PAGE
10

A Study of Sun Microsystems’® Jini Network Architecture

Casey Detorie

CS522: Computer Communications

Instructor: Dr. Edward Chow

14 December 2002

Table of Contents

11.
Introduction

12.
What is a Jini network?

33.
Description of Study

44.
Jini in Detail

44.1
Getting clients and services to locate the lookup service

54.2
Getting a new service to join the network

64.3
Providing clients with access to services

64.4
Maintaining the network

74.5
Managing client events

74.6
Dealing with service failures

84.7
Handling an upgrade of a particular service

84.8
Summary of Jini features

105.
Characterization of the Jini lookup service’s responsiveness

105.1
Responsiveness issue #1: “Dumb” versus “Smart” client

125.1
Responsiveness issue #2: Lookup service response time versus number of services registered

146.
Characterization of the robustness of a simple Jini network

157.
Conclusion

168.
References

1.
Introduction

Ever since dumb terminals were connected to large mainframes in the 1960s, it became clear that the distributed network was to be a significant player in the world of computing. In the modern age of the internet, the omnipresence of network services has made the typical client expectant of being able to connect to the network anywhere, at anytime, and make use of virtually any of these services available. Such demands on a network force its developers to ensure that it is dynamic, flexible, scalable, and robust. These characteristics may seem contradictory. For example, a network that is scalable—that is, one that grows with increasing demand—may be susceptible to faulty equipment, and may therefore not be sufficiently robust. In addition, many networks that require robustness and scalability are custom built, making them singularly expensive to acquire. Clearly, a means of providing all the features of a solid, healthy, adaptable network in an affordable manner would be an immeasurable aid for clients, owners and builders of large computer networks.

Sun Microsystems developed the Jini network architecture specifically to suit this purpose. Jini provides the framework for developing networks whose services are truly distributed, whose interconnectivity is truly robust, and whose size is truly adaptable to the demands placed on it.

2.
What is a Jini network?

A Jini network consists of several different services that join together dynamically in order to form a particular application. A group of services that have assembled together in this manner using the Jini architecture is called a federation. Although each service in a Jini federation is a separate entity unto itself, multiple services may run on the same computer. Furthermore, a given federation may include multiple copies of the same service.

Regardless of their differing sizes and applications, all Jini federations have at least one instance of a particular type of service: the lookup service (LUS). The primary job of the LUS is to maintain a registry of all the services contained in the federation. When queried by a client for a particular service, the LUS will send to the client a proxy of the service through which the client and service can communicate. Figure 1 illustrates the lookup service’s role in a Jini federation.

Just as an outside client can avail itself of the services inside a given Jini federation, any service inside that federation is able to make use of any other service in order to accomplish its job. Again, the LUS plays the same role in this case—it provides one service the proxy of another service, enabling the two to communicate.

One key fact to bear in mind is that after a service has registered itself in the LUS, it may de-register itself as well. Furthermore, a client may cease interacting with a service, abandon that service’s proxy object, and seek out another. In fact, that client may elect to request a service from the LUS of an entirely different Jini federation. Thus, the client and services within a Jini network are decoupled. The robustness derived from this decoupling is easy to see, since a client can “detach” itself from a failed service, and connect to a functioning one instead.

In addition to the registry function it serves, the lookup service has several other duties that make that make it absolutely vital to the proper operation of a Jini network. Given its key role in an architecture that is advertised as providing levels of network robustness, flexibility and scalability that has heretofore been unheard of, it only makes sense to examine various aspects of the LUS and characterize its affect on the entire network.

3.
Description of Study

The purpose of this study is threefold:

· Develop a sound understanding of Jini. As powerful a tool as Jini is purported to be, there is curiously little widespread understanding of its details. Clearly, in order to fully grasp the role of the Jini lookup service, a thorough understanding of its environment—that is, its entire reason for being—is necessary.

· Characterize the responsiveness of the Jini lookup service. As they do with any network, users expect fast processing times for their applications. Since Jini is written in Java (a language not known for its speed), network designers may question a Jini network’s response time. Given the lookup service’s central role in a Jini network, it makes sense to try to assess how much of an impact the LUS has on network response time.

· Characterize the robustness of a simple Jini network. As described earlier, robustness—or the quality enabling a network to tolerate a network failure and continue to operate properly—is an important characteristic that Jini technology brings to a network. Since nearly all modern network architectures advertise their robustness as a selling point, it makes sense to somehow assess how quickly a simple Jini network recovers from a failure.

