1.0 Introduction
The ability to filter through the murk of extra email from unwanted solicitors has both merit and great potential. In this term paper, our team proposes filtering though unwanted email by placing spam mail detection code in the operating system’s kernel. The previous linux kernel work done under Dr. Chow modified the kernel to act as a content switch and used very cumbersome printk statement’s to do the debugging on the actual running kernel. We propose a different route using User Mode Linux (UML) which we will be using to run and debug the kernel. UML runs an actual binary kernel as an application. This has many advantages which we will discuss further in this report. We feel that UML has applications beyond the scope of our project and, pending on how well it works with our project, has the potential to be used in up to four upcoming thesis projects. UML could also be used to help in the exploration and further understanding the linux kernel. Besides the work with UML, which comprised a good sixty percent of our efforts on this project, there is the work with filtering and sorting out email. UML is a non-trial tool which is a part of our report but not the heart. With that expressed, this report is divided up into five sections.

These five sections are: Introduction (reasoning for doing this project and a brief outline), General Setup (how to setup and use UML), General Procedure (which files were modified in the linux kernel to achieve the desired goal), Results, and Conclusion. The first part of the report encompasses the tedious but rewarding work of how to get UML to operate fully with a live connection to the internet.

2.0 General Setup
As mentioned before, setting up UML was not a trivial task; this section of the report is divided further into subsections: download requirements, procedure, running UML, setting up the internet connection, setting up the DNS, description of UML’s components and further thoughts.

2.1 Download Requirements
There are three components you need to download. Two of them from UML's website on sourceforge.org

1. Kernel source code(ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.7.tar.gz). At this point, I would recommend 2.4.7, it seems to work the best with the slackware linux distribution we're using. The file looks like linux2.4.7.tar.gz. You get this file from kernel.org's ftp site (ftp://ftp.kernel.org/pub/linux/kernel/v2.4)
2. UML kernel patch (http://prdownloads.sourceforge.net/user-mode-linux/uml-patch-2.4.7-5.bz2). The UML patch name is generally named uml-patch-2.4.7-5.bz2 and can be downloaded from
http://user-mode-linux.sourceforge.net/dl-sf.html#Building%20from%20source
3. Root file system. Now you can choose any distribution you want. You can even make your own distribution with a set of instructions, but we have found the slackware distribution to work the best. It is easier if you use one of the root file systems created by the UML developers opposed to creating your own. They are located at
http://user-mode-linux.sourceforge.net/dl-sf.html#The%20root%20filesystem
2.2 Procedure

Once you get these three files, you need to do three things:

1. Unpack the kernel

· With the linux kernel file in the same directory, type "tar xvjf linux-2.4.7.tar.gz" where linux-2.4.7.tar.gz is the name of the kernel your unpacking.

· Then change directory to be at the top of the source tree, do this by typing "cd linux"

2. Apply the UML patch

· At the top of the source tree, type "cat uml-patch-2.4.7-5.bz2 | bunzip2 - | patch -p1" where uml-patch-2.4.7-5.bz2 is the name of your patch file.

3. Build the "linux" executable from the linux source

· Type, `make xconfig ARCH=um'

· Hit save and exit.

· Type, `make linux ARCH=um'
At the top of the source tree is going to be an executable file named "linux". This file is important. Keep a mental note of where it is.

Once all the installing is done. Now comes running the UML.

1. Create a directory for the root_fs file and the compiled linux file

· Just type in, "mkdir uml", where UML is the name of the directory

2. Move the linux executeable and the root_fs downloaded step 3 into the linux directory

· Use the command "mv <source location/file> <destination location>"

After the installation there is one more step setting up the internet connect. This part is actually the hardest of any step and took close to 48 man hours to figure out. For those who wish to use UML in the future there is an excellent article written by linux weekly news which has a simplified setup. Without this document, setting up UML would have been much harder.

