“Processes and Threads”

Communication networks challenge computer scientists to find the fastest and most efficient way to transfer data from one source to another. In the UNIX environment there are two choices for multi-programming, which are processes and threads.

We will discuss how to use processes, advantages and disadvantages of processes, how to use threads, the advantages and disadvantages of threads, and a conversion from process to thread example.

PROCESSES

According to Tanenbaum, a process is an abstraction of a running program (p. 71). In an operating system a process can be in the following three states: running, ready, or blocked. Running is when the process is actually using the CPU at that instant. Ready is when the process is temporarily stopped to let another process run. Blocked is when a process is unable to run until some external event happens.

Figure1. Process States

The operating system maintains a process table with one entry per process. Each process entry contains information about the process’ state, its program counter, stack pointer, memory allocation, and etc.

Processes in UNIX are also known as heavyweight because they are expensive in time and memory. In UNIX a new process can be created by fork() or clone().

According to man fork (), “creates a child process that differs from the parent process only in its PID and PPID, and in the fact that resource utilizations are set to 0. File locks and pending signals are not inherited.” On success fork() returns a 0.

The figure below shows how the operating system creates a process with fork()

Figure 2. Allocation of Process A and Process B

According to man clone(), “creates a new process like fork(2) does. Clone allows the child process to share parts of its execution context with its parent process, such as memory space, the table of file descriptors, and the table of signal handlers.”

EXAMPLES OF PROCESSES

The following is an example using fork():

pid=fork();

/*if the fork succeeds, pid >0 in the parent*/

if (pid <0){

handle_error();
/*fork failed*/

}else if (pid >0){

foo();

/*parent code*/

}else{

foo2();

/*child code goes here*/

}

Clone() is a very sophisticated function. The following is the clone(2) prototype:

int clone(int (*fn) (void * arg), void *childstack, int flags, void *arg).

Various flag constants can be used in order to specify what is shared between the parent and child process. If CLOVE_VM is set, the parent and child process share the same memory space. If CLONE_FILES is set, the parent and child process share the same file descriptor table. There are many are many other flags that can be used with clone(). In the Linux system the creation of new threads through clone() is almost always guaranteed to be faster than fork(), since the kernel executes a clone(0) in the fork() system-call.

The following is an example on how to call clone():

Pid=clone(function, stack_ptr, sharing_flags, arg);

ADVANTAGES/DISADVANTAGES OF PROCESSES

The first advantage is the operating system normally protects processes from one another. So if one process corrupted its own memory space the other processes will not suffer. The second advantage in using processes is they provide each computation with its own virtual machine, allowing computations to be independent. A third advantage is that the processes can run on different machines, unlike threads that have to run on the same machine.

The biggest disadvantage of using processes is that they are expensive in resources and time. Processes hog up memory.

THREADS

A thread is a semi-process that has its own thread id, stack, registers, program counter, and executes a given piece of code. Unlike a real process, threads share memory with other threads. A process can have many threads. All threads within a process will share memory, open file/socket descriptors, signal handlers, and working environment. All threads within a process will execute in parallel.

Threads in UNIX are also known as lightweight processes because they do not require a lot of memory or startup time. In UNIX pthread_create() creates a thread.

According to man pthread_create(), “creates a new thread of control that executes concurrently with the calling thread. The new thread applies the function start_routine passing it arg as first argument.” On success a 0 is returned. The figure below shows how the operating system creates a process with pthread_create():

Figure 3. Allocation of Process A with Threads.

THREAD EXAMPLE

The following is an example using pthread_create():

Void * doit(void* data)

{

 int me=*((int*) data);

 printf(“’%d’ – Got ‘%d’, me);

}

Int main(int argc, char *argv[])

{

int thr_id;

/*id thread*/

pthread_t thread;

/*thread structure*/

int a=1;

/*thread 1 identifying number*/

int b=2;

/*thread 2 identifying number*

thr_id=pthread_create(&thread, NULL, doit, (void *)&a) !=0){

doit((void *)&b);

return 0;

}

ADVANTAGES/DISADVANTAGES OF THREADS

The first thread advantage is that they are cheaper to create in resources. A second advantage is threads allow parallel programming. For instance, one thread can be doing a computation, while another thread waits for I/O to complete. The parallel advantage can simplify programming. For instance, the producer/consumer problem is easier to solve by coordinating threads, rather than by a single process that does everything. A third advantage is context switching between threads is much faster than context switching between processes. For context switching among threads there are no page or segment table manipulations, no flushing of the associate memory cache because of sharing memory, and no copying of data when exchanging messages among threads because of sharing memory.