In the end, this study should shed some light on the specifics, speed, and capabilities of this intriguing networking technology.

4.
Jini in Detail

Here, we describe the results of research performed in order to understand Jini and its components in some amount of detail. Given the loosely coupled nature of clients and services in a Jini network, building one presents some interesting problems that need to be addressed. The following are salient features of a Jini network:

4.1
Getting clients and services to locate the lookup service

As stated earlier, the LUS is the key player in any Jini network; locating it (by either a client or service) is obviously an essential process. Jini provides its discovery protocol for this very purpose. The discovery protocol allows services and clients to find the LUS in one of three ways. The first method is called the Unicast Discovery Protocol. Here, services and clients already know where the LUS is (i.e. its IP and port number). They simply connect to it and either register their proxies (if a service) or request a service (if a client).

The second discovery method is called the Multicast Request Protocol. Clients and services use this protocol when they initially start up, and have no knowledge of the network around them. They make use of the IP multicast protocol, and “publicize” their interest in all the lookup services within a certain group. LUS’s that match the criteria then respond to the client/service, thus providing their location.

The final method clients and services use to find a lookup service is the Multicast Announcement Protocol. This is essentially the opposite of the Multicast Request Protocol. Under the Jini specification, all lookup services are required to periodically broadcast their identity throughout the network so that newly initiated services and clients become informed of their location and identity, thus enabling them to make use of the LUS.

4.2
Getting a new service to join the network

Once a service has located a lookup service, it must now register, or publish, itself in that LUS so that clients can find and make use of them. Here again, Jini provides a means for facilitating this registration process: the join protocol.

The join protocol is designed with the long-term survivability of the network in mind. By adhering to the join protocol’s requirements, a service that should fail and restart can rejoin its network while maintaining a sense of smooth stability.

In order achieve this level of continuity, the join protocol requires that each service permanently maintain the following information: a unique service ID (given to the service by the LUS); attributes describing the service (which are used by the LUS to handle service requests by clients); a set of groups the services wants to join; and a set of default lookup services for the service to contact using the Unicast Discovery method. Again, the service is required to store this information in nonvolatile memory should it crash.

4.3
Providing clients with access to services

Thanks to the discovery and join protocols, a given lookup service will have a set of service proxies registered in its database, ready to be forwarded to clients that require them. A client seeking a particular service will use a template-based query, which can be used to search for a service using at least one of the following criteria: the service’s unique 128-bit ID that is assigned to it by the LUS upon registration; the Java interfaces or classes the service supports; and attributes associates with the service. The client will fill out the template and submit it to the lookup service. The LUS, in turn, will compare the template query against the service proxies registered in its database, and return those that match.

4.4
Maintaining the network

The network that Jini is intended to support is highly dynamic. Both clients and services may exit and enter the network intentionally; however, services may become outdated, unused, or fail. An unused or failed service can consume valuable resources due to its malfunction or by simply being “dead weight” on the system. Jini removes such useless services by means of lease management. When a service succeeds in registering itself with a lookup service, the two services negotiate a lease, or an amount of time that the LUS will keep the service’s proxy in its database. When the lease expires, the service is expunged from the LUS’s database, unless the lease is renewed. In this way, a Jini network is highly adaptive to its changing environment.

4.5
Managing client events

One interesting function that a Jini lookup service can provide is to inform interested clients of the occurrence of events or transitions that the LUS is requested to monitor. A client registers a listener object with the LUS along with a descriptor of the event the client is interested in. The LUS will then monitor for the state transition in question. Should the event occur, the lookup service informs the interested client by using the listener object stored in its database to send to it an event object containing information on the specifics of the transition. As it does with the services it registers in its database, the LUS negotiates a lease on the client’s event request that limits the time the request will remain valid. If the client does not renew the lease before it expires, the event request will be purged from the lookup service.
4.6
Dealing with service failures

In the event of a crash, the service will first use its list of default lookup services and attempt to contact them via the Unicast Discovery protocol. If it succeeds, it will register its proxy with each one in turn. If it fails, it can either continue trying to establish contact, or wait for the LUS’s to contact it via the Multicast Discovery protocol. In addition to contacting its default list of LUS’s, the service will also listen for the Multicast Discovery broadcasts of the LUS’s pertaining to the list of groups it is programmed to join.