Before setting up the UML, grab two unused IP addresses. For our work, we needed at least one of the IP addresses have a DNS name attached to it considering SMTP uses DNS. The two DNS’ used for our project were b2b.uccs.edu and feline.uccs.edu.

Once two IP addresses have been obtained, use the first IP address (non-DNS associated) in the command line

3. Run UML with a debugger

· Type in "linux mem=128M udb0=root_fs_slackware_7.1_big udb2=swap debug=go eth0=ethertap,tap0,fd:fe:0:0:0:1,128.198.192.198

Replace the 128.198.192.198 with an unused IP address. The MAC address is for cosmetics and is not really important what you put there as long as it is a validly formatted MAC address.

Once you type in the command, you will see a debug window. If you do not, there is a good chance the debug options were not compiled into the kernel. To fix it, go back to “Build the linux executable from the linux source”

· Type, `make xconfig ARCH=um'

You will see a screen with a bunch of options click on kernel debugging and turn ‘on’ all the options (the first three are generally needed). Then redo all the following steps. You should then see a debug screen. Once the debug screen comes up, it should be followed by three xterm terminals. The initial password for a new root file system (downloaded from user-mode-linux) is ‘root’. Yes, ‘root’ for the username and password.

Once you log in, there are four additional commands you need to type at the command line before getting the internet setup completed.

· ifconfig eth0 128.198.192.173 (this is b2b.uccs.edu)

· route del –net 128.198.0.0 dev eth0 netmask 255.255.0.0

· route add –host 128.198.192.174 dev eth0

· route add default gw 128.198.192.174

Where 128.198.192.173 is the second unused IP address (we attached a DNS to this IP address) and 128.198.192.174 is the IP of the host machine (the machine where UML is running on).

Once you execute these three command you should have internet access to the outside world. To test ping the host machine. Generally if that works, you will be in good shape. If you see any warning messages or a message saying “the network is not available”. Check the unused IP address and make sure it is truly not being used.

2.3 Background information on UML
At first glace a lot small details may not be evident about UML. This section of the report will attempt to explain an overall structure of UML. As mentioned in the above sections, UML is composed of two main pieces: the linux executable and root_fs. We will start by talking about the root_fs.

2.3.1 Root_fs
The root_fs is a file about 600 Megs but can be any size. It is possible to build your own root_fs. Frank worked for weeks in vein trying to create a root file system from scratch to only learn it is nearly impossible with out certain tools.

At this point you might be asking, what entirely is a root file system? A root file system, as its name indicates, holds the entire files system. Ok, a huh? Might be sighed out at this point especially if you have never worked with an operating system. Here is a good example. A CD Rom is a media most people are familiar with. Well it is possible to take everything on the CD Rom in binary format, sector for sector, and place all the files, directory structures, file information, and everything else into one file. You might say really? Yes, it is actually a very common practice that Redhat Linux and even Microsoft use to distribute CD Roms that are a bootable image of a CD Rom but in a file. Then to later be burned on to a CD. For the CD Rom these are called iso images. Well, the file system for linux is very similar to the iso9660 file system used for CD Rom’s, and it places the entire file system (directories structure, file information, and everything else) in one file. This is the root_fs. The root_fs used in this project came from UML’s website. Here is a bit of extra information, since the root_fs is an actual root file system (ext2 to be exact), it is possible to mount this file system to the current directory structure (like you would mount a floppy) and add and modify files to this root file system without it being booted into UML. To do this all you need to do is type in the following command :

mount <location of root_fs> /mnt/<where ever you’d like to mount it> -o loop

The –o loop is a loopback device used for mounting files, since a file is not an actual device. If you were to mount an iso image (mentioned above for CD Roms) you would do the exact same thing but would have to use a “–t iso9660” since the mount command defaults to ext2.

Hopefully after this explanation, root_fs makes a little more sense. Now in the next section we will try to explain in more detail what the linux executable does.

