WEB SERVICES

David Brinkmann

CS522

Due 11/28/01
3PROJECT OVERVIEW

DotNet APPLICATION
5
Web Service Basics
5
Visual Basic Applications
6
Create a Web Service
6
ETHEREAL
7
The application
7
Filters
8
Capture Filter
8
Display Filter
8
WEBBENCH
9
The application
9
Workload
9
WEB SERVICE ANALYSIS
10
Visual Basic Program
10
Web Bench Setup
14
Ethereal Setup
15
Results
15
CONCLUSION
18
REFERENCES
19

PROJECT OVERVIEW

Standardized Web services are the latest thing to come from Microsoft. As a program can call a function that are available on the computer running the program, web services are functions that reside on other computers and are accessed through the Internet. Microsoft has put together a package to assist in the development of web services through the use of standard interfaces that use established protocols. The package used is called Microsoft DotNet.

This project will explore and quantify applications that make use of Microsoft’s DotNet web service capability. This project will use two Mircosoft DotNet web service applications developed using the MS DotNet development environment and two that were developed by third parties. The second group of applications is accessed via the Internet.

The first of the two applications developed for this project are simple Visual Basic program that provides stock buy or sell recommendation. The second application provides four services. Three of the services involve mathematical calculations; the four service returns a string. The stock recommendation application illustrates how a DotNet web service is developed and how it can be accessed. The second application demonstrates the utility of a DotNet service and how remote services are integrated into a program.

The second group of applications accesses web services over the Internet. The first service returns a bodymass index given a users height and weight. The second service returns a long list of string information. This group of applications will illustrate the delay in relying on a remote services for information.

A couple of freely available network tools are used to gage the performance of the above applications. The first tool, Webbench, is used to exercise the Visual Basic web service programs. As the name suggests, Webbench provides a benchmark of the server providing the web services. It reports requests per unit of time. The Response time of these requests will be measured using another network tool, Ethereal. Ethereal provides a detailed accounting of network activity. This tool will be used to get representative timing of http transfers and requests.

Figure 1, Project Environment

The diagram above illustrates the environment in which this project was completed. Square objects are servers and ovals are the analysis tools. The network is labeled. Wind is the base test machine on which all measurements will be made. Wind has the Ethereal and Webbench software packages. Wait is the WINNT web server and box labeled “remote” is the remotely accessed machines that provide the third party web services.

The rest of the paper is as follows. A discussion of the DotNet applications is followed by an introduction to the two network tools that are used. The Web analysis section provides the results and observations. The projects conclusions are last.

DotNet APPLICATION

The beta release of Mircosoft DotNet development environment that is available allows the user to program web services in a number of different languages. Visual C++, C#, and Visual Basic are among the most popular. The applications used in this project were developed using Visual Basic. The reasons Visual Basic was chosen was first for simplicity and second because it is the easiest to learn in a short amount of time.

DotNet is Microsoft's platform for XML Web services that uses Internet standard interfaces and protocols. The DotNet platform enables the creation and use of XML-based applications. Web sites can be setup that use and consume the services provided. Service applications provide a standard interface that is used to define the services available. This information is used by applications to create function calls to these services as one would in a local machine function call. Instead of being done on a local machine it is done across the Internet.

Web Service Basics

A web service is a model for developing and providing access via the Internet to certain server side applications. The services provided are accessed through a standard interface and they communicate by using standard web protocols and data formats. Web services use Hypertext Transfer Protocol (HTTP) and Simple Object Access Protocol (SOAP) to make data available on the Internet. It exposes different Internet objects to SOAP calls over HTTP and executes the server side function calls. Systems that support these protocols can support web service requests and transactions.

IBM and Microsoft have agreed on Web Service Description Language (WSDL) as the web service standard. WSDL is an XML format for describing network services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. The operations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an endpoint. Related concrete endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description of endpoints and their messages regardless of what message formats or network protocols are used to communicate, however, the only bindings described in this document describe how to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME[5].

Visual Basic Applications

Using the MS DotNet environment makes the creation and use of web services easy. The main focus of this project was not to create complex programs to illustrate the MS DotNet platform. The programs used in this project are simple and are used to demonstrate the basics of the DotNet environment. These programs will do all the network transactions that a more complex web service would perform.

Create a Web Service

Creating a MS DotNet service is straight forward using the Visual Development Environment. A menu button provides an option that creates a web method function call.

Public Function <WebMethod()>

The DotNet environment provides this interface and all the supporting code including a .ASMX interface file. The ASMX file provides the prospective web service consumer a list of what services are being made available and how the user interface is formatted.

