WebLogic Clustering - Load Balancing and Failover
By

Bryan Ferrel

Ramarao Desaraju

Dr. Chow

CS 522

Network Communications

December 14, 2002

Table of Contents

3Introduction

3Requirements of Clustering

4BEA WebLogic Clustering

6Kinds of clustering in WebLogic

6How It Works

7Server Communication

8Load Balancing

8Test Setup

9Challenges Faced

11Results

13Code

15References

Introduction

The term clustering describes the close cooperation of two or more replicated servers with the intent to ensure fast and continuous service to users. The existence of clusters is usually transparent to the end user, who interacts with the cluster as if it were a single server instance.

BEA WebLogic is a Java 2 Enterprise Edition (J2EE) application server that can be deployed in a clustered environment. This paper will focus on clustering as implemented in this environment, in particular, the clustering of Enterprise Java Beans (EJBs). We will also look at the various algorithms employed by WebLogic in a clustered environment and available for the user to select based upon the specifics of the particular target system.

Requirements of Clustering

A Clustering solution must meet the following requirements:

First, there must be no bottlenecks to scaling. New servers can be easily and dynamically added to the configuration as necessary to meet increasing user demand. We should be able to add server instances to a cluster without interruption of service – the application should continue to run without impact to clients and end users.

The next requirement is that the system exhibits high-availability. In a cluster, application processing should continue even when a particular server instance fails. Application components are typically clustered by deploying them on multiple server instances in the cluster. If a server instance fails that hosts a particular component, another server instance hosting a replica of that component will continue application processing.

Clustered solutions must also provide transparency. Clustering should be transparent to applications and application developers. Programmers should not have to be concerned with the intricacies of replication, request routing, load balancing, and other such details when writing applications.

The final requirement for a clustered solution is that the cluster must appear as a single-system image to administrators. System administrators should be able to manage clusters as a single logical resource. The management of clustered services should be almost as easy as managing clusters that are not implemented.

BEA WebLogic Clustering

WebLogic server has two key capabilities that enable the clustered system to achieve both scalability and high-availability. These capabilities are failover and load balancing.

The term failover describes the behavior of the system when an application component (typically referred to as an "object" in the following sections) is performing a particular "job" or some set of processing tasks and becomes unavailable for any reason. Failover occurs when a copy of the failed object finishes the job.

For the new object to be able to take over for the failed object the following criteria must be met.

· There must be a copy of the failed object available to take over the job.

· There must be information available to other objects and the program that manages failover such as defining the location and operational status of all objects. That way it can be determined that the first object failed before finishing its job.

· There must be information available to other objects and the program that manages failover about the progress of jobs in process. In this way an object taking over an interrupted job knows how much of the job was completed before the first object failed. For example, what data has been changed and what steps in the process were completed.

WebLogic Server uses standards-based communication techniques and facilities such as multicast, IP sockets, and the Java Naming and Directory Interface (JNDI) to share and maintain information about the availability of objects in a cluster. These techniques allow WebLogic Server to determine that an object stopped before finishing its job and where there is a copy of the object to complete the job that was interrupted.

Information about what has been done on a job is called state. The WebLogic Server maintains information about state using techniques called session replication and replica-aware stubs. When a particular object unexpectedly stops doing its job, replication techniques enable a copy of the object to pick up where the failed object stopped and then finish the job.

The next important feature of the WebLogic Clustering is load balancing. Load balancing is the even distribution of jobs and associated communications across the computing and networking resources in the clustered environment.

For load balancing to occur:

· There must be multiple copies of an object that can do a particular job.

· Information about the location and operational status of all objects must be available.

WebLogic Server allows objects to be clustered or deployed on multiple server instances so that there are alternative objects to do the same job. WebLogic Server shares and maintains the availability and location of deployed objects using multicast, IP sockets, and JNDI.

Kinds of clustering in WebLogic

WebLogic allows clustering of several kinds of resources. Each resource type has a unique set of behaviors related to control, invocation, and how it functions within an application. For this reason, the methods that WebLogic Server uses to support clustering, and hence to provide load balancing and failover, can vary for different types of objects. The following types of objects can be clustered in a WebLogic Server deployment:

· Servlets

· JSPs

· EJBs

· Remote Method Invocation (RMI) objects

· Java Messaging Service (JMS) destinations

· Java Database Connectivity (JDBC) connections

The rest of this paper will focus on WebLogic clustering for EJBs, which are built upon the RMI framework, and other RMI objects.

How It Works

Load balancing and failover for EJBs and RMI objects is handled using replica-aware stubs, which can locate instances of the object throughout the cluster. These are sometimes referred to as “smart” stubs. Replica-aware stubs are created for EJBs and RMI objects as a result of the object compilation process. EJBs and RMI objects are deployed homogeneously to all of the server instances in the cluster.

Failover for EJBs and RMI objects is accomplished using the object's replica-aware stub. When a client makes a call through a replica-aware stub to a service that fails, the stub detects the failure and retries the call on another replica.