2.3.2 linux executable
The linux executable is the linux kernel. This executable is the actual physical kernel in binary form. How the UML development team got the kernel to execute is a mystery and one of the reasons why UML is so interesting. From the previous section 2.2, the linux executable was taken from the top level of the linux kernel source tree (patched with a UML patch file) and compiled on the host machine. UML’s patch modifies the source code so an executable kernel comes up to the top level instead of the binary form in /arch/i386/boot directory. Seeing this executable and realizing the kernel is separate from the root file system, begs the question of what about the actual linux source code and boot files on the root_fs (root file system). Well, that is a good question. The answer is they are ignored. The boot files on the root_fs are not used. So it is possible, to boot a RedHat 7.1 root_fs (which originally comes with a 2.4.3 kernel) with a 2.4.7 compiled kernel. It was very hard at first to envision this separation between the kernel and the root file system. When working with an executable linux file and a root_fs, a couple of things needed to be thought through. For instance, although the linux executable determines the kernel version, the root_fs determines the libraries used, as well as the shells, the password files, and virtually everything the kernel does not do. So, using older root_fs with incompatible libraries or even different modules will initially cause a few problems. In our project, we ignored the modules in our UML so we get a few error messages stating the kernel is looking for modules it cannot find. This problem will be worked on further in Frank’s thesis.

2.3.3 Setting up an internet connection
Jeff and Frank (Jeff was mainly the brains) spent almost two full days trying to debug and trying different things to make the internet connection work with the host machine and the UML. For our project, we are using an older driver called ethertap. What ethertap does is intercept packets from the ethernet card and passes them directly up to the UML. At first, we were concerned the packets would go through a socket and be stripped of the vital IP header information in the host machine. But after doing some research, found ethertap is an older driver which intercepts packets. We especially noticed this when Frank using ssh and connected to Walden and was kicked out multiple times by Jeff every time he started up the ethertap with Frank’s IP address. Ethertap uses two IP addresses, one to interface with the host machine and the other for the actual UML network device. We had a set of three DNS names with IP addresses associated as well as three unused IP addresses with out DNS names. We did some experimenting and the IP address assigned though the ifconfig (not the command line) should be the IP address with the DNS associated. We have not figured out the entire interior workings of ethertap completely. In the future, the UML should be moved to use a more up-to-date driver like tun/tap.
 Ethertap’s successful execution was due to Jeff getting most of the ethertap to work and Frank stumbling on a document (NOT UML’s) that stated you needed two unused IP addresses. Once we got the ethertap working, there was the task of getting the DNS set up on the UML.

To get a linux box (or UML in this case) to recognize an IP address was just doing external setup and using ifconfig. Getting the UML to recognize a DNS and a hostname was a little harder. What was hard was trying to get a network set up without helpful utilities like “linuxconfig”. We even considered installing linuxconfig to make the setup simpler, but did not have enough room on the root_fs. We eventually fell back to setting up UML’s DNS by modifying files. For future work, these are the files you need to modify, all located in the /etc/ directory.

· hosts

· host.conf – enter the host name, ip address, and alias

· resolv.conf – enter the DNS servers

· HOSTNAME

We had to search the “Linux From Scratch” webpage for exact information on how to setup each individual file and a book from the library on linux system administration by O’Reily . “Linux From Scratch” has an excellent write up on how to install the networking section from scratch
. The HOSTNAME file is probably what took us the longest to figure out. This menace of a file is a creation of the UML developers (not criticizing them, BUT), it would have been nice if there was some documentation stating they used this file to set the hostname since it is not standard, nor follows UNIX standards. We had to grep all the files in the rc.d (the startup scripts in linux) for their default host name before we found one line which points to this HOSTNAME file. Once we modified all these files, we had DNS support. It was a glorious day!