Sharing the same memory space can be a disadvantage. For instance if one thread corrupts the memory space all the other threads in the group will suffer as well. The operating system does not protect one thread from another thread like it does for processes. Another disadvantage is all the threads have to run on the same machine.

CONVERSION FROM PROCESS TO THREADS

The following was taken from homework three assigned by Mr. Chow. We will simulate two stream clients to one stream server which forks child process to process each request. Sanluis will be the server. Zeppo will be one of the stream clients. Zeppo is a SUN Enterprise Server with Ultra SPARC. Wetterhorn will be the other stream client. Wetterhorn is a LinuxPC with Dual Pentium II 500MHz, 128MB.

First set up istrslowj server on sanluis. At the sanluis prompt enter istrslowj –d –f. The message “socket has port #”, will appear. Secondly, telnet to Wetterhorn and type in the following command: timeI386/ists –d –n 10 sanluis port#. Thirdly, telnet to Zeppo and type in the following command: time SPARC/ists –d –n 10 sanluis port#. Simultaneously hit enter for both Wetterhorn and Zeppo. It approximately takes 10 seconds using fork() to send 10 messages from client to the server.

ISTRSLOW.c with fork()

The following are portions from istrslow.c:

 do {

 msgsock = accept(sock, (struct sockaddr *)&from, &length);

 if (debug) {

 printf("accept request from \n");

 printsockaddr(&from);

 }

 if (msgsock == -1) { perror("accept"); exit(2);}

 if (forkflag) {

 if (fork()==0) {

 close(sock);

 doit(msgsock);

 exit(0);

 }

 } else {

 doit(msgsock);

 }

 close(msgsock);

 }

 while (TRUE);

ISTRSLOWJ.c with pthread_create

Set up the server and clients as before. Compile istrslowj.c. In order to compile it you must also link it to lpthread. The command line is sanluis>cc istrslowj.c –lpthread

Execute it with the command sanluis> a.out –d –t. The message “socket has port #”, will appear.

 There are some bugs in the program using threads. It works for two clients sending the server messages. The server receives all the messages, but does not send an acknowledgment message for the last message to the last client. It approximately takes 10 seconds using pthread_create() to send 10 messages from client to the server.

The function doit prototype needed to change to accommodate the pthread parameter. It was changed to void * doit(void *arg). I added int msgsock and needed to cast it as the following: msgsock=(int)arg;. The do loop was modified as follows:

 do {

 msgsock = accept(sock, (struct sockaddr *)&from, &length);

 if (debug) {

 printf("accept request from \n");

 printsockaddr(&from);

 }

 if (msgsock == -1) { perror("accept"); exit(2);}

 if (threadflag) {

 msgsock1=accept(sock, (struct sockaddr *)&from, &length); /*for multi-threads*/

 if (pthread_create(&iddoit, NULL, doit, (void *) msgsock)==0){

 doit((void *) msgsock1);

 close(sock);

 }

 }else{

 /* doit((void *) msgsock);*/

 }

 if (forkflag) {

 if (fork()==0) {

 close(sock);

 doit((void*)msgsock);

 exit(0);

 }

 }

 close(msgsock);

 }

 while (TRUE);

CONCLUSION

Whether to use processes or threads depends on the type of application you are implementing. Processes and threads both have their advantages and disadvantages. Hopefully, this paper will have given light on how to use both fork() and pthread_create. Attached are the files istrslow.c and istrslowj.c.

Work Cited

gcc.gnu.org/ml/java/2001-07/msg00110.html

Tanenbaum, Andrew. Modern Operating Systems.

New Jersey: Prentice-Hall, 2001.

Users.actcom.co.il/~choo/lupg/tutorials/multi-thread/multi-thread.htm

www.accessone.com/~jql/cone-faq.html
www.cs.arizona.edu/classes/cs452/spr01/thread.pdf

www.cs.cf.ac.uk/Dave/C/node22.html

www.cs.duke.edu/education/courses/spring01/cps110/slides/process/tsbloo2.htm

www.cs.rpi.edu/~hollingd/netprog/notes/threads/threads.pdf

www.cs.wpi.edu/~cs502/folcew/week4-threads/week4-threads.html

Process A

Stack

Stack

Code

Code

Global

Variables

Ready

Global

Variables

Process B

Blocked

Running

4

3

2

1

fork()

Process blocks for input

Scheduler picks another process

Scheduler picks this process

Input becomes available

Global

Variables

Code

Stack

Stack

Process A

Thread 1

Process A

Thread 2

Pthread_create()

PAGE
2