After the services are written the DotNet Development environment stores the service files and other supporting documents on the WAIT NT Server in the following directories.

 C:\INETPUB\WWWROOT\DOWSERVICE

 C:\INETPUB\WWWROOT\MOREMATH

The services provide by these two programs can be accessed by pointing a browser to the following web addresses.

http://wait.uccs.edu/DowService/Service.asmx

http://wait.uccs.edu/MoreMath/Service.asmx

The response shows the user what services are available. By clicking on a particular service, the user will be supplied with a description of the function and detailed information about using the function. Included in the details is a SOAP and HTTP request and response description.

The DowService service provides investment advice given a particular stock ticker symbol. To exercise the service from a browser the following URL can be entered.

http://wait.uccs.edu/DowService/Service.asmx/GetRating?Ticker=ACE
The response is an XML encoded response that returns the investment advice sought by the service users. In this case the ACE ticker symbol was provide and the service recommends this should be bought. The XML response follows:

<?xml version=”1.0” encoding=utf-8?>

<string xmlns=”http://temuri.org/”>Buy</string>

In the Visual basic routine there are calls to an external sever. As part of a development effort, www.xmethods.com has provided links to sites that have web services available for evaluation. As part of my project I included services from http://vbws.com/services/bodymassindex.asmx and http://www.soapengine.com/lucin/soapenginex/sms.asmx. These sites provide simple services that return either an integer or a sting of information.

ETHEREAL

The application

Ethereal is a free network protocol analyzer for Unix and Windows. It allows you to examine data from a live network or from a capture file on disk. You can interactively browse the capture data, viewing summary and detail information for each packet. Ethereal has several powerful features, including a rich display filter language and the ability to view the reconstructed stream of a TCP session. A free copy of this program is available on the web at www.ethreal.com.

Ethereal knows how to read libpcap capture files, including those of tcpdump. In addition, Ethereal can read capture files from snoop (including Shomiti) and atmsnoop, LanAlyzer, Sniffer (compressed or uncompressed), Microsoft Network Monitor, AIX's iptrace, NetXray, Sniffer Pro, RADCOM's WAN/LAN analyzer, Lucent/Ascend router debug output, HP-UX's nettl, the dump output from Toshiba's ISDN routers, the output from i4btrace from the ISDN4BSD project, the output in IPLog format from the Cisco Secure Intrusion Detection System, and pppd logs (pppdump format). There is no need to tell Ethereal what type of file you are reading; it will determine the file type by itself. Ethereal is also capable of reading any of these file formats if they are compressed using gzip. Ethereal recognizes this directly from the file; the `.gz' extension is not required for this purpose[2].

Ethereal allows the user two different ways to restrict the information captured off the network. The first way is to enable and disable the capture of different protocols. Ethereal has an array of 217 different protocols that it can monitor. Each of the protocols can be enabled or disabled. There is a catch, if protocol is disabled, then all sub-linked protocols are too. What this means is that if TCP is not enabled anything that uses TCP will be disabled as well.

The second method of packet restriction is to define a filter. A filter allows the user to capture packets with certain attributes. For example a filter can be written to only capture packets with a certain sources address. The user-defined filters can be applied at all protocol levels.

The captured data is displayed in three windows. One display shows all network packets that the capture filter allowed through. Another display shows a summary line, briefly describing what the packet is. A third display shows the different layers of the network protocol. These displays give the user the visibility from the Ethernet layer all the way to the HTTP layer. All the information fields are further broke out in the form of a hex dump shows. The hex dump shows exactly what the packet looks like when it goes over the wire.

Filters

Although filters were not used in this project a brief description of how user defined filters appear is included.

Capture Filter

dst host sbucxoa.cxo.cpqcorp.net

This filter will filter out all traffic not from the above address. All capture filters are defined in the same way that tcpdump filters are defined.

After the capture has completed the details of specific transactions can be looked at through the use of a display filter.

Display Filter
A display filter can be entered into the strip at the bottom. A filter for HTTP, HTTPS, and DNS traffic might look like this:

 tcp.port == 80 || tcp.port == 443 || tcp.port == 53

If Ethereal is used in a more complex environment these filtering capabilities would add a great deal of help in network analysis.