WebLogic Server clusters support several algorithms for load balancing clustered EJBs and RMI objects such as: round-robin, weight-based, and random. The method you select is maintained within the replica-aware stub obtained for clustered objects.

Server Communication

WebLogic Server instances in a cluster communicate with one another using two basic network technologies: IP multicast and IP sockets.

IP multicast is used by server instances to broadcast availability of services using heartbeats that indicate continued availability. IP multicast is a simple broadcast technology that enables multiple applications to "subscribe" to a given IP address and port number to listen for messages. A multicast address is an IP address in the range from 224.0.0.0 to 239.255.255.255. Multicast is used for all one-to-many communications in the cluster:

· Cluster-wide JNDI updates – Each server instance in a cluster uses multicast to announce the availability of clustered objects that are deployed or removed locally. Each server instance in the cluster monitors these announcements and updates its local JNDI tree to reflect current deployments of clustered objects.

· Cluster heartbeats – Each server instance in a cluster uses multicast to broadcast regular "heartbeat" messages that advertise its availability. By monitoring heartbeat messages, server instances in a cluster determine when a server instance has failed. (Clustered server instances also monitor IP sockets as a more immediate method of determining when a server instance has failed).

IP sockets are the conduits for peer-to-peer communication between clustered server instances. This is used when any two servers in the cluster communicate with each other.

Figure 1 shows the architecture of a typical multi-tier clustered system.

[image: image1.png]Untrusted

Firewal

Load

Balancer

WebLogic Server

Cluster

(web, presentation

tiers)

HTTP
Jsp
Serviet

HTTP
Jsp
Serviet

HTTP
Jsp
Serviet

WebLogic Server
Cluster

(object tier)

EB

JpBC

EB

JpBC

EB

JpBC

Database

Figure 1 -- MultiTier Clustered Architecture

Load Balancing

WebLogic Server clusters support several algorithms for load balancing clustered EJBs and RMI objects: round-robin, weight-based, and random. The details of these algorithms will be discussed in the results section.

Test Setup

In order to understand how load balancing and failover works in WebLogic, we ran a set of tests that attempt to determine the effectiveness of the three algorithms available for our use. For the tests, we set up a three WebLogic server instances with an admin server running on one machine and two clustered instances running on another machine. The two clustered instances were named Dante and DanteCL2.

We then created a stateful session bean and deployed it in the clustered environment. This session bean contained a simple “ping” method that simply returned a string. The client program is a Java program that creates several threads and invokes the session bean deployed on the server several times in quick succession. The session bean logs the requests it receives. Since the server instances are clustered, each client request may show up in a different log depending on which instance serviced that request. We then examined the logs to determine how load was distributed among the servers participating in the cluster.

Challenges Faced

During the course of this project, we were faced several challenges some of which we were able to overcome while others we were not. The first challenge we faced was during the setup of the WebLogic Server cluster. There were several configuration steps involved that were only somewhat covered in the documentation. We also found that the documentation was not entirely helpful in determining the best levels for settings such as beans in cache. This required several trial and error testing to determine the best configuration and settings for the cluster. Most of the setting up effort was spent using the admin console.

The next challenge encountered was determining how to perform logging and gathering statistics of the test runs. Logging was used as the main method for capturing statistics regarding which server received a request. Since one of the requirements of clustering is that the application developer need not be concerned about particular servers in the cluster, we needed a mechanism for capturing the data we were interested in. After much investigation, we discovered that standard logging techniques (such as print lines) would not work for our purposes. We eventually had to use the built-in WebLogic logging mechanisms and thus were able to capture what we needed.

Another challenge encountered in this project was the use of J2EE as the version we used for developing the test programs. We found out that writing J2EE components is significantly different than writing standard Java applications. We were able to overcome this and were able to successfully deploy the EJB to the WebLogic cluster we set up.

One challenge we did not realize at first is that a lot of the logic is configured in the deployment descriptors. It took us a lot of time to get used to certain aspects of the logic being handled for us. This required further reading in the literature regarding what they are used for.

The remaining issue we uncovered during our testing was the use of the failover mechanism in WebLogic. After following the instructions relating to setup and deployment to enable failover, we were unable to get the desired result. The first location where failover did not work was in the use of the cache and the level of beans in cache. When we intentionally set the beans in cache to a very low level, we noticed that we had a cache full exception on one server and not on the other. It appears that the failover is not effectively utilizing the available objects. We next tried merely terminating one server and determining if requests were funneled to the other server. This too ended up in terminating the application being hosted on the server we killed and did not allow requests to be routed to the other server participating in the cluster.

Results

During the tests we performed, we determined that the most effective algorithm available for use was Round-Robin. This is especially true due to the fact that the test setup had identical hardware across servers participating in the cluster.

The next algorithm testing was weight based. We noticed that the weight-based algorithm is useful when there are differences in the cluster hardware. We changed the distribution of request from 100% on each server to 100% on Dante and 50% on DanteCL2. This resulted in the expected distribution of requests to be 2/3 to Dante and 1/3 to DanteCL2. We noticed that the weight-based algorithm degenerates to round-robin when using identical weights in the cluster. It is also important to note that weight-based is useful when there servers in the cluster of varying levels of memory and CPU.

The last algorithm tested and observed was random. This test demonstrated the random algorithm appears to be very similar to round-robin in the results obtained. This might be due to the fact that there are only two options in the cluster or it might be that the test program was predictable with tests being very uniform.

Besides the algorithms tested, we also observed some aspects of scalability. We first noticed that with only one server operating in the cluster, the test program could easily reach a level that caused cacheful exceptions. Adding another node to the cluster removed this problem with identical clients. This result is not to be confused with the comments about failover. Scalability does appear to be affected with the addition of each new server to the cluster; however, if a failure occurs on one server, we were unable to determine how to get WebLogic to move requests to another server in the cluster.

The following figure shows the results of the various runs performed:

[image: image2.wmf]

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

4250

4500

4750

5000

525

0

5500

5750

6000

6250

6500

6750

7000

Round

-

Robin

Weight

-

Based

Random

Algorithm

Re

qu

es

ts

pe

r

Ru

n

Dante

-

1

Dante

-

2

Dante

-

3

DanteCl2

-

1

DanteCl2

-

2

DanteCl2

-

3

Code

The Session Bean deployed on the server:

import java.rmi.*;

import javax.ejb.*;

import java.io.*;

import weblogic.logging.*;

/**

 * A stateful session bean to test clustering

 * in WebLogic 7.0.

 *

 */

public class ClusteredSessionBean implements SessionBean {

 private SessionContext sessionContext;

 private static NonCatalogLogger logger = new

NonCatalogLogger("Cluster Application");

 /**

 * simple ping. returns the value passed in.

 */

 public String ping(String _strVal)

 throws RemoteException {

 // log to the weblogic log

 logger.debug("Received at Server: " + _strVal);

 return _strVal;

 }

 /**

 * methods required by the spec

 */

 public void ejbRemove() {}

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbCreate() {}

 public void setSessionContext(SessionContext context){

 sessionContext = context;

 }

}

The Client:

import java.lang.Exception;

import java.util.*;

import javax.naming.*;

import javax.rmi.*;

/**

 * A java class that acts as a client of a clustered

 * staeful session ejb. The purpose of this class is

 * to create multiple instances of session beans and

 * to invoke remote methods on them in order to test

 * the failover capabilities of the server.

 *

 */

public class ClusterClient extends Thread

{

 public ClusterClient(InitialContext context, int clientno) {

 this.context = context;

 this.clientno = clientno;

 }

 public void run(){

try {

Object objRef = context.lookup("ClusteredSessionEJB");

 ClusteredSessionHome home = (ClusteredSessionHome)

 PortableRemoteObject.narrow(objRef,

ClusteredSessionHome.class);

 for (int i = 0; i < 1000; i++) {

 ClusteredSessionRemote remote = home.create();

 String result = remote.ping("Request " + i + "

from client " + clientno + " at " +

 new Date() + " and Timestamp

" + System.currentTimeMillis());

 requests++;

}

}

 catch (Exception ex)

 {

System.out.println("Exception " + ex);

 }

 System.out.println("Requests Processed for client " +

clientno + ": " + requests);

 }

 /**

 */

 public static void main(String[] args) throws Exception {

Properties props = new Properties();

props.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

props.put(Context.PROVIDER_URL, "t3://dante:7001");

// create 10 threads to hit the server

for (int i = 0; i < 10; i++) {

ClusterClient client = new ClusterClient(new

InitialContext(props), i);

client.start();

}

 }

 private InitialContext context; // the jndi context

 private int clientno; // the client number

 private int requests;

}
References

· Girdley, Woollen, Emerson, J2EE Applications and BEA WebLogic Server, Prentice Hall, Upper Saddle River, NJ, 2002

· BEA Systems, Inc, “Achieving Scalability and High Availability for E-Commerce and Other Web Applications, Clustering the BEA WebLogic Application Server,” June 1999.

· On Line References:

http://e-docs.bea.com/wls/docs70/cluster/
http://www.getgamma.com/wlscert/wls6clustering.html
http://www.distributedobjex.com/resources/techbriefs_BEA.htm
� EMBED Word.Picture.8 ���

[image: image3.wmf]

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

4250

4500

4750

5000

525

0

5500

5750

6000

6250

6500

6750

7000

Round

-

Robin

Weight

-

Based

Random

Algorithm

Re

qu

es

ts

pe

r

Ru

n

Dante

-

1

Dante

-

2

Dante

-

3

DanteCl2

-

1

DanteCl2

-

2

DanteCl2

-

3

_1101305209.doc

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

5750

6000

6250

6500

6750

7000

Round-Robin

Weight-Based

Random

Algorithm

Requests per Run

Dante-1

Dante-2

Dante-3

DanteCl2-1

DanteCl2-2

DanteCl2-3

