

 Om
An API FOR MULTIPATH ROUTING

NAME: Aparna Srikanta Swamy

DATE: 12/07/01

CS522 - Computer Communications

Term Project

Dr. Edward Chow

Table of Contents

1. Introduction………………………………………………………………………………..3

2. What is an API?.…………………………………………………………………………..4

3. Overview……………………………………………………………………………….…..4

4. Design…………………………………………………………………………………..…..4

5. Goal……………………………………………………………………………………..…..4

6. Multi Path Routing………………………………………………………………………...5

6.1.Description……………………………………………………………………………..….5

6.2. Packet Forwarding in LAN…………………………………………………………...…6

6.3. Multi Path Sender and Multi Path Receiver……………………………………………6

6.4. Figure 2……………………………………………………………………………………7

7. Usage Layer…………………………………………………………………………………8

7.1. Mulitple Paths used by two end hosts in order to gain higher performance………….8

8. Conclusion…………………………………………………………………………………...9

9. Related Literature………………………………………………………………………….10

1. Introduction:

Why Multi Path routing?

In the current Internet communication there exists only a single path route between two nodes. The chosen path for routing may not be the optimal solution, since there may be bottleneck. Since the main objective in today’s Internet is faster and reliable network service, Multi Path routing is an approach proposed to increase network performance. In this approach, any two nodes have multiple paths between them and the network performance is increased by allowing nodes to have an aggregate bandwidth of the multiple paths.

The three elements necessary to make Multi Path networks viable are:

1. Appropriate paths calculated between nodes,

2. Efficient packet forwarding on calculated paths and

3. Effective end-host usage of multiple paths.

Previous implementations of dynamic metric routing suffer two problems: routing instability and high routing overheads. Routing instability occurs when paths are constantly being recomputed and do not stabilize. This instability degrades network performance and increases the probability of network congestion and failures. The second problem is high routing overheads. The overheads are in terms of the CPU cycles and messages required for path re computation. Because routing overheads in traditional dynamic metric algorithms depend on network traffic patterns, mechanisms such as thresh holding and hold-downs are needed to limit the amount of routing overhead.

The new dynamic metric routing algorithm developed by Johnny Chen in his thesis, reduces the above problems. The hybrid-Scout algorithm, reduces routing instabilities by using two techniques: time staggered and selective dynamic metric path computation. The new algorithm promises to provide the benefits of dynamic metric routing without the undesirable side-effects.

In a multipath scenario the way in which nodes transmit data has an even greater performance impact because nodes not only have to decide how much data to send on each path as in the single path environment, they also have to decide how to distribute the data over multiple paths. One of the main challenges of multipath routing is the forwarding of data on their intended paths. In Multipath routing nodes have to label data packets to indicate which path a packet should travel.

The appropriate usage of the paths end-hosts use varies as applications vary. For example, an FTP application needs to use multiple paths to increase throughput, whereas a telnet application needs to use paths to decrease delay. The proposed protocol MPTCP stands for multipath TCP operates by opening TCP connections on different paths and multiplexing data among them. The receiving MPTCP protocol coalesces data from the different connections to restore the original message stream. This protocol demonstrates that immediate end-to-end performance gains can be obtained from multipath networks.

Usage layer is the software layer responsible for using multiple paths to a given destination. This layer manages multiple paths by dictating which data packet should be sent on which path and when. Example layers in today’s Internet protocol stack are the network, transport, and application layers.

2. What is an API?

An Application Program Interface (API) allows application programs such as FTP, Telnet, Web browsers, GUI interfaces etc., to access certain resources through a predefined and preferably consistent interface.

Examples of API are the Berkeley API on socket interface which is widely available on many UNIX machines and ODBC which is a Database access API

3. Overview:

For single path routing, normally to set up a connection, the server begins by carrying out a passive open as follows:

a) calls socket() – to create a TCP socket,

b) bind() – this call will bind a well known port number of the server to the socket,

c) listen() – this call makes the socket a listening socket so that socket accepts incoming connections from the clients,

d) accept() – this call puts the server process to sleep until the arrival of a client connection.

The client does an active open by:

a) calling socket() – which creates a socket on the client side,

b) connect() – which establishes TCP connection to the server with the specified destination socket address.

When the TCP connection is completed, the accept function at the server wakes up and returns the descriptor for the given connection, the source IP address, source port number, destination IP address and destination port number. The client and server are now ready to exchange information.