WEBBENCH

The application

WebBench lets you measure Web server software performance by running different Web server packages on the same server hardware or by running a given Web server package on different hardware platforms. WebBench's standard test suites produce two overall scores for the server: requests per second and throughput as measured in bytes per second. As WebBench is distributed, it provides both static standard test suites and dynamic standard test suites that execute applications that actually run on the server. Webbench also provides the ability for the user to customize a test suite to analyze a particular workload. The Webbench application clients must be running either Windows 95/98 or Windows NT/3w2000 and the controller must be running Windows NT or Windows 2000. The server workload can be run on Windows NT, True 64Unix, Mac OS, Mac OS X, and IntranetWare servers. Unix support on True64 with the IRIX service, linux on x86 processor, and Soloaris on the SPARC or x86 processor[1].

In this project, the Webbench standard test suit is not used. The server side applications are the Visual Basic applications developed for this project. The Webbench client side is fully employed. The Webbench client side application comes in two parts, the controller and the client programs. The controller orchestrates the workload between the client and the server. The client receives requests from the controller that are then sent to the server. The Server provides the information and the client report to the controller and the statistics are gathered.

Workload

Flexibility is built into the Webbench program. This project will create a workload from which the Webbench controller will work. This file is a text file that contains a series of HTTP GET and POST commands that will be requested of the server through the client.

The following is an example workload file:

DEFINE_CLASSES

CLASS_223.gif: 60

CLASS_735.gif: 40

DEFINE_REQUESTS

CLASS_223.gif:

GET http://www.myserver.com/wbtree/6040_1.htm
GET /wbtree/223_1.gif

GET /wbtree/zdwb_1/223_1.gif

GET /wbtree/zdwb_1/zdwb_1/223_1.gif

CLASS_735.gif:

GET /wbtree/735_1.gif

GET /wbtree/zdwb_1/735_1.gif

GET /wbtree/zdwb_1/735_2.gif

In the DEFINE_CLASSES section, you associate a request percentage with each class in the workload file. The request percentages must total 100. Make sure the section DEFINE_CLASSES contains all the classes listed in the section DEFINE_REQUESTS.
In the DEFINE_REQUESTS section, you create the classes. Any class listed in the section DEFINE_CLASSES must be defined in this part of the workload file. A class consists of a list of one or more HTTP requests. For WebBench, classes use GET web site directories or sites as requests

WEB SERVICE ANALYSIS

This project will use Visual basic DotNet, Web Bench, and Ethereal to characterize a custom web service and two third party web services. I developed four applications that use and provide DotNet web services. Two of the applications use third party web services. The services are requested at page load time. One returns a list of telephone country codes and the second returns very little data, an integer.

The other two applications provide simple web services. The first one returns a string or performs a simple math operation. The second returns investment advice. These applications were chosen to because they provide variety in the workload that Webbench and Ethereal will measure.

Visual Basic Program

Two different programs were written to observe the behavior of the DotNet application. The first application calculates a body mass index. This service requires two input parameters, weight and height, and returns an integer. The second gets list of country calling codes. GetCountryCodes application takes no parameters and returns a long list. Both of these programs make a call to their respective services when the page is loaded. The relevant parts of these programs appear below in listings 1 to 4.

Dim Mass_Ref As String

Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox

Dim WebRef1 As New bodymass.com.vbws.www.BodyMassIndex()

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 Mass_Ref = WebRef1.BodyMassIndexCalc(210, 74)

 TextBox1.Text = Mass_Ref

End Sub

Listing 1, BodyMassIndex

Dim T As String

 Dim helpme As New Use_soap.com.soapengine.www.smsx()

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 T = helpme.GetCountryCodes

 TextBox1.Text = T

 End Sub

Listing 2, GetCountryCodes

The next two listing are the simple web services that are example programs from a tutorial document in the Network Lab. These example programs are modified for the purpose of this project. Listing 3, Math and More, provide three math functions and another that returns the string “Hello world”. Listing 4, provides a “Buy” or “Sell” rating on a stock ticker symbol.

Public Class Service1

 Inherits System.Web.Services.WebService

 <WebMethod()> Public Function HelloWorld() As String

 HelloWorld = "Hello World"

 End Function

 <WebMethod()> Public Function Add(ByVal int1 As Integer, ByVal int2 As Integer) As Integer

 Return (int1 + int2)

 End Function

 <WebMethod()> Public Function Mult(ByVal int1 As Integer, ByVal int2 As Integer) As Integer

 Return (int1 * int2)

 End Function

 <WebMethod()> Public Function Squr(ByVal int1 As Integer) As Integer

 Return (int1 * int1)

 End Function

End Class

Listing 3, Math and More

Public Class Service1 Inherits System.Web.Services.WebService

 <WebMethod()> Public Function GetRating(ByVal Ticker As String) As String

 If Ticker = "Ace" Then

 Return "Buy"

 Else

 Return "Sell"

 End If

 End Function

End Class

Listing 4, DowService

The web services used HTTP to gain access to the services. The following listings are the “.AMSX” files automatically provided by the service application and it shows exchange that is performed. Each of the functions that the web service provides has an interface document. The GET command is how the client requests the service and what format is expected. The last two lines are what the client receives. The response is in a XML format. The “string”/”int” in the information the client wants, the rest is XML formatting.