2.3.4 Extras in UML
A few final thoughts about the UML that were not mentioned earlier in this report. The UML has the ability to do Xwindow. You can also set the memory and swap space from the command line. With all this in mind, it is also possible to install programs and run everything from a webserver to a mail server. The root_fs we used was based off a slackware distribution. At this point, we have experimented with different distributions and have had different quirks occur, not achieving the same success we have seen with the slackware distribution. The distribution of slackware 7.0 seems to be the most stable and compatible root_fs for our use. Ok, now that we have said everything (or everything that comes to mind) about the UML distribution, we are going to move on to the second part of our project, modifying the linux kernel to do spam mail filtering.

3.0 General Procedure
A puzzling question in Dr. Chow’s source tracing sessions earlier this semester was, “where do you insert the code modifying the sk_buff”. Well, the answer to that question is anywhere in the TCP files. For our project, we modified the file, tcp.c.

This explanation will be much simpler than the previous pages about the UML. There is one major structure we need to talk about (for those not a part of Dr. Chow’s research), the sk_buff. The sk_buff is a highly-efficient data structure responsible for storing all the packets the network card receives. It is a very elegant structure using pointers to reference specific memory locations of the packets. There are pointers pointing to everything in the packets. For example there are pointers pointing to: the head of packet, the tail, the beginning of the payload, the beginning of the TCP header, the beginning of the IP header, the source IP address, the destination port number. Almost everything you can think of is in the sk_buff
. Using pointers is very clever, because the alternative would be chopping the packets or recopying them. Both of these alternatives are very inefficient. Using pointers, to strip and partition the incoming packets is extremely efficient. Now with the explanation of the sole data structure we modified, it is possible to have a starting point for our discussion. This section is going to be divided into three sections, identifying an SMTP (Simple Mail Transfer Protocol) packet, filtering for the user name, rejecting a spam mail.

3.1 identifying an SMPT packet
One unique quality about packets that use the SMPT protocol and are heading towards the mail server is they have a port number of 25 in the TCP header, this is one of the “well known” ports. With this information, we found the port number already parsed and ready for us in the sk->num. Essentially the sk_buff already has a pointer pointing to the port number in the packet. We place an if statement in our code and wait for any packets with the port number 25. There are two paths down which a tcp packet can travel, depending on the queue of the socket they are destined for. The first is if there is nothing in the socket’s queue, then they go directly to the socket from with in tcp_recvmsg(). The second is if the socket has packets already backed up on its queue, then they are added to that queue, and seen again in tcp_prequeue_process()The port number is checked inside of both tcp_recvmsg() and tcp_prequeue_process(),if the packet is bound for port 25, it is sent to the function spam_check(). A point of clarification, all the work done for searching in the packet for the username and SMTP protocol code in the payload is done in the function spam_check(). As mentioned above, spam_check () is called by tcp_prequeue_proces() and tcp_recvmsg() if the port number in the TCP header is 25 (represented by sk->num == 25)
.

3.2 Filtering for the Sender’s Email Address
In spam check (), filtering for the sender’s email address is done by parsing the payload until it reaches a “mail from:”. When “mail from” is scanned, a flag called “wasMailFrom” is set. The following characters (receiver’s address) are scanned and checked against a spam list, currently hard coded into the source with if statements (a future modification will be to use a module as a database of spammer names). If the sender’s email address matches one in the spam list, the IP address and the source port number are stored in a local variable called spammerIP and spammer port. Once we have the sender’s IP address and port number. We start looking for another packet called “rcpt to:”

3.3 Rejecting a Spam Mail
The spam_check () continues scanning until it finds a “rcpt to:”. When it comes across a “rcpt to:”, the source sets a flag called “wasRcpt”. The following characters are the receiver’s email address. The source later catches the “wasRcpt” flag and starts replacing the receiver’s email address with x’s. For example the following email address:

root@feline.uccs.edu

xxxx@feline.uccs.edu
With this email address modified, the receiving mail server will reject the incoming email with an error message 550: User unknown.