4.7
Handling an upgrade of a particular service

The list of groups a service is required to join can be altered, causing the service to join a new group (when it receives the Multicast Discovery broadcast of the corresponding LUS) or detach itself from a group (by deleting its copy of the corresponding LUS’s proxy).

4.8
Summary of Jini features

As we have seen, Jini provides many interesting features that give a network remarkable flexibility, adaptability, ease of growth, resource management, and longevity. Indeed, one paradigm of a Jini network was sheer permanence: individual clients and services may come and go, but the network will always remain.

The following diagrams summarize many of the features we have discussed:

5.
Characterization of the Jini lookup service’s responsiveness

From the study thus far, we have seen how vital the lookup service is to a Jini network. The purpose of this portion of the study is to assess how responsive the lookup service is to a request by a client for a particular service. The LUS’s speed is not a trivial factor, given the potential future of distributed computing systems in time critical applications.

5.1
Responsiveness issue #1: “Dumb” versus “Smart” client

In this part of the study, a simple Jini network was created, consisting of the following four elements: a lookup service, a simple date/time service, a client that knows the location of the date/time service (the “smart” client), and a client that does not know the location of the date/time service (the “dumb” client).

Both clients were given 30 iterations to get a response from the date/time server. The interval of time between the start of each iteration and the receipt of the service’s response was calculated. For each client, these 30 response times were then averaged. The following table summarizes the data:

	Iteration #
	Smart Client Resp. Time

(ms)
	Dumb Client Resp. Time

(ms)

	1
	1149
	1187

	2
	1168
	1194

	3
	1205
	1235

	4
	1238
	1165

	5
	1122
	1240

	6
	1225
	1237

	7
	1236
	1190

	8
	1210
	1198

	9
	1177
	1188

	10
	1201
	1242

	11
	1186
	1251

	12
	1194
	1238

	13
	1236
	1187

	14
	1227
	1201

	15
	1198
	1228

	16
	1165
	1239

	17
	1203
	1248

	18
	1149
	1235

	19
	1156
	1192

	20
	1183
	1240

	21
	1235
	1250

	22
	1241
	1178

	23
	1237
	1213

	24
	1172
	1179

	25
	1212
	1244

	26
	1190
	1237

	27
	1162
	1177

	28
	1197
	1200

	29
	1228
	1225

	30
	1233
	1233

	Average
	1122.77
	1215.7

Thus, according to this set of data, having to request the service’s location from the lookup service causes an 8.28% increase in response time.

A key point to remember here, however, is there are several contributing factors to the response times. Variations in server load, network traffic, packet routing, etc. can cause significant discrepancies in results. Indeed, several different iterations of this procedure showed an apparently large standard deviation in the data. In addition, the nature of the service being accomplished will significantly affect the response times (in this case, the service was fairly trivial). The primary consistency, however, was that the “dumb” client needed more time to complete each iteration than did the “smart” client.

5.1
Responsiveness issue #2: Lookup service response time versus number of services registered

This portion of the study sought to determine if a lookup service can be “bogged down” with the number of services it stores in its service proxy database. Another “dumb” client was given 30 iterations to get a response from a date/time server. In this portion of the study, three different runs of 30 iterations were attempted. In the first run, the network consisted of the “dumb” client, a lookup server, and one date/time server. The second run added a second date/time server, and the third run added a third date/time server. As before, the response time for each iteration was calculated. The following table summarizes the data:

	Iteration #
	One Server Resp. Time (ms)
	Two Server Resp. Time (ms)
	Three Server Resp. Time (ms)