The “.ASMX” file also shows other request formats that are available. The services written for this project have SOAP, GET HTTP, and POST HTTP interfaces. There are some similarities. This project is only concerned with the HTTP GET interface.

HTTP GET

The following is a sample HTTP GET request and response. The placeholders shown need to be replaced with actual values.

GET /DowService/service1.asmx/GetRating?Ticker=string HTTP/1.1

Host: localhost

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length
<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://tempuri.org/">string</string>

Listing 5, Dowservice.asmx

HTTP GET

The following is a sample HTTP GET request and response. The placeholders shown need to be replaced with actual values.

GET /moremath/service1.asmx/Squr?int1=string HTTP/1.1

Host: localhost

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length
<?xml version="1.0" encoding="utf-8"?>

<int xmlns="http://tempuri.org/">int</int>

HTTP GET

The following is a sample HTTP GET request and response. The placeholders shown need to be replaced with actual values.

GET /moremath/service1.asmx/Mult?int1=string&int2=string HTTP/1.1

Host: localhost

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length
<?xml version="1.0" encoding="utf-8"?>

<int xmlns="http://tempuri.org/">int</int>

HTTP GET

The following is a sample HTTP GET request and response. The placeholders shown need to be replaced with actual values.

GET /moremath/service1.asmx/Add?int1=string&int2=string HTTP/1.1

Host: localhost

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length
<?xml version="1.0" encoding="utf-8"?>

<int xmlns="http://tempuri.org/">int</int>

HTTP GET

The following is a sample HTTP GET request and response. The placeholders shown need to be replaced with actual values.

GET /moremath/service1.asmx/HelloWorld? HTTP/1.1

Host: localhost

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length
<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://tempuri.org/">string</string>

Listing 6, MoreMath.asmx

HTTP GET

The following is a sample HTTP GET request and response. The placeholders shown need to be replaced with actual values.

GET/services/BodyMassIndex.asmx/BodyMassIndexCalc?WeightPounds=string&HeightInches=string HTTP/1.1

Host: www.vbws.com

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length
<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://tempuri.org/">string</string>

Listing 7, BodyMassIndex.asmx

HTTP GET

The following is a sample HTTP GET request and response. The placeholders shown need to be replaced with actual values.

GET /lucin/soapenginex/GetCountryCode.asmx/GetCountryCode? HTTP/1.1

Host: www.soapengine.com

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length
<?xml version="1.0" encoding="utf-8"?>

<string xmlns="http://tempuri.org/">string</string>

Listing 8, GetCountryCode.asmx

Web Bench Setup

Web bench provide the user with the ability to create many threads of request activity to a sing server. Since this project is concerned with simple traffic, there will be no effort made to overwhelm the server with request.

Webbbench was used using three different workloads employing 1,4,and 8 client processes. The first workload makes repeated calls to the local math and dow services serviced by the WAIT NT server. The second workload calls the GetCountryCodes service provided by www.soapengines.com web site. The next workload calls BodyMassIndex provided by www.vbws.com website. The last two workloads are listed below as Listing 5, Use_soap.wl, and Listing 6, BodyMass.wl. The First workload, Listing 7, Net.wl, only shows a small part of the file.

DEFINE_CLASSES

CLASS_Soap: 100

DEFINE_REQUESTS

CLASS_Soap:

GET /Use_soap/WebForm1.aspx

Listing 9, Use_soap.wl

DEFINE_CLASSES

CLASS_BMass: 100

DEFINE_REQUESTS

CLASS_BMass:

GET /BodyMass/webform1.aspx
Listing 10, BodyMass.wl

DEFINE_CLASSES

CLASS_Dow: 50

CLASS_Math: 50

DEFINE_REQUESTS

CLASS_Dow:

#

GET /BodyMass/webform1.aspx

GET /DowService/Service1.asmx/GetRating?Ticker=Ace

GET /DowService/Service1.asmx/GetRating?Ticker=CPQ

…

CLASS_Math:

Get /moremath/Service1.asmx/add?int1=1&int2=4

Get /moremath/Service1.asmx/HelloWorld?

