SAN-Clustering-Load Balancing and examining GFS

CS522 Term Paper by

Su Li

For Dr. Chow

2Abstract

Introduction
2
Literature Review
3
Message-based versus Shared Storage Distributed File Systems
3
Message-based Distributed File Systems
5
Sun Network File Systems (NFS)
5
Coda File Systems
5
Shared Storage Distributed File Systems
5
Digital Tri64 Unix
5
Architecture and Design of the Global File System (GFS)
5
GFS Distributed Environment
6
Network Storage Pool (NSP)
7
File Systems Structure
8
Metadata and Data
8
Device Locks
9
Consistency and Caching
9
Results and Discussions
9
Performance
9
Load Balancing
10
Conclusion and Future Work
10
Acknowledgements
11
Reference
11

Abstract

In this term paper, the basic architecture of the Global File System (GFS) in comparison with other distributed file systems is presented. Based on my literature review, the advantage and disadvantage of GFS with focus on Cluster-Load Balancing and throughput performance are discussed in this term paper. Some research and testing results about GFS from different research projects by different research groups are also briefly summarized in this paper. Finally the future work and possible research direction in the areas of Clustering-Load Balancing and Shared Storage Distributed File Systems are discussed.

Introduction

Traditional client/server distributed computing is limited in that it simply provides a mechanism for a client machine to transparently access data on a remote server through the client’s local file system. Through useful, this approach limits the potential storage efficiency and speed that can be realized by distributed systems. The server is a potential bottleneck and single point of failure. An alternative and increasing popular approach is clustering, which physically integrates stand-alone computers using faster networks, shared disk storage, and a single system image to create scalable compute data servers [1], [2], [3].

Computer architects have for many years struggled with the problem of fast and efficient transfer of data between main memory and external storage devices, primarily disks. As was pointed out in the original RAID (Redundant Arrays of Inexpensive Disks) paper [4], a commodity market in SCSI (Small Computer Systems Interface) disk drives encouraged single-chip integration of SCSI controllers. With the recent advances in high-speed serial interfaces, disks now can communicate with clients over intelligent, fast, and highly functional interfaces such as Fibre Channel [5]. This interface technology combines both network and storage features and provides an industry-standard, high-bandwidth, switched interconnection network between clients and drives.

An important component in serval cluster designs is a shared file system that allows cluster machines to directly access shard disk devices across a network [2][6] instead of through a server, increasing cluster performance and availability. A SAN consists of a local area network that allows storage devices to be directly attached to the network. Such a shared file system makes each node in a storage area network (SAN) more effective. Recent advances in switching technology, fiber optics and the convergence of network and channel interfaces [7], [8] have motivated many researchers to study and design the shared file system such as GFS [5], [9] and Digital Tri64 Unix system[10].

The Global File System (GFS) is a distributed file system in which cluster nodes physically share storage devices connected via a network like Fibre Channel. GFS distributes the file system responsibilities across the processing nodes, storage across the devices, and file system resources across the entire storage pool.

The basic architecture of GFS and the comparison of GFS with other file systems are described in this paper. Some testing results about GFS with focus on Load Balancing and throughput performance are also presented in this paper.

Literature Review

Message-based versus Shared Storage Distributed File Systems

The architectures of the distributed and parallel systems can be categorized as message-based (shared nothing) and shared storage (shared disk). Message-based architectures share data by communication between machines across a network with the data stored locally on devices within each machine. Machines in the shared storage architecture access all storage devices directly. Examples of message-based and shared storage architectures are shown in the following Figure 1 and Figure 2.

[image: image1.wmf]Network

Client

Client

Client

[image: image2.wmf]Network or I/O Bus

Node

Node

Node

The message-based architecture’s strength lies in its extensibility. This approach is as portable as the network protocol connecting the machines and it can potentially scalable to large numbers of machines. Message-based systems may perform well if data access is well balanced across all machines, load balancing. However, is difficult since machine capacities and usage differ dynamically across the system. In message-based file systems, locality is also difficult to maintain since there will always be resources that are shared by many nodes in the system. Server and device failures are another challenging problem facing the message-based approach since a server failure may result in data being inaccessible. To summarize, achieving good performance on message-based systems is not an easy task. The shared storage approach has the advantage that every machine has nearly uniform access to all storage devices and freedom from servicing data requests from other machines. Also, failures of a machine in distributed file systems with shared storage have little effect on the rest of the systems except possibly increasing their load.