4.0 Results
We have two major accomplishments in this project. We have a working UML with internet connection. We also have a working prototype which catches a spammer and changes the “RCPT TO:” field in the SMTP protocol to an unknown address.
Below is a sample of an email returned to the user:
----- The following addresses had permanent fatal errors -----<root@feline.uccs.edu> (reason: 550 <xxxx@feline.uccs.edu>... User unknown

There is one known bug. The sender’s mail server keeps a cache of the email addresses and on occasion does not send a “RCPT TO:” in the payload to see if the user exists. In these situations, the mail does go through and is not modified or blocked.

5.0 Conclusion / Future work
Because of time constrains, we only touched the surface of what can be done with routing and manipulating packets at the TCP level. This project is just a simple demonstration of the power and changeability of the linux kernel to suite to a specific need and purpose.

Future work:

· A packet can be sent back and fully responds to the SMTP command of the receiver and sender.

· The spam list can be inserted through a module opposed to hard coded into the kernel (as for this project).

· The most ambitious possible future project would be to verify that senders exist, via sending out a RCPT TO: to the sender’s host and waiting for the OK reply. This would require all arriving mail to have a valid sender. This particular option would probably be best implemented at the application layer to avoid slowing the kernel.

· This project can be expanded into Dr. Chow’s Content Switch project and be used as a switch between multiple machines, filtering unwanted spam mail packets before the even hit the back end servers.

References

 http://user-mode-linux.sourceforge.org The user mode linux webpage

2 http://www.linux-mag.com/2001-04/user_mode_01.html An extremely helpful article about setting up UML with a step by step example

3 http://www.linuxvalley.it/encyclopedia/meteokernel/kernel24/doc24/networking/ethertap.txt
4 http://www.linuxfromscratch.org A comprehensive webpage about setting up a linux kernel from scratch. This webpage helped with setting up the networking files.

5 http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html An extremely valuable document about the linux IP networking layer

6 http://www.faqs.org/rfcs/rfc821.html The RFC 821 for the SMTP protocol

7 http://hints.us.linuxfromscratch.org/hints/sendmail.txt
Appendix A: Received error message

From MAILER-DAEMON@walden.uccs.edu Sat Dec 1 17:37:00 2001

Date: Fri, 30 Nov 2001 13:48:50 -0700

From: Mail Delivery Subsystem <MAILER-DAEMON@walden.uccs.edu>

To: jdrupp@walden.uccs.edu

Subject: Returned mail: see transcript for details

The original message was received at Fri, 30 Nov 2001 13:48:50 -0700

from jdrupp@localhost

 ----- The following addresses had permanent fatal errors -----

<root@feline.uccs.edu>

 (reason: 550 <xxxx@feline.uccs.edu>... User unknown)

 ----- Transcript of session follows -----

... while talking to feline.uccs.edu.:

>>> RCPT To:<root@feline.uccs.edu>

<<< 550 <xxxx@feline.uccs.edu>... User unknown

550 5.1.1 <root@feline.uccs.edu>... User unknown

 [Part 2: "Delivery Status"]

Reporting-MTA: dns; walden.uccs.edu

Arrival-Date: Fri, 30 Nov 2001 13:48:50 -0700

Final-Recipient: RFC822; root@feline.uccs.edu

Action: failed

Status: 5.1.1

Remote-MTA: DNS; feline.uccs.edu

Diagnostic-Code: SMTP; 550 <xxxx@feline.uccs.edu>... User unknown

Last-Attempt-Date: Fri, 30 Nov 2001 13:48:50 -0700

 [Part 3: "Included Message"]

Date: Fri, 30 Nov 2001 13:48:50 -0700 (MST)

From: jdrupp@walden.uccs.edu

To: root root@feline.uccs.edu

Appendix B: Modified source code – spam_check ()
/**
 * this routine tests if a message to port 25 is from a known spammer

 * if so then the message is rejected (currently we just change the from

 * to say spam)

 */

/*

 Jeff Rupp && Frank Watson email anti spam addition:

 The general idea is to check all port 25 messages that are MAILFROM

 against a database of known spammers.