Get /moremath/Service1.asmx/squr?int1=2&int2=77

Get /moremath/Service1.asmx/Mult?int1=5&int2=4

Listing 11, Net.wl

Ethereal Setup

The following network protocols will be enabled while capturing data. These protocols will show enough of the individual transaction to find points of congestion in the requests.
Ethernet

IP

TCP

UDP

HTTP

To limit the amount of data captured all captures start by setting the number of packets to 1000 and the amount of data capture to 2000 bytes.

Even though Ethereal has a great capacity for both display filtering and capture filtering, this project did not employ any of them because of time and system availability.

Results

The test suites used were setup to issue server calls using 1, 4, and 8 clients all with single client engines. Setting up the test this way will focus the results of the test more on how long request take to be satisfied without exposing any weaknesses in the server.

Running the Net.wl workload illustrates the speed at which locally served web services can return results.

 # of Clients

Req/Sec

1

208

4

209

8

208

The typical local web service transaction takes about 2.43 milliseconds. This Test is a best case for this project. A small amount of data is transferred from a server that is on the same subnet. Below is one of the transactions as captures by Ethereal. The time column shows the time difference since the start of capturing.

No. Time Source Destination Protocol Info

965 35.698611 controller server HTTP GET /moremath/Service1.asmx/Mult?int1=5&int2=5 HTTP/1.0

966 35.701041 server controller HTTP HTTP/1.1 200 OK

The next run used a modified Net.wl workload. Add to Net.wl was a single reference to the BodyMassIndex web service served by www.vbws.com. The number of request per second served drops dramatically. With the addition of one call to a non-local web service the request rate drops by 70%. This is an illustration of what could happen when a DotNet application has to leave the local network to use a remote service.

of Clients

Req/Sec

1

68

4

63

8

67

No. Time Source Destination Protocol Info

1167 131.470971 controller server HTTP GET /Bodymass/webform1.aspx HTTP/1.0

1168 131.653713 server controller HTTP HTTP/1.1 200 OK

The addition of the single reference is fast, 183 millisecond, but it is two orders of magnitude slower than the local service.

The next question to ask is what happens when only remotely served web services are requested? The next two workloads load remotely served web services. Workload bodymass.wl shows that only 4.3 request per second are serviced. This service returns a single integer. This would suggest that remote web service can slow an application if this service is requested many times.

of Clients

Req/Sec

1

4.3

4

4.3

8

4.3

The final workload is Use_soap.wl. This workload requests from www.soapengine.com a list of telephone country codes. Because the amount of information that is return, this workload represents the worst throughput in this project. The request rate is better best evaluated in terms of request per minute.

of Clients

Req/minute

1

2

4

2

8

2

No. Time Source Destination Protocol Info

126 16.722112 controller server HTTP GET /Use_soap/WebForm1.aspx HTTP/1.0

…

256 39.080518 server controller HTTP Continuation

This example is one transfer and consumed 22.35 seconds. There are not to many applications that exist today that can afford to wait this long for a small table of information.

CONCLUSION

First and foremost, this project has been a learning experience. Prior to this project I knew nothing of the Microsoft DotNet environment, Visual Basic or any of the tools used in the analysis portion. Unfortunately with so much time devoted to learning the tools, less time was spent on the analysis.

This project does illustrate a few interesting points. First Web services will need to make judicious use of the Internet. Applications that are going to rely on Internet web services are going to have to keep their information content size small. As illustrated in this project large quantities of information can slow things down. The inherent flexibility that DotNet provides gives programmers the option of using local functions and remote functions. Applications will have to make allowances for those times when the Internet is not available. As an example of this problem, this project experienced delay when the GetCountryCodes service was not available. Finally, the bandwidth of the Internet will have to support many more applications that will make routine use of web services.

The bottom line for the success of web service applications is the Internet and the hardware that allows it to run. Web services will have to provide an appropriate amount of data given the stability and available bandwidth of the Internet.

REFERENCES

1. http://www.etestinglabs.com/benchmarks/webbench/webbench.asp

2. http://www.ethereal.com

3. http://www.soapengine.com/lucin/sopaenginex/sms.asmx

4. http://msdn.microsoft.com
5. http://www.w3.org/TR/wsdl.html
6.http:// www.soapengines.com
7.http://www.vbws.com

8. Leon-Garcia and Widjaja: Communication Networks
Ethereal

Webbench

Internet

WIND

WAIT

.net app/service

Remote

.net service

PAGE
10

