a DDOS attack. In the words of Mixter, the author of Tribe Flood Network (an early DDOS program), DDOS can

overload, or flood if you want, network links. It sends meaningless packets, the overall amount of data being more that the network can process. The impact is that the targets can not be reached over a network. That is all[3].

The assault is directed by a person (on the “client” host) who employs several tiers of machines to launch the attack while keeping a safe distance away in order to avoid detection. The client remotely installs the DDOS software (or “tool”) on several “handler” computers, which he has broken into. Each handler in turn compromises and installs the DDOS software on up to 1,000[4] “agent” (or “zombie”) computers that carry out the primary attack on the victim host. The layered structure of this attack scenario is shown below (Figure 1).

Figure 1

DDOS hierarchy of compromised systems[5]

Figure 1 shows communication traffic between client and handlers, and handlers and agents, in coordinating an attack. The traffic from agents to victim depicts packet flooding. The client installs the DDOS software on the handler, and the handler locates and prepares agents to attack on the client’s signal. Most actions by the handler are completely automated.

Once the command to attack is given, the agents simultaneously send a flood of packets into the victim’s network. This attack generally falls into one of three categories below.

· SYN flooding. The agents send the victim host a large number of SYN packets, which usually constitute the first part of the three-way handshake for TCP communication. However, the flood of SYN-ACK packets swamps the bandwidth capacity of the victim server, rendering it unavailable to all legitimate traffic.
· Smurf Attack. Attack agents send a flood of ICMP echo request (“ping”) packets to the broadcast address (i.e., the host address is comprised of only binary 1’s) of an intermediate network. With no safeguards in place, every host on the network sends an echo response to the sender. The agents, however, use a spoofed source IP address (which in this case is the victim’s) in the echo request packet, so all responses from the intermediate network’s hosts are directed to the victim host, filling up its bandwidth and knocking it offline. In a variation of Smurf, called Fraggle, agents send datagrams to the UDP echo port 7 of every host on the intermediate network, resulting in a flood of responses to the victim[1].

· SYN-ACK Attack[6]. In this DDOS attack, agents generate SYN requests to multiple, random servers on the Internet while using the victim’s source IP address. The servers send SYN-ACK responses to the victim. The great amount of SYN-ACK traffic shuts down the victim server.

Current and Proposed DDOS Defense Techniques

Experts agree that the industry needs to pull together as a whole and adopt a few basic security safeguards[7]. DDOS attacks are only possible when computer systems are left unprotected against the following menaces:

· Spoofing. All DDOS assaults have a common thread: spoofed source IP addresses. Either the source address is non-existent or points back to the intended victim. Each network and ISP should ensure that every communication that leaves a network contains a source IP address of a host within that network. This still leaves open the possibility of spoofing an address within a network, but at least then such an attack can be more easily traced and prevented from reoccuring.

· Broadcast Amplification. Many DDOS attacks involve sending ICMP or UDP echo request packets to a network’s broadcast address, whereupon all machines within the network reply to the victim host. If every network on the Internet would simply disallow such broadcast echo request messages into the network, this practice would significantly reduce the force of the attack.

· Compromised Systems. For successful implementation of a denial of service attack involving hundreds or thousands of computers, these computers must first be hacked into and the DDOS software installed. Methods used to gain access to the system vary, but investigation into past attacks has revealed computers that were “compromised by exploitation of buffer overrun bugs in RPC services[4].” Investigators speculate more traditional infiltration techniques have been used, such as Trojan Horse programs, although evidence is sparse[4]. Following simple preventative measures, such as ensuring all computers on a network have the latest security patches installed, using firewalls and intrusion detection devices, and communicating to employees the risks of opening suspicious email attachments, is recommended to all network administrators to reduce the potential that one or more of his or her machines will be used as an unwitting aid in a DDOS attack[7].