 We could also check the sender's IP against a database of know open relay

 or spam sources

 A future plan is to to actually to use SMTP back to the sender

 to check if the sender actually exists via:

 if port 25

 cache the skbuff

 if MAIL FROM:

 talk SMTP EHLO then RCPT to verify sender exists

 if sender did exist, pass along buffered skbuffs

 Note that this future plan does involve monitoring the port 25 messages

 for the replies to our SMTP traffic, probably do this via

 caching the ip and sender email address.

*/

int spam_check(struct sock* sk, struct sk_buff* skb)

{

 /* These two statics keep track of the source IP (and port when we update it???)

 of a spammer's MAIL FROM: Then when we get the RCPT to: from that same

 IP and port we know it is the spammer, so we just change the email so that

 the sendmail program will respond for us that the requested recipient does not

 exist, and thus the sender will cancel sending the message body.

 */

 static __u32 spammerIp=0;

 static __u16 spammerPort=0;

#if 1

 printk(KERN_CRIT "***spam_check port: %d datalen: %d actualLen: %d line:%d\n", sk->num, skb->data_len, skb->len, __LINE__);

 {

 int dataLenCntr=0;

 for (; dataLenCntr < skb->len; ++ dataLenCntr)

 {

 printk(KERN_CRIT "***spam_check data[%d]=%c\n", dataLenCntr, skb->data[dataLenCntr]);

 }

 }

 /*

 first check the socket's num if it is 25

 */

 if (sk->num == 25)

 {

 /* get the skbuff's data */

 unsigned char * dataPtr = skb->data; /* this is probably wrong? */

 int wasMailfrom = 0;

 int wasRcpt = 0;

 /* Note that we are letting the HELO get through, then we are currently

 modifying the RCPT message so that the sendmail will reject the message

 Note: would like to modify the current sk_buff to tell our mailer QUIT

 when we reject a message

 */

 int dataLenCntr=0;

 int skbLenCheck = skb->len - 9;

 for (; dataLenCntr < skbLenCheck; ++dataLenCntr)

 {

 if (((dataPtr[dataLenCntr+0] == 'M') || (dataPtr[dataLenCntr+0] == 'm')) &&

 ((dataPtr[dataLenCntr+1] == 'A') || (dataPtr[dataLenCntr+1] == 'a')) &&

 ((dataPtr[dataLenCntr+2] == 'I') || (dataPtr[dataLenCntr+2] == 'i')) &&

 ((dataPtr[dataLenCntr+3] == 'L') || (dataPtr[dataLenCntr+3] == 'l')) &&

 ((dataPtr[dataLenCntr+4] == ' ')) &&

 ((dataPtr[dataLenCntr+5] == 'F') || (dataPtr[dataLenCntr+5] == 'f')) &&

 ((dataPtr[dataLenCntr+6] == 'R') || (dataPtr[dataLenCntr+6] == 'r')) &&

 ((dataPtr[dataLenCntr+7] == 'O') || (dataPtr[dataLenCntr+7] == 'o')) &&

 ((dataPtr[dataLenCntr+8] == 'M') || (dataPtr[dataLenCntr+8] == 'm')) &&

 ((dataPtr[dataLenCntr+9] == ':'))

)

 {

 wasMailfrom = 1;

 break;

 }

 else if (((dataPtr[dataLenCntr+0] == 'R') || (dataPtr[dataLenCntr+0] == 'r')) &&

 ((dataPtr[dataLenCntr+1] == 'C') || (dataPtr[dataLenCntr+1] == 'c')) &&

 ((dataPtr[dataLenCntr+2] == 'P') || (dataPtr[dataLenCntr+2] == 'p')) &&

 ((dataPtr[dataLenCntr+3] == 'T') || (dataPtr[dataLenCntr+3] == 't')) &&

 ((dataPtr[dataLenCntr+4] == ' ')) &&

 ((dataPtr[dataLenCntr+5] == 'T') || (dataPtr[dataLenCntr+5] == 't')) &&

 ((dataPtr[dataLenCntr+6] == 'O') || (dataPtr[dataLenCntr+6] == 'o')) &&

 ((dataPtr[dataLenCntr+7] == ':'))

