A Multipath Routing Scheme Using Distributed Multipath Proxy Servers

A CS522 Project

by

Brett Wilson

University of Colorado – Colorado Springs

7 Dec 2001

A Multipath Routing Scheme Using Distributed Multipath Proxy Servers

Table of Contents

3Introduction

5SOCKSv5 protocol

6Design and Operation of the Multipath Routing Scheme

7Handling the Client Request

7Design Decision

7Design Considerations

8Requesting a Multipath Connection

8Design Decision

8Design Considerations

9Responding to the Multipath Connection Request

9Design Decision

9Design Considerations

9Establishing the Multipath Connection

9Design Decision

10Design Considerations

10Transfer of Data Across the Multipath Connection

10Design Decision

11Design Considerations

11Closing the Multipath Connection

11Design Decision

11Design Considerations

12The Multipath Protocol (MPP)

14Project Conclusions

Table of Figures

4Figure 1 - Multipath Routing Scheme Using Multipath Proxy Servers

13Figure 2 - Required Capabilities of the Multipath Protocol (MPP)

Introduction

In the internet today, typical communication between client and server is established using a single TCP/IP connection that is used for the duration of the data transfer. This type of connection is single path in that it traverses a defined route across the network. If this route contains a bandwidth bottleneck at some point, the communication speed suffers, as there is no alternative route available.

Multipath routing, on the other hand, involves the set-up of a connection consisting of more than one routing path across the network. The aggregate bandwidth of the multiple routes is then available to the communicating hosts. The slowdown of data transfer through an individual route due to a bottleneck bandwidth is then compensated for by increasing utilization of the other links.

There are numerous approaches to implement multipath routing. Johnny Chen provides one method utilizing a new transport protocol based on TCP (MPTCP) and network level router modifications.
 There are many different options for implementing multipath routing at the transport layer, supported by changes in the application layer. All of the methods investigated prior to this study involve fundamental changes in the host application, transport, or network levels. Given the scope of the current internet, it would be a monumental task to promote these methods into widespread use without impacting current network usage. The focus of this study is the development of a multipath routing scheme that can be implemented in today’s internet environment, invisible to the host application and other network layers.

The multipath routing concept discussed in this study involves the set-up of a connection using multiple routes through “multipath proxy servers” located throughout the network. The general concept is outlined in Figure 1 for a multipath connection utilizing 3 independent paths. By utilizing proxy servers to relay data between source and destination, multipath routing can be implemented simply by installing the multipath proxy software on multiple paths between source and destination. No changes to the client programs or modifications to the lower network layers are required.

However, there are obvious limitations to this approach to multipath routing. First, the multipath servers must be distributed throughout the intended network, and any application wishing to use the multipath routing capability must have authorization to use these servers. Furthermore, the placement of these servers will be critical to the performance. As can be seen in Figure 1, the effective bandwidth limit of the multipath connection will be limited by the slowest connection between the end hosts and their assigned multipath servers, since these are single path connections.

[image: image1.wmf]Source

Multipath

Proxy Server

Multipath Relay Proxy

Server

Multipath Relay Proxy

Server

Multipath Relay Proxy

Server

Multipath

Proxy Server

Destination

Figure 1 - Multipath Routing Scheme Using Multipath Proxy Servers
Given the time constraints of this project, the primary focus will be to investigate the design of such a multipath routing system with the objective of determining the feasibility and complexity of an actual implementation. Further research and actual development and testing will be necessary in order to compare and evaluate performance.

This paper will first present an overview of the SOCKSv5 proxy protocol to provide the user a basis for understanding the proxy concept and become familiar with terminology used later in the paper. Following the overview will be a discussion of the conceived design of the multipath routing system, and a discussion of the issues surrounding each design decision.

SOCKSv5 protocol

Typically, a proxy server is installed as a link between a particular network and the internet. Its primary use is generally as a method to securely traverse a firewall between the internet and a particular network, and to provide caching services for often requested data.

In order to use a proxy server, the client must be configured to route particular application protocol requests through a proxy server capable of handling that protocol. Many proxy servers today provide a wide variety of protocol support, to include HTTP, FTP, TELNET, and others. For each particular protocol, the proxy server must include additional capabilities to handle that protocol. Such proxy servers become more and more complex as additional protocol support is added.

In order to remove this complexity, and maintain the primary function of the proxy server as a secure link in and out of a network, the SOCKSv5
 protocol was developed. The intent of SOCKSv5 is to provide a general framework for any protocol to transparently and securely traverse a firewall. Use of the SOCKSv5 protocol requires that the client support the SOCKSv5 proxy protocol. Many popular HTTP, FTP, and TELNET clients today have built-in support for the SOCKSv5 protocol. It is also possible to easily compile in SOCKSv5 support to an existing application through substitution of the SOCKSv5 networking library, or even include support at runtime through use of DLLs in an MS Windows environment
.