All security practices outlined above make sense and are certainly achievable. If every organization on the Internet would simply follow these procedures, most if not all DDOS-style attacks could be prevented. Of course, they require able and willing network administrators to carry them out, and unfortunately many simply do not care or are incompetent. Maybe it will take an Internet watchdog organization, such as the RFC2267-plus Working Group, to force disinterested companies to comply. The group is trying to create a standardized set of network security practices that is widely accepted in the industry. Once they do, non-complying companies may be held liable if one or more of their computers are used to participate in a DDOS attack[8].

Other proposed defenses to DDOS are more sophisticated, such as using class-based routing mechanisms in the Linux kernel; implementing route-based packet filters; pushing back the control of packets to upstream routers; and using programmable network processors to automatically detect and trace back a DDOS attack. My solution involves using multiple gateways to filter out attack packets from legitimate traffic.

Employing Multiple Gateways to Stop a DDOS Attack: An Overview

A successful flood attack using computers stretched across different networks is hinged on a few critical factors, including: the penetration of systems for handler and agent duties; sending packets with spoofed IP addresses; and (usually) bouncing ICMP or UDP echo request messages off a broadcast address to the target site. Eliminating any one of these components would greatly reduce the severity of the attack, or aid in tracking down the perpetrator(s). Yet, all these factors would not be important if the bandwidth of the victim’s Internet connection was big enough to withstand the influx of packets. However, it is just not economically feasible for most companies to substantially widen their bandwidth. Moreover, blocking all incoming packets to stop an attack just helps accomplish the attacker’s goals.

What is needed is a solution that involves identifying and separating malicious Internet traffic from friendly traffic. The flood of harmful packets then can be stopped before ever reaching the network. That is the goal of this project: using multiple gateways to foil DDOS attacks. This solution involves adding to the capabilities of the Berkeley Internet Name Domain (BIND) DNS software, which is overwhelmingly the most popular brand of DNS software in use today. Using connection-relay (or proxy) servers to implement the new behaviors of the BIND software is key to its successful implementation.

Figure 2 (next page) illustrates a DDOS attack in progress on a server with little or no defenses. Note that some computers are sending legitimate traffic to the victim’s site (as is the case during any attack). The dashed lines indicate each sender uses its primary DNS name server to resolve the IP address of the victim before sending. Once the torrent of packets begins flooding the victim’s network, there is no way to block messages from DDOS agents without also blocking legitimate traffic. The legitimate traffic is stopped at the closest router because the victim’s network is completely flooded.

Figure 2

Detail of DDOS attack

Each primary DNS name server presently allows only three kinds of commands from a host computer in its zone, or area of authority: Query, Update, and Notify. Query is by far the most common of the three. This is a request by the host for the IP address of a given host name. The request usually arises from the execution of a program, such as telnet or http, that needs the host name “resolved” into an IP address. The BIND program in the client that is responsible for querying the DNS name server is called the resolver. If the name server does not have the answer to the resolver’s query in its cache, it recursively queries name servers in zones that are closer to the authoritative name server for the target host. Finally, it either gets the answer from an authoritative name server, or comes up empty handed (i.e., the host does not exist). The answer is returned to the resolver, and it is also stored in the name server’s cache (for a variable amount of time; the default is generally one hour)[9]. The Update command enables an authorized host to delete or update resource records in a zone for which the DNS name server has authority. Notify is a command used by the primary master DNS name server to notify all slave name servers for a zone that the zone data has changed, and that the slave name servers need to load the updated zone data from the primary name server[9].

Although the variable opcode, which is part of the DNS message sent from the resolver to the name server, is four bits in length, it is currently only implemented for four different integer values. Valid opcodes are shown in Figure 3 (next page).

Figure 3

Current opcode values

The opcode values of 0, 4 and 5 refer to the Query, Notify, and Update commands, respectively. Status is a command that prints information about the name server, including its version and debug level[9]. (In the BIND code, opcode value 1 is assigned to iquery, an obsolete inverse query command that was used by an early version of nslookup, a query tool.) The rest of the values from 0-15 are not implemented in BIND.