)

 {

 wasRcpt = 1;

 break;

 }

 }

 if (wasMailfrom || wasRcpt)

 {

 /* name is denoted by <user@address> */

 int charsChecked=(dataLenCntr);

 unsigned char *addyStart=NULL;

 unsigned char *rcptAddyStart=NULL;

 /* find the start of the name '<' */

 dataPtr += charsChecked; /* might as well start about where we know we should */

 while ((charsChecked < skb->len) && (*dataPtr != '<'))

 {

 ++dataPtr;

 ++charsChecked;

 }

 printk(KERN_CRIT "***was a MAIL FROM line:%d\n", __LINE__);

 addyStart = ++dataPtr;

 rcptAddyStart = addyStart;

 if (charsChecked < skb->len)

 {

 while ((charsChecked < skb->len) && (*dataPtr != '>'))

 {

 ++dataPtr;

 ++charsChecked;

 }

 }

 if (charsChecked < skb->len)

 {

 #define MAX_EMAIL_ADDRESS_LENGTH 100

 int lengthOfAddy = (int)(dataPtr - addyStart);

 int i;

 unsigned char addyCopy[MAX_EMAIL_ADDRESS_LENGTH + 1];

 if (lengthOfAddy > MAX_EMAIL_ADDRESS_LENGTH)

 {

 lengthOfAddy = MAX_EMAIL_ADDRESS_LENGTH;

 }

 for (i = 0; i < lengthOfAddy; ++i)

 {

 addyCopy[i] = *addyStart++;

 }

 addyCopy[i] = '\0';

 printk(KERN_CRIT "=======mailer's addy: %s line:%d\n", addyCopy, __LINE__);

 /* now that we have the sender's address, lets check it against the database */

 /* ??? needs to be modified to use the module as a database (see Frank) */

 /* was a spammer, so bail out without copying message

 otherwise fall through to the standard handling

 change this to not just bail out, but instead send QUIT

 message to our port25 (by modifying the sk_buff)

 */

 /* for this project just check the addy for hardcoded source */

 if (wasMailfrom &&

 (addyCopy[0] == 'j') &&

 (addyCopy[1] == 'd') &&

 (addyCopy[2] == 'r') &&

 (addyCopy[3] == 'u') &&

 (addyCopy[4] == 'p') &&

 (addyCopy[5] == 'p'))

 {

 /* ??? have to send a tcp reply with a non-ok message (not 250)

 looks like 550 is probably the best:

 550 Requested action not taken: mailbox unavailable

 [E.g., mailbox not found, no access]

 */

 /* store sender's ip and port in statics, then check future RCPT for that

 IP/port, then modify the person they are checking for to be an invalid user

 */

 spammerIp = skb->nh.iph->saddr;

 spammerPort = skb->h.th->source;

 /* NOTE: the following code is very not good, hangs the kernel */

 #if 0

 struct msghdr notOkMsg;

 struct iovec notOkiovec;

 *addyStart++ = 'S';

 *addyStart++ = 'P';

 *addyStart++ = 'A';

 *addyStart++ = 'M';

 *addyStart++ = 'M';

 *addyStart++ = 'E';

 *addyStart++ = 'R';

 notOkMsg.msg_name = "mailer"; /* ??? Not sure */

 notOkMsg.msg_namelen = 7;

 notOkiovec.iov_base = "550";

 notOkiovec.iov_len = 4;

 notOkMsg.msg_iov = & notOkiovec;

 notOkMsg.msg_iovlen = 5;

 notOkMsg.msg_control = NULL;

 notOkMsg.msg_controllen = 0;

 notOkMsg.msg_flags = 0;