The SOCKSv5 protocol is used by the client to request data relay to a remote destination by issuing a CONNECT request. The SOCKSv5 server evaluates the request and, if approved, sets up a connection to the remote destination, and sends a response to the client indicating the success or failure of the connection. After the SOCKSv5 server has established the remote connection, it simply becomes a relay server to the destination, relaying outgoing packets from the client to the destination, and vice versa.

In addition to a connect request, the client can also request that the server open a port to receive an incoming connection using the BIND request. If the server successfully opens the port, it replies to the client with the opened address and port number. The client can then use this information to inform a remote application of the receiving address and port. The remote application can then establish a connection to the port and relay data, which the SOCKSv5 server relays to the client. The primary use of this type of SOCKSv5 service is in support of the FTP protocol, which requires that the client accept a connection from the remote FTP server for data transfer, as well as maintain the original control connection.

To support the UDP transport layer protocol, SOCKSv5 also specifies a UDP ASSOCIATE request to be used in establishing a UDP relay service through the SOCKSv5 server.

The SOCKSv5 protocol also supports proxy chaining, where a SOCKSv5 server directs a request through another SOCKSv5 server, and that server in turn may direct the request through another SOCKSv5 server. This capability is exactly what is required in the mulitpath routing scheme discussed in this paper, and is one of the main reasons the SOCKSv5 protocol was selected.

Design and Operation of the Multipath Routing Scheme

In order to establish a general understanding of the concept proposed here, the following paragraphs will summarize the operations necessary to set up and utilize multiple connections between two servers. For each operational phase, the design decision will be discussed as well as the various issues that were considered in making the decision.

To be fully compatible with the SOCKSv5 protocol, the multipath proxy server must implement the three types of SOCKSv5 client requests: CONNECT, BIND, and UDP ASSOCIATE. The CONNECT request is the most common and will be addressed in this paper in detail. Further research could discuss design modifications or extensions required for extending the multipath proxy server to incorporate the BIND and UDP ASSOCIATE requests, which are required for FTP and streaming data services.

Handling the Client Request

Design Decision

In this multipath routing concept, the source host, or the message originator, must request a connection to the remote destination through its local multipath proxy server using the standard SOCKSv5 CONNECT request. Upon receiving a connection request from a client the multipath proxy server must determine whether a multipath route has been designated to the requested destination. This determination could be made by examining configuration files present on the server. If no multipath route is defined, the connection request is handled as defined by the SOCKSv5 protocol, and a single connection is set up directly to the requested destination. The multipath proxy server operates as a standard SOCKSv5 server in this instance.

Design Considerations

It is obvious that the cost of setting up a multipath route will be unacceptable for the transfer of small messages. In the SOCKSv5 protocol, the proxy server is not aware of the size of the message to be sent when the client first requests a connection, so it is impossible at this point to determine whether the setup of the multipath route will be advantageous. It is also not possible to determine the size of the response message that may be returned over the connection in the other direction, so the design decision was made to always set up the multipath connection if one exists. To help overcome the delays of setting up the multipath connection, the server will begin relaying data over an initially established single connection as the other multipath connections are being established.

Another problem to address is how to determine the optimal multipath route between two hosts is a large research project in itself. In the multipath proxy server concept, the set of servers capable of supporting the multipath routing is assumed to be known. The problem then becomes that of finding the optimal multipath route with the largest aggregate bandwidth between any two given servers. Nelakuditi and Zhang
 and others have attempted to address the issue of finding optimal multipath routes at lower levels in the network, but the author is unaware of any work done to address multipath routing at the application layer as outlined in this paper. For simplicity, the multipath routing scheme designed will assume that a configuration file is available that specifies the servers to be used for the multipath connections.

Requesting a Multipath Connection

Design Decision

If a multipath route is found in the configuration files, the server will set up a single TCP connection to the destination multipath server and send it a multipath connection request. The connection request will be issued using a new Multipath Proxy Protocol (MPP) and will contain the final destination address and port number of the receiving application as well as a multipath connection ID (MID). The MPP protocol will be used exclusively on this link to set up and manage the multipath route, as well as transfer data. Further discussion of the capabilities required of this protocol follows in the sections below and is addressed in detail in later sections.

Design Considerations

The TCP protocol will provide guaranteed sequential delivery of a data stream between applications over a single TCP connection. However, TCP can not guarantee the sequential delivery of data across separate simultaneous connections, since delays and failures will occur independently on each link. For example, suppose that a message from host A was sent across a multipath connection to host B. Host A’s multipath server could split the message into 3 packets and distribute them across 3 multipath connections. Packet 2 could reach Host B’s multipath server before packet 1 and be incorrectly delivered to host B out of order, since there is no way for Host B’s multipath server to determine the packet ordering. Furthermore, a failure of one of the multipath routes during a packet transmission could occur. In this case, the data that was being sent on that route must somehow be re-routed over one of the remaining good links. This would lead to that packet arriving much later than intended. Addressing these issues without modifications to the TCP layer or the client applications required the specification of the Multipath Protocol for communication between the multipath servers.

Responding to the Multipath Connection Request

Design Decision

When the destination multipath server receives the initial multipath connection request, it will examine the MID. If the MID is not currently in use, the server will initialize a new multipath connection by establishing a connection to the final destination. The destination server will then return an ACK message indicating the success or failure of the connection setup to the final destination.

If the destination multipath server can not use the chosen MID (already in use), or the connection to the final destination fails, an error is returned. Upon receipt of such an error, the originating server will revert to standard SOCKSv5 operations and attempt to establish a single connection to the final destination bypassing the destination multipath proxy.

Design Considerations

It is assumed in this design that each multipath server will be handling multiple simultaneous multipath connections. The multipath servers will always be listening for incoming connections on a “standard” port number. Each individual transport layer (TCP) connection will deliver its data to this port. The multipath server then needs a way to determine where this data originally came from, how to sequence it with other data from the same source, and where it is to be relayed. If each MPP packet includes a unique MID and a sequence number, the multipath server will be capable of re-assembling the original message and relaying it to its final destination.

Establishing the Multipath Connection

Design Decision

After the originating multipath server receives a successful connection setup response, the multipath routes are established. Each of these routes will be made by standard SOCKSv5 CONNECT requests to the SOCKSv5 servers that will be serving as a data relay. The relay server does not necessarily have to be a multipath server, as the data relay will be accomplished using only the existing proxy chaining functionality of the SOCKSv5 protocol. The only requirement is that the originating multipath proxy is capable of authenticating with the relay server in order to establish the connection.

The originating multipath server will request a connection through the relay server to the address and port of the multipath server on the destination machine. The destination multipath server will accept these incoming requests and assume that all incoming messages are encapsulated in the MPP protocol. As the server receives incoming packets, the intended final destination and port can be inferred through the MID. The re-assembling of the packets into the original message can be accomplished through examination of the sequence number, buffering all out of order packets until the next expected packet is received and relayed to the final destination.

Design Considerations

Several options for setting up the multipath connections were explored. One idea was to request that the originating multipath server would request that the destination multipath server open a particular number of designated sockets and then relay the address/socket numbers back to the originating server. The originating server could then request connections to these sockets. In this case, there would be no need for an MID as all connections would be directly associated with a specific multipath connection. However, after considering all of the overhead of opening and closing sockets, and the record keeping that would be necessary to keep track of socket/connection associations, it was rejected in favor of the use of the MID.

Transfer of Data Across the Multipath Connection

Design Decision

After the connections through the relay servers are established, the actual data transfer begins. The multipath servers will read data from their client connections, split it into “MPP packets” tagged with the MID and sequence number, and distribute them across the multipath connections. The multipath server at the other end must receive the data from the multipath connections, extract the MID and sequence number, re-assemble the original message and relay it to the final destination.

The MPP protocol will therefore utilize Selective Repeat ARQ to guarantee the sequential delivery of the MPP packets across the multipath connections. Each MPP packet sent across the multipath connection must then include a send and receive sequence number. The send sequence number will always contain the sequential packet number of the packet being sent, and the receive sequence number will be the number of the next sequence number that the server expects to receive from the other end.

Design Considerations

Many features of the TCP protocol will need to be included into the MPP protocol, most notably the Selective Repeat ARQ capabilities. However, one issue that has not been addressed is the need or lack of need for some type of flow control. For example, suppose that a multipath server is receiving incoming data from numerous connections that collectively represent several unique multipath connections. The incoming data rate could easily surpass that of the outgoing data rate to the final destination(s). In the multipath routing scheme described in this paper, flow control at the MPP application level can be implemented by controlled reading of the incoming socket just as in other applications. Each individual TCP connection will automatically slow (or stop) the transfer of data as its internal buffers begin to fill up from lack of a read. No other special considerations for flow control are apparent to the author at this point of the design.

Closing the Multipath Connection

Design Decision

The source and destination servers will continue to relay data until their respective client connections notify them that data transfer is complete. Upon notification from host A that the connection is to be closed, host A’s multipath server will verify that all data has been transmitted and acknowledged and then issue close requests across all multipath connections. As in TCP, host B’s multipath server can continue to transmit data which host A’s server must acknowledge. When host B’s server is finished transmitting, it will send a close request to host B’s server which is then acknowledged and all of the connections will be closed.

Design Considerations

As in a single TCP connection, when the originator is finished transmitting data, the connection should not be taken down, since a reply is usually expected. The need for a coordinated TCP-like “graceful close” is also required of the MPP protocol.

The Multipath Protocol (MPP)

As discussed previously, in order for the multipath proxy servers in the network to communicate during setup of the multipath route and effectively manage the data transfer, a new protocol is required. This protocol will reside above the TCP layer at the TCP/IP application layer and provide for the guaranteed sequential delivery of a stream of bytes across independent paths of the multipath route.

Each MPP packet will contain header information followed by data. The header will consist of the control and sequence information necessary to support connection setup and management. Because of the desire for extensibility, the header format will be very similar to HTTP
, in that each header line is separated by an ASCII 13/10. Two consecutive ASCII 13/10’s will indicate that the data is to follow. By using this format, the MPP protocol can easily support the addition of additional header information, although at the expense of larger overhead. Future refinement of the MPP protocol could possibly reformat the header into a minimal size fixed-length header to reduce the overhead cost.

Another important consideration in the design of MPP is that TCP will likely break up each MPP packet into several packets to be sent across the connection. Because of this, MPP must contain a field specifying the length of the data section in a similar manner as HTTP.

The receiver will begin with the assumption that all data being received is header information, and interpret it as such. After the two consecutuve ASCII 13/10s are received, the receiver will know that the header is complete and can then be interpreted. The receiver will then interpret all incoming data as content data up until the specified number of bytes have been read. At this time, the receiver will begin interpreting the incoming data as MPP header information.

As discussed so far, MPP will contain aspects of both TCP and HTTP. MPP must provide for the guaranteed delivery and proper sequencing of data across the multipath connection as well as account for the possibility that each MPP packet will be broken into several TCP packets. A summary of the required MPP capabilities appears in Figure 2.

	Operational Phase
	Provided Functionality
	Required Information

	
	
	

	Connection Setup
	Multipath Connection Request
	Address;Port;Multipath Connection ID (MID)

	Connection Setup
	Multipath Connection Response
	Success or Failure

	Data transfer
	Sequential delivery of data across multiple independent paths
	MID; sending sequence number; receiving sequence number

	Data transfer
	Flow Control – the ability to selectively read incoming data to avoid overfilling outgoing send buffers to the final destination
	MID/connection number associations so that the server can read only the connections from which it needs data.

	Connection Close
	Graceful connection closure – ensure that both sides have sent and acknowledge all data before the connection is released
	Close request

	
	
	

Figure 2 - Required Capabilities of the Multipath Protocol (MPP)

Project Conclusions

This project was focused on the feasibility of a multipath routing scheme using distributed proxy servers. To the depth of the design discussed here, it is obvious that the implementation will require the extensive development of proxy server software, and that these servers must be capable of communicating across the network using a new Multipath Protocol (MPP). The MPP design presented here will require many capabilities similar to those of TCP to include Selective Repeat ARQ for guaranteed sequential delivery, and similar methods of connection establishment and “graceful” connection closure.

Further research into the specific context of the MPP protocol language is required for implementation. This project described the general capabilities required, as well as an HTTP-like message structure, but the actual structure of the commands and data fields have yet to be specified. In addition, the implementation details of the Selective Repeat ARQ to be used have not been detailed.

The author believes that the development of the software required for a test implementation of this concept is quite feasible, although somewhat premature. The capability to implement this concept does not guarantee resulting performance gains. Other issues such as optimal multipath route identification and server placement must be resolved first. The choice of a bad multipath route will yield poor results no matter what the design of the application level software entails. The author feels that following research efforts should be directed toward resolving theses issues.

� RFC 1928 describing the SOCKSv5 protocol can be found at � HYPERLINK "http://www.rfc-editor.org/" ��http://www.rfc-editor.org/�

� SOCKSV5CAP software by Permeo Technologies, Inc, (� HYPERLINK "http://www.socks.nec.com" ��http://www.SOCKSv5.nec.com�) provides this service as well as several other companies.

� Johnny Chen. New Approaches to Routing for Large-Scale Data Networks, A Thesis, Rice University, June 1999

� Nelakuditi, Srihari; Zhang, Zhi-Li. On Selection of Paths For Multipath Routing, Department of Computer Science, University of Minnesota

� � HYPERLINK "http://www.w3.org/Protocols/" ��http://www.w3.org/Protocols/� contains links to HTTP RFCs and other resources.

PAGE
14

_1068620727.ppt

Source

Multipath Proxy Server

Multipath Relay Proxy Server

Multipath Relay Proxy Server

Multipath Relay Proxy Server

Multipath Proxy Server

Destination