Introducing a New Command: Reroute

A new DNS command is needed to help a victim server alleviate bandwidth congestion during the onset of a DDOS attack. This command, Reroute, allows the victim to change the routing of incoming packets through connection-relay (CR) servers. This is accomplished by storing the IP address of the victim along with the victim’s hostname and IP address of the CR server, as a threetuple, in the DNS server. When a host in the network wants to communicate with the victim, the DNS server, instead of performing a recursive query to find the victim’s IP address, gives the host the threetuple, {victim hostname, victim IP address, connection-relay server IP address}. The host’s message is routed to the CR server, which forwards it to the victim server. This scenario is depicted in Figure 4 (next page).

When the victim’s intrusion detection system determines a distributed denial of service attack is taking place, it alerts the victim. The victim immediately sends a signal to a machine on another network to execute a program (Detour), which sends the Reroute command to the primary DNS name server for each IP address that has recently contacted the victim. Detour will use the Secure Socket Layer protocol in order to ensure that communication between Detour and the DNS servers is authentic.

Figure 4

 Reroute command sent; attack foiled

Once the authority DNS servers of the various networks have received the Reroute command, traffic will begin to flow through the connection-relay (CR, or proxy) servers. The job of the CR servers is twofold: forward all legitimate traffic to the victim, and stop all traffic coming from a network perceived to be participating in a DDOS attack. Each CR server is responsible for only a few networks (many CR servers would be needed to achieve this project’s objective). In Figure 4, net-b.com’s CR server forwards all traffic to the victim because the frequency of messages does not rise to that of a DDOS attack. Intrusion Detection Systems (IDSs) connected to the proxy servers drop attack packets from net-a.com and net-c.com but let through the friendly traffic. The routers stop all attack traffic that still uses the old paths to the victim.

Implementation Goals

This project concentrates on the modification of three programs in the BIND9 software suite: named, host, and the resolver. For a full solution, however, even more work must be accomplished. The connection-relay server must know where to forward packets, meaning those client applications such as telnet, ftp, http, and others must be modified. In addition, intrusion detection systems should be installed on the victim and proxy servers to filter out flood traffic.

named (pronounced “name dee”) is the DNS program that will handle reroute commands, along with queries, update requests, and notify commands. It is derived from about 28 files written in C. In my computer, it is located in the /usr/local/bind9/bind-9.2.1/bin/named directory.

The querying program host will be changed into detour, a program that sends the reroute command to the DNS servers. detour will consult a database of IP addresses of hosts that have recently accessed the victim, and send DNS messages to the name servers of these hosts. The existing DNS message format will be utilized, with opcode = 3 for the reroute command. The victim’s hostname and IP address, and connection-relay server IP address will be stored in the section entitled, “Additional Information.” This message structure is shown below in Figure 5[10].

Identification
Flags (Opcode = 3)

Number of Questions (one)
Number of Answer RRs (none)

Number of Authority RRs (none)
Number of Additional RRs (two)

Questions (host IP address)

Answers (none)

Authority (none)

Additional Info. (Victim hostname, Victim IP address, CR server IP address)

Figure 5

DNS message for rerouting traffic

The resolver is the client program that normally sends queries to named to locate the IP address of a host. Here, the behavior of the resolver must change. Before sending any queries out, it must check to see if the desired host is in a DDOS-victim database that stores the threetuple (hostname, host IP address, CR server IP address). If so, it doesn’t send any queries out, and instead returns the IP address of the connection-relay (CR) server back to the program that executed the resolver. The client program sends the message to the CR server, which relays it to the victim server. All subsequent communications between victim and client will go through the CR server.

Implementation Accomplishments

I downloaded and successfully installed BIND version 9.2.1 on my home computer, which runs Linux kernel 2.2-16. After connecting to uccs.edu through a ppp link, I used my computer as the primary DNS server for my network. This configuration seems to work well.

After tracing named using printf statements (an admittedly inefficient debugging method), I found that main.c contains main(), and that the client.c program in the named directory uses a case statement to dispatch execution control, determined by the value of opcode. I added a branch for opcode = 3 here. I added a new program, reroute.c that will implement the DDOS-victim database of the threetuple (hostname, host IP address, CR server IP address). This program was modified from query.c, one of the many files in the named directory. I have not yet implemented this, however. I modified Makefile.in to include reroute.c during compilation of named.

I copied detour.c (in the bin/dig directory) from the query program host.c, and added a new value for the array of pointers, opcodetext[]. Index 3 now refers to “REROUTE”, instead of “RESERVED3”, its previous value. I added the reroute opcode value to lib/dns/include/dns/types.h, and added a branch for lookup->sendmsg->opcode = 3 in the setup_lookup method in dighost.c, a program that includes many functions for both dig and host (and now detour). I modified the Makefile.in in bin/dig to allow for compilation of detour.c.

I have not been able to determine which files constitute the resolver program. Three emails to BIND workers (i.e., developers) at the isc.org web site have not been answered as of yet. Some basic guidance as to where files for the resolver are located would be appreciated.

Conclusion

Much work remains to implement this solution. I have spent a great deal of time trying to trace the execution flow of named and detour. The printf statements have given me a general guideline, but I need a much more precise tool. I think I understand detour fairly well, but I still have a lot of questions about named. I need to know especially where the zone files are stored, and how. It seems a hash table is used to store red/black trees containing zone data. I have tried to use the gdb debugger on named, but it exits prematurely when daemonize() (where named forks) is called. I bought the gdb user manual to become better acquainted with the debugger.

Changing the client application is required before this solution can be fully implemented. When the resolver sends the IP addresses of the victim and proxy server back to the client application (http, ftp, telnet, etc.), the application will need to be altered to accomodate this added information. Maybe the victim’s IP address could be stored in the options field in the IP header of the packet sent from the client to the proxy server. When the proxy server receives the packet it could find the victim’s embedded IP address, put it in the destination IP address field, and forward it to the victim.

In addition, communication between detour and the DNS name servers must be authenticated using the Secure Socket Layer (SSL) protocol. OpenSSL is recommended for this.

References

[1]
Counter Hack. Ed Skoudis, Prentice-Hall, Inc., 2002.

[2]
“Attacks Exposed Internet’s Vulnerabilities.” Brian Krebs and David McGuire, washingtonpost.com, Oct. 31, 2002.

[3]
“Tribe Flood Network 3000: A Theoretical Review.” Mixter, mixter.warrior2k.com.

[4]
“The ‘stacheldraht’ distributed denial of service attack tool.” David Dittrich, University of Washington, Dec. 31, 1999.

[5]
“Results of the Distributed-Systems Intruder Tools Workshop.” Jon David, Cory Cohen, Kathy Fithen, et al., cert.org, Dec. 7, 1999.

[6]
“DRDos: Distributed Reflection Denial of Service.” Steve Gibson, grc.com, Feb. 22, 2002.

[7]
“Consensus Roadmap for Defeating Distributed Denial of Service Attacks.” SANS Institute, sans.org, Feb. 23, 2000.

[8]
“Forum members warn of DDoS legal liability.” Tim Greene, Network World, Sept. 29, 2000.

[9]
DNS and BIND, 4th Ed. Paul Albitz and Cricket Liu, O’Reilly, 2001.

[10]
TCP/IP Illustrated, Volume 1: The Protocols. W. Richard Stevens, Addison Wesley, 1994.

Client

Handler

Handler

Handler

. . .

A

A

A

A

A

A

A

A

A

Victim

. . .

. . .

. . .

A = Agent

A

A

A

A

A

A

A

www.net-a.com

www.net-b.com

www.net-c.com

DNS

DNS

DNS

R

R

R

A = DDOS Agent

R = Router

 = Attack traffic

 = Friendly traffic

R

reroute

Victim

A

Query

Status

Notify

Update

R

R

...

...

...

R

R

R

R

...

...

...

“Help”

attack traffic blocked by IDS

blocked

R

R

blocked by IDS

proxy

DNS

proxy

blocked

proxy

R

A = DDOS Agent

R = Router

 = Attack traffic

 = Friendly traffic

Victim

R

R

R

DNS

DNS

www.net-c.com

www.net-b.com

www.net-a.com

A

A

A

A

A

A

A

A

11
17