 /* tcp_sendmsg(sk, ¬OkMsg, sizeof(notOkMsg)); /* ??? sz prolly wrong */

 /* instead of this skip_copy, it might be better to

 modify the sk_buff to have a connection closed message

 this would certainly make the mailer happier

 would want to make data contain QUIT

 */

 skb->data[0] = 'Q';

 skb->data[1] = 'U';

 skb->data[2] = 'I';

 skb->data[3] = 'T';

 skb->data[4] = ' ';

 skb->data[5] = ' ';

 #endif

 /* let the time outs take care of lack of messages

 just let the caller know was a spammer, then they can eat the skb

 */

 return 10; /* return non zero, to indicate was a spammer */

 }

 else if (wasRcpt)

 {

 if ((spammerIp == skb->nh.iph->saddr) && (spammerPort == skb->h.th->source))

 {

 while ((rcptAddyStart <= dataPtr) &&

 (rcptAddyStart <= &(skb->data[skb->len-1])) &&

 (rcptAddyStart >= skb->data) &&

 (*rcptAddyStart != '@')

)

 {

 printk(KERN_CRIT "++++++ modifying skb, old: %c line:%d\n", *rcptAddyStart, __LINE__);

 *rcptAddyStart = 'x';

 printk(KERN_CRIT "++++++ modifying skb, new: %c line:%d\n", *rcptAddyStart, __LINE__);

 ++rcptAddyStart;

 }

 }

 spammerIp = 0;

 spammerPort = 0;

 }

 else

 {

 spammerIp = 0;

 spammerPort = 0;

 }

 }

 }

 }

#endif

 return 0;

}

static void tcp_prequeue_process(struct sock *sk)

{

 struct sk_buff *skb;

 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

 net_statistics[smp_processor_id()*2+1].TCPPrequeued += skb_queue_len(&tp->ucopy.prequeue);

 /* RX process wants to run with disabled BHs, though it is not necessary */

 local_bh_disable();

 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)

 {

 int spamrc = 0;

 printk(KERN_CRIT "-----from prequeue line:%d\n", __LINE__);

 if (sk->num == 25)

 {

 spamrc = spam_check(sk, skb);

 }

 /* We were going to just eat the skb and continue but this seems to kill

 the kernel

 */

 /*if (spamrc == 0)*/

 {

 sk->backlog_rcv(sk, skb);

 }

 /*else*/

 {

 /*tcp_eat_skb(sk, skb);*/

 }

 }

 local_bh_enable();

 /* Clear memory counter. */

 tp->ucopy.memory = 0;

}

root_fs

linux

Linux

working UML

changes to

� � HYPERLINK "http://user-mode-linux.sourceforge.org/" \t "_parent" �http://user-mode-linux.sourceforge.org� The user mode linux webpage

� � HYPERLINK "http://www.linux-mag.com/2001-04/user_mode_01.html" \t "_parent" �http://www.linux-mag.com/2001-04/user_mode_01.html� An extremely helpful article about setting up UML with a step by step example

� � HYPERLINK "http://www.linuxvalley.it/encyclopedia/meteokernel/kernel24/doc24/networking/ethertap.txt" ��http://www.linuxvalley.it/encyclopedia/meteokernel/kernel24/doc24/networking/ethertap.txt�

� � HYPERLINK "http://www.linuxfromscratch.org/" \t "_parent" �http://www.linuxfromscratch.org� A comprehensive webpage about setting up a linux kernel from scratch. This webpage helped with setting up the networking files.

� � HYPERLINK "http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html" \t "_parent" �http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html� An extremely valuable document about the linux IP networking layer

� � HYPERLINK "http://www.faqs.org/rfcs/rfc821.html" \t "_parent" �http://www.faqs.org/rfcs/rfc821.html� The RFC 821 for the SMTP protocol

� � HYPERLINK "http://hints.us.linuxfromscratch.org/hints/sendmail.txt" ��http://hints.us.linuxfromscratch.org/hints/sendmail.txt�

