
Study of

Algorithms for

Parallel Access of

Mirror Sites

By

Sonali Patankar

CS522 Project Report

Table of Contents

2Objective

3TCP Diagnostic Utilities

3ping

3traceroute

4pathchar

5Mirror Site Concept

6History Based TCP Parallel Access

7Dynamic TCP Parallel Access

9Erasure Codes

10Selecting a group of mirror sites

12Conclusion

13References :

Objective

Objective of this document is to present the research in the Area of parallel access of mirror sites. Even though the concept of one-to-many (broadcast) is popular in Internet realm, many to one, has not been widely studied upon. This paper is an attempt to put together the relevant study of different components needed for study of parallel access of mirror sites.

To begin with, we will cover some basic TCP/IP diagnostic utilities that provide us an insight on what are the important characteristics we should watch for. Then we introduce the concept of mirror Sites. Performance is always an objective of any algorithm or process and we try to go to extreme limits in order to improve that. This is the main subject covered by this paper and we discuss some algorithms that have been invented by some researchers as mentioned in the references.

Using parts of these algorithms, I have tried to analyze some issues and come up with some considerations that are important, to select a subset of mirror sites for best parallel download.

TCP Diagnostic Utilities

Before starting to deal with the subject of parallel access of mirror sites, it is important to discuss the various utilities offered by the TCP/IP suite. These utilities can provide us a wealth of information, which is very useful, for evaluating the scenarios and coming up with solutions to improve performance.

TCP Suite provides a set of diagnostic utilities that help us, to determine different network characteristics. We will discuss some of these utilities here. This will enable us to appreciate and use the kind of information that can be extracted and will justify the use of them in the remainder of the paper.

ping

One of the basic utilities that are often used for diagnostic purposes is ping. To be able to communicate between two hosts, the basic thing a host needs to know is, whether the other host is reachable. This functionality is provided by ping. Ping program has been written by Mike Muuss. Ping program sends an ICMP request message to a host, expecting an ICMP echo reply to be returned. Ping also measures, the round-trip time to a host. The round trip time gives us an indication of how “far” the other host might be.

Normally if we can ping a host, we wont be able to Telnet or FTP the host. If we can’t telnet a host, ping is the place, where we may want to start our troubleshooting.

As the size of the network grows, most of the times the path our data on the network travels through more than one link. Once the packet is out on the network, there is no real guarantee what path it will take, as it depends on the dynamics of the network. But it would be very interesting to know what path our packet may take. Traceroute allows us to find that kind of information. Traceroute program has been written, by Van Jacobson.

traceroute

Traceroute command takes in the destination host name or IP address and provides us a tentative path that the data traveling from the source server to destination server, might take. Traceroute makes use of the TTL (Time to Live) Field. TTL is really the time taken by the intermediate hosts to ultimately send the data to destination host. Nowadays. Each router that handles the data, is required to decrement the TTL field by either one or the number of seconds the router holds the data. Since most of the times routers hold the datagram, for less than a second, this field can be used as a hop counter. The source host attempts to send a packet initially with TTL of 1 to the destination host. The first router it hits, decrements the TTL field by one and finds out that the TTL has become zero. When this happens it sends an ICMP “time exceeded” message back to the source. When source receives a time exceeded message, it increments the TTL field by one and attempts to send the data again. This process goes on, until the destination host is reached. Another peculiar thing about traceroute is that , the source hosts use a port number, which is usually very high. It is very unlikely that the destination host may have a process running at that port number. When the data reaches the destination host, it recognizes that the data is for itself, and it need not pass it on. But when it attempts to pass the data to process at the said port number, it finds out that nothing is running at that port number. It then sends back an ICMP message “port unreachable” to the source. When this message reaches source, it knows that the data has reached the destination and now it can figure out what path the data took to reach the destination. Traceroute tries to send data to every intermediate host, 3 times and reports the round trip time for all the 3 instances. It also reports all the intermediate hosts it hit, to provide us with the route our data has taken.

As said earlier, there is no guarantee that the two packets sent from one host will follow the same path. In the same way, when a host A sends an ICMP message to host B, the reply from Host B may not follow the same path. Because of this reason the roundtrip time for a message, may not necessarily tell us the exact one way time i.e we can not divide the roundtrip time by 2 and say that this is the one way time. It still does give us an indication of the time, data may take, one way.

Traceroute gives us a fair idea of the path our data may take, and what the round trip time would be. But it does not tell us what is the approximate bandwidth, which will be available for our data to travel. Also we know that, the weakest link in the whole chain gets to decide, how fast the data can travel for our path. A tool called pathchar provides this important information to us.

pathchar

Pathchar extends the operation of traceroute. Pathchar attempts to send packets of different sizes and reports the average round trip time for the packet. It also estimates the bandwidth for the transmission and reports both the average round trip time and the bandwidth , in its results. At the end pathchar also reports the bottleneck bandwidth in the whole path, which is the weakest link in the chain, and is of great importance in studying network characteristics. Since pathchar tries to send packets of different sizes, the time taken by pathchar, to provide results may vary depending on many parameters such as length of the path, the bandwidth of the associated links etc. in general pathchar takes longer time to complete than ping or traceroute.

Although pathchar gives us estimates of the bandwidth available for a given link, the value of bandwidth is dynamic, and can change depending on different factors. We may also observe different response parameters , depending on the time of the day.

Mirror Site Concept

Because of the advent of Internet, we live in a very heavily networked world. Because of this, the communication has become very efficient and so is the access to data. It is possible to access information, available on the computers connected to Internet. To access such information, all we need to do is open a TCP connection to the computer, on which the information we are interested in resides and request the data we require. After the data transmission is over, the TCP connection is closed.

This is a very simple example. Because of the ability to perform such tasks, one of the most popular uses of networks is in Software Distribution. In this scenario, the manufacturer of the software product, loads its product in the server and allows its customers to download the same onto their computers. This process has many cost and efficiency benefits. The vendor spends very little money and efforts on packaging a product, shipping and handling etc. for the customer, it is advantageous too because he does not have to wait until the vendor ships the software and he actually gets it. As the number of requests to these kinds of download grows, it becomes imperative to analyze what kind of performance the clients would get if more than one processes tried to download the same file. This gives birth to idea of mirror sites.

The mirroring approach deploys multiple servers storing the same data at geographically distributed locations, in an effort to both distribute the load of requests across servers and to make network connections shorter in length. This ultimately results in reduction of network traffic. Typically, client request service from a single mirror site. The speed at which the download can happen, depends on the bandwidth of that site and the bandwidth of other nodes in the path to the mirror site from the source. The choice of mirror site may seem obvious, when the number of mirror sites available is small, but many times the obvious choice may not be the best choice, and significant improvements may be possible by careful selection. Ability to allow accessing only one mirror site , is a typical limitation of the mirroring process. Even if the site at which the file is available has a larger bandwidth, some where down the path we may completely lose that advantage due to a slow intermediate host.

If we are able to take advantage of multiple mirror sites, together, we will be able to get most benefits the network has to offer. Instead of accessing a single mirror site at once, we consider the possibility of accessing multiple mirror sites in parallel, and requesting different parts of data from different servers, and combining them to achieve the complete download. Though the idea seems interesting and simple, there are a lot of things, which need to be considered for the scheme to work efficiently.

We look at some different Algorithms here and discuss how they work

1. History-based TCP parallel Access

2. Dynamic TCP Parallel Access

3. Erasure Codes

History Based TCP Parallel Access

In this approach, client specifies which part of the document must be delivered from each mirror server. For example, if we have two mirror servers, one server will send one half of the document, and, the other server will send the other half. The size of the part sent by a server is proportional to its rate. Hence a slow server will deliver a small part of the document, while a fast server will deliver large part of the document. In order, to achieve maximum possible speedup, all servers must finish transmitting the part, they are responsible for, at the same time. Or in other words , we should not have a situation where we are still waiting for one part of the document from one server, when the other server has done its part and idle for the purposes of this download process. We want all the servers involved in the process to be doing some useful work for the download.

To be able to decide, how much part each server should send, we need to have some history data on the servers involved. As the name of this approach indicates, we will be using the history data of the servers, especially speeds and bandwidths, to determine, how much data to request from each server. Research in this area indicates that, with this approach, we will be able to speed up the download, as long as the network/server don’t deviate too much from the history numbers we use. In this case, predictability of the speeds between the paths, allows us to utilize the capacities of the network to our benefit. However, when the network/server conditions do change considerably, history based approach performs very poorly. The simple reason for that is with the changed network conditions, we may not be able to get the transmission rates and the bandwidth specified by the history numbers, and our determination for deciding the size of data to be requested from each server can easily go wrong. To ensure a higher degree of accuracy in history data, we need to keep our history data , up to date. It has also been seen, that during daytime, in which the network conditions are changing rapidly, and the network is usually very busy, the performance of this algorithm is poor.

