A study in Java Messaging System (JMS)

Semester Project

By

Chad Beaudin

12/14/2002

Summary

The Java Message Service is a Java API that allows applications to create, send, receive, and read messages. Designed by Sun and several partner companies, the JMS API defines a common set of interfaces and associated semantics that allow programs written in the Java programming language to communicate with other messaging implementations. JMS provides the foundation for a “Message Oriented Middleware” (MOM) architecture.
The JMS API minimizes the set of concepts a programmer must learn to use messaging products but provides enough features to support sophisticated messaging applications. It also strives to maximize the portability of JMS applications across JMS providers in the same messaging domain.

The JMS API enables communication that is not only loosely coupled but also

· Asynchronous. A JMS provider can deliver messages to a client as they arrive; a client does not have to request messages in order to receive them.

· Reliable. The JMS API can ensure that a message is delivered once and only once. Lower levels of reliability are available for applications that can afford to miss messages or to receive duplicate messages.

The JMS Specification was first published in August 1998. The latest version of the JMS Specification is Version 1.0.2b, which was released in August 2001. Before the JMS API existed, most messaging products supported either the point-to-point or the publish/subscribe approach to messaging. The JMS Specification provides a separate domain for each approach and defines compliance for each domain. A standalone JMS provider may implement one or both domains. A J2EE provider must implement both domains.
In fact, most current implementations of the JMS API provide support for both the point-to-point and the publish/subscribe domains, and some JMS clients combine the use of both domains in a single application. In this way, the JMS API has extended the power and flexibility of messaging products.

Messaging products are inherently asynchronous in that no fundamental timing dependency exists between the production and the consumption of a message. However, the JMS Specification uses this term in a more precise sense. Messages can be consumed in either of two ways:
· Synchronously. A subscriber or a receiver explicitly fetches the message from the destination by calling the receive method. The receive method can block until a message arrives or can time out if a message does not arrive within a specified time limit.

· Asynchronously. A client can register a message listener with a consumer. A message listener is similar to an event listener. Whenever a message arrives at the destination, the JMS provider delivers the message by calling the listener's onMessage method, which acts on the contents of the message.

[image: image1.png]Connection

Factory

Creates

Creates Creates

Sends To Creates Receives From

- D

Destination Destination

Figure 1 The JMS API Programming Model

JMS Advantages over RMI/RPC

RPC relies on the physical connection of the client and server to the network; it is a synchronous protocol. What happens if the client is disconnected?

· Network could go down

· Client could be a laptop that is used on the road.

In this case, the end user might still want to carry on working, but can't if an RPC model is being used—at least not without a great deal of work by the programmer. With JMS if a subscriber is connected to a topic and that topic goes away, the subscriber will stop receiving messages, but the rest of the application can continue on working.

Performance of JMS is another area of improvement over RMI or RPC.

To make an RPC call, the parameters to the call must be marshalled onto the network and demarshalled at the receiver. The same is true for the response. This adds major overhead. The distance between the sender and the receiver affects the amount of time the call takes. Each network router and switch between the two introduces an overhead into the call. Each device has a fundamental minimum time it takes them to respond to data. This time limit is the latency of the device. This latency is often on the order of 10-4 seconds (the device requires at least this amount of time to handle each packet). For large packets, this is not a major overhead; the time to handle the data often swamps the latency. Much network traffic, however, consists of small control packets. Often the latency time is much larger than the actual packet throughput time, and adds significant overhead.

Even if there are no switches or other devices between the sender and the receiver, the speed of light presents a fundamental barrier. Electrons can't travel faster than the speed of light (3x108 m/s) and will, in fact, travel significantly slower. (Electrons in copper travel at about 66% the speed of light—about the same as light in a fiber optic cable.). If your client is in London and your server in New York, this is a distance of approximately 5,600 km (5.6x106 meters). It takes electrons about 0.028 (2.8x10-2) seconds to cover this distance. This is the least amount of time a call will take. When you consider that a local call can execute in less than 25 ns (2.5x10-8 secs), then you will find six orders of magnitude difference between a local call and the remote call between London and New York. This is major overhead. While you're making this call, the thread is blocked. This is not an issue for one call, but if you make 10, 100, or 1,000 calls onto the object, then the overhead becomes noticeable to the user.

Queues and Topics and Administered Objects

All Publishers and subscribers are JMS clients and communicate with each other by connecting to a destination either to consume or produce messages. This destination is either a topic or a queue. The main difference is that a Queue maintains all of the messages it receives from a publisher until a subscriber consumes them. A Topic differs in that if no subscriber is listening to the Topic the messages are lost. Clients create connections to these destinations via a ConnectionFactory (Figure 2) that will in turn hand back what is known as an “administered” object. [image: image2.png]ConnectionFactory

s |
P Missagaradios:
" s
creates |, creates " based on
Session Destination -
creates | based on async
v Gnc consume g
MessageConsumer . " ((a"b“k)

async A MessagelListener
consume
(callback)

Figure 2 The JMS API Programming Model
These administered objects are registered via Java Naming and Directory Interface (JNDI). Although a standard address syntax was considered, it was decided that the differences in address semantics between existing MOM products was too wide to bridge with a single syntax. For this reason JMS does not define a standard address syntax by which clients communicate with each other. Instead JMS utilizes JNDI as the “lookup” mechanism by which clients find each other.
Using JNDI provides the following advantages:

· It hides provider-specific details from JMS clients.

· It abstracts JMS administrative information into Java objects that are easily organized and administrated from a common management console.

· Since there will be JNDI providers for all popular naming services, this means JMS providers can deliver one implementation of administered objects that will run everywhere. Thereby eliminating deployment and configuration issues.
Message Headers
A JMS message header contains a number of predefined fields that contain values that both clients and providers use to identify and to route messages. For example, every message has a unique identifier, represented in the header field JMSMessageID. The value of another header field, JMSDestination, represents the queue or the topic to which the message is sent. Other fields include a timestamp and a priority level.

Each header field has associated setter and getter methods, which are documented in the description of the Message interface. Some header fields are intended to be set by a client, but many are set automatically by the send or the publish method, which overrides any client-set values.

Message Bodies

Messages bodies can one of 6 different types.

	Message Type
	Body Contents

	1. TextMessage
	A java.lang.String object (for example, the contents of an Extensible Markup Language file).

	2. MapMessage
	set of name/value pairs, with names as String objects and values as primitive types in the Java programming language. The entries can be accessed sequentially by enumerator or randomly by name. The order of the entries is undefined.

	3. BytesMessage
	A stream of uninterpreted bytes. This message type is for literally encoding a body to match an existing message format.

	4. StreamMessage
	A stream of primitive values in the Java programming language, filled and read sequentially.

	5. ObjectMessage
	A Serializable object in the Java programming language.

	6. Message

	Nothing. Composed of header fields and properties only. This message type is useful when a message body is not required.

On the subscribing end, a generic message object is received and then cast to its appropriate object. Desired information can then be retrieved from these objects.

Applications Of MOM

Typically companies will have a mixture of current and legacy applications. Getting these systems to communicate with each other has required building custom communication channels between the two. This problem is only compounded when the various systems are on separate or networks. These are not only costly to develop but also costly to maintain. What MOM provides is the capability to de-couple these applications by communication with a common message provider. By utilizing a MOM architecture changes to the core of existing applications are minimized because these applications are only required to communicate with a different provider to receive necessary messages, or information. The impact of this solution is immense and often not realized by developers that are not familiar with this problem.

Performance

Performance of JMS appears to be its most significant downfall, at least for deployments that require high message rates. At Boeing-Autometric we have done internal benchmarking and found that JMS performs around 250 messages/second of size 1K/msg or 250Hz/Kb. We have developed a proprietary MOM product called Total Domain, based on the JMS pattern. Our software performs around 2000 messages/second of size 1K/msg or 2000Hz/Kb, an order of magnitude higher. While it is expected that a commercial product will perform better, hence the purchasing cost, an order of magnitude difference is not a trivial issue. Other competing products such as IBM Mqseries and Sonic MQ are JMS providers that offer significant performance improvements over the standard JMS distribution.

Lessons Learned

1. The sample subscriber (SimpleTopicSubscriber.java) contained in the JMS code uses a separate class to extend the MessageListener interface (TextListener.java). I found it to be not only easier to implement, but also easier to understand, if you just have your subscriber client extend the MessageListener interface, and implement the onMessage() method. This seems to be a more logical approach especially for someone unfamiliar with the MOM paradigm.

2. When you create a topic or a queue with the “j2eeadmin –addJmsDestination” command, those queues/topics remain until you remove them using the “ j2eeadmin –remove” command.

Sample program code and setup.

Steps to run the sample program.

1. You must have the j2sdkee1.3.1 installed.

2. Start the JMS provider. In this case the J2EE SDK

· From a command prompt run the following command:

j2ee -verbose

Wait until the server displays the message "J2EE server startup complete."

3. Create the Administered Object. This is the object to which you will publish and subscribe.

· From a second command prompt run the following command:

j2eeadmin -addJmsDestination CS522Topic topic

4. Verify that your queue, Administered Object, was created. In the same command prompt window run:

j2eeadmin –listJmsDestination

5. Run the subscriber program.

· java -Djms.properties=%J2EE_HOME%\config\jms_client.properties MyTopicSubscriber -topic=CS522Topic

6. Run the Publisher program.

· java -Djms.properties=%J2EE_HOME%\config\jms_client.properties MyTopicPublisher -topic=CS522Topic -count=500 -delay=500

Sample Subscriber Code
import javax.jms.*;

import javax.naming.*;

import java.io.*;

public class MyTopicSubscriber implements MessageListener {

 public MyTopicSubscriber(String topicName) {

 Context jndiContext = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicSubscriber topicSubscriber = null;

 //Create a JNDI API InitialContext object if none exists yet.

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " + "context: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 // Look up connection factory and topic. If either doe snot exist, exit.

 try {

 topicConnectionFactory = (TopicConnectionFactory) jndiContext.lookup("TopicConnectionFactory");

 topic = (Topic) jndiContext.lookup(topicName);

 System.out.println("JNDI API lookup done");

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create subscriber.

 * Register message listener (TextListener).

 * Receive text messages from topic.

 * When all messages have been received, enter Q to quit.

 * Close connection.

 */

 try {

 topicConnection = topicConnectionFactory.createTopicConnection();

 topicSession = topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

 topicSubscriber = topicSession.createSubscriber(topic);

 System.out.println("Subscribed to " + topicName);

 topicSubscriber.setMessageListener(this);

 topicConnection.start();

 System.out.println("Subscriber Started");

 } catch (JMSException e) {

 System.out.println("Exception occurred: " + e.toString());

 }

 /*finally {

 System.out.println("In Finally");

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException e) {}

 }

 }*/

 }

 /**

 * This method is required when your class implements MessageListener. This is the method

 * that will receive the updates from the topic.

 */

 public void onMessage(Message message) {

 TextMessage msg = null;

 try {

 if (message instanceof TextMessage) {

 msg = (TextMessage) message;

 System.out.println("Receiving message: " + msg.getText());

 } else {

 System.out.println("Message of wrong type: " + message.getClass().getName());

 }

 } catch (JMSException e) {

 System.out.println("JMSException in onMessage(): " + e.toString());

 } catch (Throwable t) {

 System.out.println("Exception in onMessage():" + t.getMessage());

 }

 }

 public static void main(String[] args) {

 String topicName = null;

 for (int i = 0; i < args.length; i++) {

 if (args[i].startsWith("-topic")) {

 topicName = args[i].substring(args[i].indexOf('=') + 1);

 } else {

 System.out.println("VALID USAGE\n-----------------------------");

 System.out.println("-topic=\"your topic\"");

 System.exit(1);

 }

 }

 //Create the topic subscriber

 MyTopicSubscriber subscriber = new MyTopicSubscriber(topicName);

 }

}

Sample Publisher Code
import javax.jms.*;

import javax.naming.*;

import java.io.*;

public class MyTopicSubscriber implements MessageListener {

 private float previousTime = 0;

 private float currentTime = 0;

 public MyTopicSubscriber(String topicName) {

 Context jndiContext = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicSubscriber topicSubscriber = null;

 previousTime = System.currentTimeMillis();

 // Create a JNDI API InitialContext object if none exists yet.

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " + "context: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 // Look up connection factory and topic. If either doe snot exist, exit.

 try {

 topicConnectionFactory = (TopicConnectionFactory) jndiContext.lookup("TopicConnectionFactory");

 topic = (Topic) jndiContext.lookup(topicName);

 System.out.println("JNDI API lookup done");

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create subscriber.

 * Register message listener (TextListener).

 * Receive text messages from topic.

 * When all messages have been received, enter Q to quit.

 * Close connection.

 */

 try {

 topicConnection = topicConnectionFactory.createTopicConnection();

 topicSession = topicConnection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

 topicSubscriber = topicSession.createSubscriber(topic);

 System.out.println("Subscribed to " + topicName);

 topicSubscriber.setMessageListener(this);

 topicConnection.start();

 System.out.println("Subscriber Started");

 } catch (JMSException e) {

 System.out.println("Exception occurred: " + e.toString());

 }

 }

 /**

 * This method is required when your class implements MessageListener. This is the method

 * that will receive the updates from the topic.

 * @param message

 */

 public void onMessage(Message message) {

 TextMessage msg = null;

 currentTime = System.currentTimeMillis();

 try {

 if (message instanceof TextMessage) {

 msg = (TextMessage) message;

 System.out.println("Receiving message: " + msg.getText());

 } else {

 System.out.println("Message of wrong type: " + message.getClass().getName());

 }

 } catch (JMSException e) {

 System.out.println("JMSException in onMessage(): " + e.toString());

 } catch (Throwable t) {

 System.out.println("Exception in onMessage():" + t.getMessage());

 }

 }

 public static void main(String[] args) {

 String topicName = null;

 for (int i = 0; i < args.length; i++) {

 if (args[i].startsWith("-topic")) {

 topicName = args[i].substring(args[i].indexOf('=') + 1);

 } else {

 System.out.println("VALID USAGE\n-----------------------------");

 System.out.println("-topic=\"your topic\"");

 System.exit(1);

 }

 }

 //Create the topic subscriber

 MyTopicSubscriber subscriber = new MyTopicSubscriber(topicName);

 }

}

References:

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html http://www.fawcette.com/javapro/2002_03/magazine/features/kjones/default.asp
http://www.fawcette.com/javapro/2003_01/magazine/features/pvarhol/default.asp
* Many text blocks were copied and pasted directly from these articles into my document.