This in the normal Internet case. To provide multi path connection service, one approach is to modify some of these function calls, or to develop a new set of function calls based on these basic ones, so that data written by the sender can be distributed or spread across multiple connections at the sending side. On receiving side, packets from multiple connections need to be correlated and delivered to the receiver in the right order.

4. Design:

One possible design is to provide a multipath connection layer which supports the socket connection by routing packets through a set of direct routes, and indirect routes via proxy servers. This project will focus on designing a set of library calls, mp_socket(), mp_bind(), mp_listen(), mp_accept(), mp_connect(), mp_write(), mp_read(). These new function calls should allow the sender to express the use of list of connection relay proxy servers as one of the parameters and should be able to set up multiple socket connections through those proxy servers. Also the API is responsible for spreading the data across those connections based on their data transfer performance. Some function calls should accept those multiple connection requests from the same multi path connection. The library of calls should be responsible to ordering the packets and deliver to the application that calls it.

5. Goal:

The goal will be performance, correctness, and reliability of the library of APIs.

6. Multi Path Routing

Fig 1.

6.1 Description:

The above picture in Fig 1 describes multi path routing scenario. Here the multipath connection layer supports the socket connection by routing packets through a set of direct routes, and indirect routes through proxy servers. First Sender sends request to the Multipath Sender in the local machine, indicating the IP address and port number of the Receiver. The Multipath Sender then chooses a set of Proxy Servers, establishes multipath connections through these Proxy Servers to reach the Multipath Receiver. The Multipath Sender is also responsible for distributing data packets which it eventually receives from the Sender, across the multipath connections based on the data transfer performance of the connections. The Multipath Receiver collects the data packets from the different proxy servers, correlate them and send them to the Receiver in the right order as they were sent.

6.2. Packet Forwarding in LAN:

The working scenario in a Multipath routing environment is very much similar to the

Link Aggregation model which is a method for using multiple parallel links between a pair of devices as if they were a single higher performance channel. This is true both from the perspective of stations sending unicast frames to a device(i.e., as a destination for frames) and from the perspective of higher-layer protocols within the instant device that are sending frames to other stations(i.e., as a source of frames). That is, we want all of the network interfaces on an aggregated link to use the same address rather than having a different address for each interface.

In link aggregation a ‘Conversation’ is a set of frames among which ordering must be maintained. Distributor’s job is to make sure that frames belonging to a given conversation be transmitted across the same link within the aggregation. Receiver doesn’t have to keep track of the frame order. This eliminates the need to add sequence numbers to the frames.

Performance in the Link aggregation model is - the maximum throughput for any given application will be limited to the capacity of the single link to which its conversation is assigned.

6.3. Multi Path Sender and Multi Path Receiver:

The diagram shown in Figure 2 on the next page gives a more detailed picture of the Multi Path Sender and the Multi Path Receiver. This is very similar to the Link Aggregation model. The Transmit Queue in the Multi Path Sender consists of data frames from the Sender. Here a very simple proxy server is assumed that just takes a connection request from the Multi Path Sender, with message indicating the destination, issues a connection request to the Multi Path Receiver.

After being connected to the Receiver, the proxy server just waits for the data coming from either sides and relay the frames through the sockets. In the case where the data can come from both sides, select() can be used to wait for those two connections. Since packets arrive on the Multipath Receiver could be out of order, in the message format we may need to design the sequence number and efficient buffering mechanism for merging the data before delivering it to the Receiver.

Figure 2

7. Usage Layer:

In Multi Path routing, the usage layer is the protocol layer responsible for distributing data over multiple paths. The choice of which layer should manage multiple paths depends on performance issues as well as software engineering concerns such as compatibility, maintainability, and clean layering abstractions. There are three possible usage layers in the current TCP/IP namely – network, transport and user/application.

The lowest usage layer is the network usage layer. The advantage of this usage layer is that protocol layers above the network layer do not need modifications in order to use the multiple paths. The limitations of this layer are – since the network layer is unaware of the demands of the user/application, the IP layer does not have the necessary information to properly distribute data onto paths that best improves application performance. Also because higher level protocols are unaware of the multipath capabilities of the network layer, events such as out of order deliver and large delay variances may adversely affect the performance of these protocols.