The following summarizes a number of distributed file systems based on their data sharing approaches.

Message-based Distributed File Systems

Sun Network File Systems (NFS)

The Sun Network File System was designed by Sun Microsystems in 1985[11]. NFS uses a client-server approach. The server is stateless and writes modified data to stable storage before returning results. The server is able to cache data in its system memory to improve performance. The clients make requests to the server with all information necessary to complete the operation.

Coda File Systems

Coda implements application-transparent adaptation in the context of a distributed file system. Coda is an experimental file system whose goal is to offer clients continued access to data when server and network fails. Coda servers maintain state concerning file accesses. The servers are responsible for performing callbacks when clients cached data has been modified by another client. File sharing on a client is guaranteed to have consistency described by Unix file sharing semantics. More information about Coda File System is provided in papers [12], [13].

Shared Storage Distributed File Systems

Digital Tri64 Unix

A couple of new features are described in the Digital TruCluster server documentation [10], and they can be summarized as: 1, A single clusterwide namespace and uniform coherent access to all file systems in a cluster; 2, Highly available clusterwide access to both character and block disk devices, as well as tape devices; 3, Clusterwide Logical Storage Manager (LSM); 4, All cluster members communicate with each other in order to control the formation and continued operation of a cluster; 5, Distributed lock manager (DLM); and 6, multiple cluster interconnections. The operating system allows files to be shared using Distributed lock manager. This file system falls into the shared storage architecture since all file requests are serviced from the shared Storage Controller.

Architecture and Design of the Global File System (GFS)

The GFS is a distributed file system based on shared network attached storage. Network attached storage devices are physically shared by the cluster nodes. Chip integration has transformed storage devices into sophisticated units capable of replacing many of the functions performed by a server machine in a client-server environment. GFS caches data in the nodes’ main memories only during I/O request processing. To exploit locality of references, GFS caches data on the storage devices. GFS informs the devices on each request what data is appropriate to cache. Consistency is established by using a locking mechanism maintained by the storage device controllers to facilitate atomic read-modify-write operations. This form of locking has the simplicity of a centralized mechanism yet is distributed across a large number of device [5].

GFS Distributed Environment

Figure 3 represents an example of the GFS distributed environment [9]. In this example, the nodes are attached to the network at the top of the figure and storage pool at the bottom. Connecting the nodes and the devices is a Fibre Channel network, which may consist of switches, loops, and hubs. Also in this example, three different subpools exist: /sigle is a single disk, /wide is a striping of serval disks, and the /fast is a disk array. In some other publications, parallel SCSI hardware is used instead of Fibre Channel.

[image: image3.wmf]Febre Channel Network:

Switches, Hubs, and Loops

GFS Node

GFS Node

GFS Node

/Single

Backup

Tape Drive

Network Storage Pool (NSP)

GFS views storage as a Network Storage Pool (NSP) – a collection of network attached storage devices logically grouped to provide node machines with a unified storage space. The storage pools are not owned or controlled by any one machine but rather act as shared storage to all machines and devices on the network [9]. The NSP can be carved up into many subpools [5]. This partitioning into subpools allows the system manager to configure separate subpools, and each subpool has its own number of disks, stripe unit size, access attributes (such as contiguous blocks), and performance attributes (such as meeting a strict bandwidth or latency limit). GFS provides transparent parallel access to storage devices while maintaining standard UNIX file system semantics, which make it easy-of-use and portable. For example, user applications still see only a dingle logical device via the standard open, close, read, write.

File Systems Structure

File Systems maintain persistent user and system data on storage devices such as disk drives. They maintain files by keeping pointers to file data blocks which are fixed size and integer multiple of the storage device block size [5]. A file is an operating system abstraction that hides from the use the details of how the data is mapped to physical storage devices. The data may, and often is, scattered throughout the blocks of the physical device. A directory is a type of file, which contains groups of other files and directories. Directories are hierarchical, yielding a tree-structured name space containing all files and directories for a given file system. Similar to any other Unix file system, each file has a unique number or handle called inode number, and each inode has a corresponding dinode located on the physical storage device which maintains information about file owner, permissions, number of links, access times, size and pointers to the location of the file’s data blocks on the physical storage devices. An inode is the in-memory data structure corresponding to the dinode. The file system stores the dinodes, known as metadata, along with the actual file data.

Metadata and Data

The GFS structure and internal algorithms differ from traditional file systems, emphasizing sharing and connectivity rather than caching. GFS, unlike typical file systems, distributes its metadata throughout the network storage pool rather than concentrating it all into a single superblock. Multiple resource groups are used to partition metadata, including data and dinode bitmaps and data blocks, into separate groups to increase client parallelism and file system scalability.

The Network storage pool (NSP) supports the abstraction of a single unified storage address spaces for GFS clients. The NSP is implemented in a device driver layer.

GFS assigns dinode numbers based on the disk address of each dinode. Directories contain file names and accompanying inode numbers. GFS also has a superblock which contains that can not be distributed across the resource groups [9]. This information includes the number of nodes mounted on the file system, bitmaps to calculate unique identifiers for each node, the device on which the file system is mounted, and the file system block size. A GFS dinode takes an entire file system blocks, and the GFS file system tree structure differs from the traditional Unix file system(UFS) where data blocks might have different heights. The alternatives for GFS metadata structure are worth exploration in future research.

Device Locks

Device Locks are the mechanisms for node machines to maintain mutual exclusion of file system data.

Consistency and Caching

Consistency is maintained by using atomic operations guaranteed by the device locks when modifying data [9]. These read-modify-write operations guarantee that at a fixed point in time data exists in at most three places: the disk media, the disk on-board cache, and in client memory. The disk maintains consistency between its media and cache while the GFS file system uses disk-based locks to implement atomic operations on metadata to maintain consistency between multiple clients and disk devices.

Multiple client accesses to shared devices must be synchronized: the three primary alternatives are disk-based [14], device-based [6] or client-based [15] synchronization. In the disk-based approach used by GFS, locks resident on the drive are used by multiple clients to safely manipulate file system metadata. A dvice-based approach is similar except that the locks are found on a shared device independent of the disk drives. Finally, client-based synchronization distributes the locking function between clients

The GFS metadata strategy is to cache metadata both on the disk drive caches and client memory. If exploited properly, the solid-state buffer memories on the disk drives provide a convenient cache structure that can be shared by multiple GFS clients. GFS can also directly cache some file system metadata that is read-only.

Results and Discussions

Performance

A research group at University of Minnesota has contacted a couple of tests, and some of the results have been published [9]. Three SGI Indys machines running IRIX5.3 operating system with 32MB of main memory were used in the tests. A Seagate Barracuda 2LP was used as the shared storage device. The 2LP is a 2Gigabyte Fast SCSI-2 drive. Basically the times involved with creating, writing, and reading files are measured in the tests. The file sizes range from 1MB to 16MB, and files were written and read by making from 1 to 129 requests per file. All tests were run five times so that the median values could be used to evaluate the performance. Details about the testing environments and system parameters set up in the tests are referred to the paper by Soltis et al. [9].

Both read and write tests show the GFS speedups for each machine for different file size with varying request sizes. File creates are slower than reads because the creates require additional I/O requests to allocate the dinodes, allocate data blocks, and build the metadata tree. Interestingly the same benchmarks were also run on a configuration using NFS as a comparison between distributed file systems running on the same hardware. The testing results indicate that both NFS and GFS have good speedup for larger delays, but the GFS times are much smaller. In cases where the request sizes were large, GFS exceeded transfer speeds of 2 MB/sec.

Load Balancing

Load balancing, a mixed workload among multiple clients sharing disks, is simplified by the client’s ability to quickly access any portion of the dataset on any of the disks [16].

Digital Tri64 Clustering environment, where not only disk but also computer resource such as memory, CPU are shared, improves throughput performance significantly, and make load balancing across nodes an easy task [10]. The benchmark testing results in Digital Tri64 clustering environment show that clustering environment where shared devices are used has a significant advantage in load balancing [10].

As discussed earlier, load balancing is difficult in message-based systems such as NFS since machine capacities and usage differ dynamically across the system. To achieve good performance on message-based systems is not an easy task. As shown in some of the testing results, the shared storage approach has the advantage that every machine has nearly uniform access to all storage devices and freedom from servicing data requests from other machines. Also, failures of a machine have little effect on the rest of the systems except possibly increasing their load.

Conclusion and Future Work

The GFS approach to a distributed file system using shared storage devices seems promising given the high bandwidth natures of new networks. The architecture places more responsibilities on storage devices than message-based architectures. Modern devices are able to cache, perform mutual exclusion, and schedule requests freeing these burdens from the node machines. With sufficient delay between I/O requests to a shared device, device parallelism is exploited within GFS system. In summary, a shared file system like GFS based upon a shared network between storage devices and machines offers several advantages such as availability, load balancing, and scalability in capacity, connectivity, and bandwidth [16]. Load balancing becomes an easy task in GFS.