To put this algorithm in mathematical perspective, we proceed as follows. The client divides the document into M disjoint blocks. Let S be the document size. Lets assume (i is the transmission rate for server I, 1 (i (M. Let (iS be the size of the block delivered by server i and let T t,i = (iS / (i be the transmission time for this block. For maximum efficiency , all servers must finish transmitting at the same time. Thus Tt,i = T t,j for all i,j ({1,…M}. When all servers transmit their block at the same time, there are no servers that stop transmitting before the document is fully received. To achieve a maximum speedup, the size (iS of the block sent by server I must be equal to

(i
(iS = --------------------- S

((j

j= 1 to M

This means that faster server will send more data and slower servers will send less data. The parallel rate achieved (p achieved is equal to sum of the individual rates to every server.

So (p = ((i

i = 1 to M

We need to maintain a database for history based parallel access, which maintains information about all servers and updates them with the recent transmission rates when servers transmit.

Dynamic TCP Parallel Access

Dynamic TCP Parallel Access, does not use any history data. Hence it benefits from not having to base its decision from some data collected earlier, which can not guarantee the best performance at any given time. In this approach, the client divides the document in small blocks and first requests one different block from each server. When the server finishes transmission of the requested block, receiver checks to see what next block which it would like to receive, that has not been requested yet, from any other server, and requests that block from the server that just became available to request more blocks. This activity performed by the receiver is called negotiation. Upon receipt of all the blocks, client reassembles all the blocks and constructs the whole document. Negotiations between the client and server are performed at the application level using the HTTP1.1 byte range header. For every such negotiation, there is a time period in which receiver decides and requests the new data to be sent, in which no useful data transmission is taking place. This time is called RTT (round trip time). For this type of download, to be efficient, we have to keep such idle times to a minimum so that, most of the time is used for actual data transmission. Thus, before a server finishes a transmission, the receiver acts proactively, to decide which block it should request next, and requests the new block from the server. This helps us saving time, thereby improving the overall efficiency of the download. This is particularly helpful when number of blocks to be transmitted is large, the degree of granularity is high and it is easy for all the servers to deliver useful information until complete reception of the document. This scheme, since it does not use any history values, adapts to changing network and server load.

Now we will try to visualize mathematically what happens in the Dynamic TCP parallel access. Client divides the document to be downloaded into B blocks of equal size. Client requests one block from every server. Every time the client has received one block completely , it requests from this server another block, which has not been yet requested from another server. Upon receipt of all the blocks, client puts them all together and reconstructs the whole document. The important points to be considered when determining the size of the blocks requested are

1. The number of Blocks B should be larger than the number of mirror sites M, which are accessed in parallel.

2. Each block should be small enough to provide fine granularity of striping and ensure that the transfer of the last block requested from each server terminates at about the same time, thus fully utilizing the server and network resources.

3. Each block should be sufficiently large as to keep the idle times between the transmissions of consecutive blocks small compared to the transmission time of the block.

When we consider the last two points, it becomes obvious that the document we are trying to download should be large enough in size, at least several Hundred Kilobytes.

Since client will perform negotiation with the same server more than once, TCP persistent negotiation is used to keep the idle times short. When there are less than M blocks missing, idle servers may start transmitting in parallel, a block that is already being requested from another server, but has not been fully received yet. The number of servers that may be transmitting the same block is limited to 2, there by limiting the possible bandwidth waste. The bandwidth in the worst case is (M-1)* (S/B), where S/B is the block size. The actual bandwidth wasted is much smaller, since slow servers who do not complete the transmission are stopped, when the whole document has been received. So only the bytes that are already transmitted by the slow servers are wasted. With this approach clients experience a transmission rate that is at least equal to the transmission rate of the fastest server. In this approach, client can also determine which server is the fastest and only ask that server to send missing bytes.

If the fastest server takes x seconds to transfer the data, this algorithm provides the data transfer in x/2 seconds, which is a major speedup.

Erasure Codes

The next approach we will discuss now, is the use of Erasure Codes. This approach though it uses multiple mirror site parallel access, has a slightly different basic idea of operation. It also takes into account a different possibility and tries to capitalize on the fact that , very often , there is more than one user , at any given time, trying to download the same software/documents from the network. When multiple users are downloading the same document, every client sets up a connection with every mirror server, and requests data be sent to it. This, as we can easily see , results in duplicate data being sent out by the server, which occupies bandwidth, and has an effect on the final download time. This can also happen on an intranet, when all of the users , access a particular document throughout the day regularly.

This approach , rather than having each client establish a separate connection with the mirror server, creates a system where the mirror sites , establish multicast groups to transmit the data. This allows helping keep duplicate transmission of the same data to a controllable level. Clients can subscribe to the multicast groups and are able to receive data more quickly. This approach also provides scalability, to unlimited number of clients, each of which may be subscribed to different subsets of the multicast groups. Conceptually, this approach is very simple, but not very easy to use practically. Since there is no feedback communication between client and server , it becomes a necessity that server transmits in such a fashion, that receiver can do its own error correction. The receiver will be capable of recovering the data when it receives a given number of packets. This means that some kind of encoding must take place on the sending side. This encoding , if done on the fly can take up considerable time and hence needs to be done before hand. For efficient encoding, the codes that this approach uses are called erasure codes.