The second possible usage layer is the transport usage layer. This usage layer shifts the responsibility of multipath management one level up in the protocol stack to the transport layer. The main disadvantage of this layer is the required modifications to the transport and network protocols. This layer has many advantages – 1) the transport layer has the proper information to efficiently use multiple paths because it is already responsible for connection based congestion and flow control. 2) Unlike the network usage layer, the transport protocol performance will not be degraded by side-effects of using multiple paths (out of order deliveries) because the protocol itself knows that it is transmitting on different paths. 3) Since the transport layer is responsible for packet fragmentation and reassembly, it is able to use multiple paths with great flexibility.

The next one is application usage layer – offers greatest flexibility and information to achieve high performance, but requires that application developers have expert knowledge in path management such as congestion and flow control.

After considering the possible usage layers, transport usage layer was chosen to develop multipath protocol. The protocol developed, MPTCP, maximizes end-to-end throughput.

7.1. Mulitple Paths used by two end hosts in order to gain higher performance:

In Multi Path Routing, it is proposed that in order to gain higher performance Multiple Path TCP (MPTCP) is to be used. When a sender opens an MPTCP connection to a destination, MPTCP opens k concurrent and independent TCP connections to the same destination, where k is the number of paths the network provides between the Sender and Receiver. Whenever the Sender wishes to send a data stream, it passes it to MPTCP which then divides this data stream into MPTCP segments and sequence numbers each segment. When a destination TCP connection receives segments from its TCP sending peer, it reconstructs the received messages in the usual manner. The MPTCP receiver then reads the TCP data stream to recover MPTCP control data using which it reconstructs the original MPTCP data stream from all its sub-TCP connections.

MPTCP is supposed to provide a reliable bit stream service as in single path TCP.

8. Conclusion:

During the course of studying this project, some of the observations made towards the design are as follows:

The design of the system should involve multipath proxy server software at the source and the destination and as well as multiple connection relay proxy servers which are located in the Internet. The multipath proxy server has to be in the source’s immediate subnet. For the out of sequence data retrieval on the Multipath Receiver side - the Multipath Sender in the case of Stream service, has to send packets in an order to the proxy servers, and hence the Multipath Receiver can read the packets from the sockets of only those proxy servers in the same order as it is collecting the packets. But in case of Datagram service, time-out mechanism has to be introduced in order for retransmission. The packets to be sent can be of different length, depending upon the performance of the connections. Both types Stream with TCP for web browsing, file transfer, etc., and Datagram with UDP for video/audio streaming applications can be tested. The proxy server can be implemented using fork() so that it can handle different requests from different Multipath Senders.
Due to time constraint I could not come up with the function calls, but could analyze what each function call would have to do. The following are the set of function calls for the operation of Multi Path Sender and Multi Path Receiver. These functions have not been implemented but just being proposed.

a) mp_socket(): This function call creates multiple TCP sockets.

mp_socket(){

/*Creating multiple sockets from which to read packets*/

for(i = 0;i < n; i++)

sock[i] = socket(AF_INET,SOCK_STREAM,0);

}

where 'n' is the number of Proxy Servers.

This function will populate array sock[i] with a non-negative integer value called a socket descriptor or handle on success, on failure, the corresponding array value of sock[i] will be -1.

The socket system call returns a file descriptor which will be used to reference the socket in later requests by the application program. If the call fails, however (due to lack of resources) the value returned will be negative (note that file descriptors have to be non-negative integers).

After the sockets are created, they still need to be told between which two end points they will Projectnewcommunicate.

b) mp_bind(): Binds port numbers to different sockets.

c) mp_connect(): This function takes the list of connection relay proxy servers specified by the user as a parameter, establishes multiple socket connections through those proxy servers.

d) mp_write(): This function call is responsible for spreading the data across those connections based on their data transfer performance.

e) mp_listen() and mp_accept() are responsible for accepting those multiple connection requests from the same multipath connection.

f)mp_read(): This is responsible to ordering the packets and delivering to the application that calls it.

This project was a very good learning experience for me. I would like to do further research on this topic.

9. Related Literature:

a) http://a957.g.akamai.net/7/957/3680/v0002/standards.ieee.org/reading/ieee/std/lanman/802.3-2000_part4.pdf.

b) Johnny Chen's - New Approaches to Routing for Large Scale Data Networks.

c) The Switch – Rich Seifert(Chapter on Link Aggregation).

Multi path

Receiver

Proxy

Server

Proxy

Server

Multi path

Sender

Receiver

Sender

Proxy Server

Proxy Server

Socket 2

Socket 1

Frame Collector

Socket 1

Socket 2

Frame Distributor

PAGE
10