The GFS is still in prototype or its early phase. Based on my literature review, the following are identified as the areas where more studies may need to be done:

1. Failure recovery. No much work has been done in this area based on my limited literature review. A single shared device in a GFS could be a single point of failure, and the failure of any client could leave metadata in an inconsistent state. Furthermore, since there are so many machines accessing the disks, it is impractical for all of them to unmount and wait for a file system check to complete every time a client dies[16].

2. Device lock. The mechanisms for device lock can be improved to link to failure recovery. More complicated algorithm to control device lock such as timing for device lock can be improved.

3. Hardware configuration. Throughout performance of GFS can be improved by adjusting hardware configuration such as disk stripping and data partitioning to meet particular application requirement.

4. Algorithm. Algorithm and policies for caching used by storage devices and using metadata can be improved.

Acknowledgements

I thank Dr. Chow for his advice for selecting the term paper topic and his guideline. I also appreciate Liliya Kaplan for spending time and showing me the Coda system.

Reference

1. G. Pfister. In Search of Clusters. Upper Saddle River, NJ: Prenticc-Hall

2. N. Kronenberg, H. Levy, W. Strecker. “VAXClusters: A Closely-couped Distributed System”. ACM Transactions on Computer Systems, Vol.4, No.3, pp130-146

3. D. Seachrist, R. Kay, and A. Gallant, “Wolfpack Howls Its Arrival” BYTE Magazine, pp.126-130, Vol. 22, No.8, August 1997

4. R. Katz, G. Gibson, and D. Patterson. “Disk System Architectures for High Performance Computing”. Provreedings of the IEEE. Vol. 77, pp1842-1858. 1989

5. S. Soltis, G. Erickson, K. Preslan, M. O’Keefe, and T. Ruwart. The Design and Performance of a Shared Disk File System for IRIX. Sixth NASA Goddard Space Flight Center Conference on MASS Storage and Technologies. !998

6. K. Matthews. Implementing a Sahared File System on a HiPPI Disk Array. Fourteenth IEEE Symposium on Mass Storage Systems. Pp.77-88, September 1995

7. M. Sachs, A. Leff, and D. Sevigny. LAN and I/O Convergence: A Survey of the Issues. IEEE Computeer. Vol.27, No.12, pp.24-33, December 1994

8. R. Meter. A brief Survey on Current Work on Network Attached Peripherals. ACM Operating Systems Review. Pp.63-70, January 1996

9. S. R. Soltis, T.M. Ruwart, and M. T. O’Keefe. The Global File System. Proceedings of the Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, Sept 17-19, 1996, College Park, MD

10. Tru64 Unix and TreCluster on-line Documentation. Digital, 2001.

11. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and Implementation of the Sun Network File System. Proceedings of the Summer USENIX Conference. Pp. 119-130, 1985
12. Peter J. Braam. The Coda Distributed File System. Linux Journal No.50, June 1998

13. M. Satyanarayanan, James J. Kistler, Ellen H. Siegel. Coda: A Resilient Distributed File System. IEEE Workshop on Workstation Operating Systems, Nov. 1987, Cambridge, MA

14. S. Soltis, M. O’Keefe, T. Ruwart, and B. Gribatd. SCSI Device Locks. Technical Report. Department of Electrical Engineering. University of Minnesota. April 1996

15. D. Deming. The SCSI Tutor. Saratoga, CA: ENDL Publishing, 1994

16. K. W. Preslan, A.P. Barry, J.E. Brassow. A 64-bit, Shared Disk File System for Linux. Sixteenth IEEE Mass Storage Systems Symposium. March 15-18, 1999, San Diego, CA

� EMBED CorelDraw.Graphic.7 ���

� EMBED CorelDraw.Graphic.7 ���

� EMBED CorelDraw.Graphic.7 ���

PAGE
3

[image: image4.wmf]Network

Client

Client

Client

[image: image5.wmf]Network or I/O Bus

Node

Node

Node

[image: image6.wmf]Febre Channel Network:

Switches, Hubs, and Loops

GFS Node

GFS Node

GFS Node

/Single

Backup

Tape Drive

_1068402295.unknown

_1068404093.unknown

_1068401658.unknown