	1
	1235
	1152
	1167

	2
	1225
	1221
	1193

	3
	1167
	1168
	1175

	4
	1220
	1239
	1237

	5
	1208
	1213
	1191

	6
	1172
	1172
	1200

	7
	1182
	1237
	1220

	8
	1231
	1229
	1224

	9
	1166
	1189
	1229

	10
	1178
	1153
	1178

	11
	1232
	1164
	1136

	12
	1180
	1188
	1222

	13
	1218
	1181
	1189

	14
	1171
	1214
	1163

	15
	1228
	1208
	1172

	16
	1150
	1209
	1185

	17
	1153
	1180
	1143

	18
	1187
	1218
	1218

	19
	1204
	1175
	1194

	20
	1215
	1233
	1157

	21
	1162
	1204
	1236

	22
	1196
	1182
	1171

	23
	1189
	1176
	1162

	24
	1151
	1222
	1142

	25
	1195
	1231
	1202

	26
	1212
	1230
	1241

	27
	1181
	1166
	1233

	28
	1169
	1174
	1168

	29
	1193
	1205
	1166

	30
	1205
	1158
	1186

	Average
	1192.5
	1196.4
	1190.0

Based on this set of data, there is no clear correlation between the number of services registered in the lookup service and response time. This may allude to the data structure the lookup service uses to store the service proxies: a linear structure (like an array) would show no real difference in response time since it may provide to the client whatever service is first in the array—regardless if there are zero or a dozen services occupying the remainder of the array. Further investigation would be needed to determine the nature of the data structure used by the Sun-supplied lookup service.

As with the previous experiment, this one is very susceptible to many different factors that can influence response times.

6.
Characterization of the robustness of a simple Jini network

The purpose of the third and final experiment with Jini was to assess the network’s ability to recover from a failed service. A simple network consisting of a client, a lookup service, and two identical services was implemented. (In this case, the two services simply counted to 20,000 ms). Ten iterations were executed in which an the client initiated the counter in one service. During the counting, the service was terminated, and the Jini network was allowed to re-establish the other service. The interval between the killing of the first service and commencement of the second service was calculated. The data are as follows:

	Iteration #
	Recovery Time

(ms)

	1
	221

	2
	308

	3
	278

	4
	260

	5
	288

	6
	301

	7
	257

	8
	296

	9
	254

	10
	286

	Average
	274.9

From this information, it can be said that recover is rather quick, taking little more than a quarter of a second on average. Clearly, however, this is hardly conclusive. To truly judge a Jini network’s ability to quickly restore itself, a far more complex procedure is needed, with more realistic constraint placed on the system (larger network size, multiple failures, more complex services being affected, etc). In order to help validate Jini’s robustness, a similar experiment needs to be performed using a different network architecture (CORBA, for instance). Additional repetitions of this procedure showed mixed results, hinting that recovery time is affected by the same factors named in the previous experiments. Still, it is apparent that the Java runtime, despite its slow reputation, does a respectable job recovering from this simple failure.

7.
Conclusion

This study of Sun’s Jini architecture showed it to be an interesting and remarkable way of implementing a complex, yet robust and adaptable network. Information concerning the specifics of the architecture indicate that further research is needed to fully comprehend it in great detail. What was clear, however, was the essential role of the lookup service in any Jini network. Jini’s reliance upon the lookup service warrants detailed investigation of it and its affect on network performance. The simple experimentation done in the course of this study suggests that:

· Querying a lookup service does consume a measurable amount of time that may prove significant in a more complex network

· In simple networks, the number of services registered in a lookup service does not seem to affect that lookup service’s response time to client queries

· Simple Jini networks that suffer a failure exhibit rather quick recovery times

If nothing else, we have seen that Jini certainly merits much further study and investigation than it currently receives.

8.
References

· Li, Sing. Professional Jini. Wrox Press Limited. 2000.

· www.jini.org
· Sun Microsystems, Inc. The Jini Specification version 1.2.

· Edwards, Keith W. Core Jini. Pearson Education. 2000.

Jini Federation

Client

Lookup service

Service ‘B’ registers with LUS

Client asks for ‘B’ functionality

Client connects directly with Service ‘B’

Figure 1: The Jini lookup service in a federation

3

Lookup Service ‘C’

Service/Client ‘A’

Service/Client ‘A’

Discovery Protocol

UD

Lookup Service ‘D’

Service/Client ‘B’

MR

MA

Key:

UD: Unicast Discovery (Client knows lookup service location)

MR: Multicast Request (Client broadcasts req. for lookup service location)

MA: Multicast Announcement (Lookup service broadcasts its location)

2

Client Event Request

1. Client requests monitoring of some event by lookup service.

2. Client and lookup service negotiate duration of lease governing event request.

3. Event being monitored occurs.

4. Lookup service sends event object to client informing it of event’s occurrence.

5. After lease has expired, event request is purged from lookup service unless client renews it.

1

Persistently stores:

• 128 bit Service ID

• Service’s attributes

• Groups service must join

• Lookup services to join via Unicast Discovery

Lookup Service ‘C’

• Generates Service ID & sends to Service

• Receives & stores proxy from Service

• Maintains lease of Service’s registration

Join Protocol

4

Client

Lookup Service