A newly developed class of erasure codes is Tornado Codes, which has extremely fast encoding and decoding algorithms.

The inventors of this algorithm (reference 2) claim that , encoding can be performed, in a short time using advanced encoding algorithms. But for using this approach , all the servers should contain the encoded documents and also client needs to install the decoders to reconstruct the encoded documents. In addition the problems of how to stop the servers and congestion are tough to solve.

Selecting a group of mirror sites

As we saw in the earlier three algorithms , there are advantages as well as limitations. The history based approach, provides excellent usage of all the servers, but the efficiency mainly depends on the history data that we have gathered , which may even have changed. The Dynamic parallel access approach seems to be better as it tries to use the real time values to decide how to get the packets requested in parallel. It still depends on how good the servers respond and which dictates effective transfer time.

What happens when we are getting data from multiple mirror sites. Traceroute may help us identify the routes our downloads are taking. One of the possibilities, that we need to consider , is by selecting all the mirror sites, are we making our process work harder than it should. In other words, in the paths selected for download , we may have an instance where the two paths have one common link outside our internal network. Lets consider the following situation. This diagram is a partial intermediate path outside our own network , going to a mirror site.

In the above diagram the bandwidth for link between A & B is 10 Mbps. The link between B & C is 15 Mbps and link between B & D is 20 Mbps. We have a common node B in this situation that cannot pass data as fast as C and D can. So if we select both Mirror 1 and Mirror 2 in our list of sites to download, what we are actually doing is creating a competition. C and D compete for resources on B , thereby possibly slowing down the completion of the whole document. Another reason why we should not select all the mirror sites would be that , mirror sites are usually widely distributed in different geographical locations.

We should try to choose those mirror sites which are in reasonable proximity, have reasonably fast bandwidths or transmission rates and the paths to which do not create a situation, where we make our process work harder than it should.

With the help of traceroute and pathchar we can find such bottlenecks and use this information in making a correct decision for selecting mirror sites.

Another situation of interest is , when the client is connected to Internet via a modem, which limits the bandwidth to 56 Kbps. In this case , when we are accessing two mirror sites one of which can take up the whole bandwidth, we get into a situation similar to discussed above. Because one server can consume all the bandwidth of the client, there is no residual bandwidth left, and the packets from the other server, interfere and compete for bandwidth.

This situation is referred to as not being bottleneck-disjoint.

The path from a client to a mirror site is said to be bottleneck-disjoint , when the packets from one server are not slowed down or dropped due to packets from another mirror server. We should try to make sure that our paths to the mirror sites are bottleneck-disjoint.

So using the best from all the algorithms discussed above, we can select a set of mirror sites, possibly using history data and use the dynamic parallel download, to maximize the performance.

Conclusion

Study of the above algorithms, clearly points out that, there is sufficient room for improvement and research in this area. Software Distribution is clearly one of the segments that can benefit from use of these algorithms. It has become clear that, use of parallel access for mirror sites improves the download performance and balances the load among servers.

Today’s network technology is changing and improving very rapidly. We are able to communicate much faster and do many things , than we were able to do before. The more it changes, we will be presented with new challenges, how to efficiently use the capacity that we have. The subject of this paper, is just one area to make efficient use of the available capacity using parallel access to mirror sites.

I believe that putting this paper together has helped me start thinking in the correct direction, for any future research that I may perform in this area. It has clarified my concepts about the possibilities that we can explore for process improvement. I also think that this was a good opportunity to learn about a completely new problem and study solutions for it. I hope, this document will also help, in understanding the intricacies involved in parallel download, to a reader, new to this subject.

References :

1.Parallel Access for mirror Sites in the Internet – Pablo Rodriguez, Andreas Kirpal, Ernst W. Biersack

http://www.ieee-infocom.org/2000/papers/65.ps
2.Accessing Multiple Mirror Sites in Parallel : using tornado Codes to speed up downloads. – John W Byers, Michael Luby, Michael Mitzenmacher

http://www.ieee-infocom.org/1999/papers/02d_01.pdf.
3.TCP/IP Illustrated Volume I – Richard Stevens

Get block i

Get block i +1

Block i

Client

Mirror Site

Transmission Time for

Block i

Idle Time

Dynamic parallel Access

A

B

C

D

10 Mbps

20 Mbps

15 Mbps

Mirror 1

Mirror 2

