Distributed SSL Encryption Processing

By Aaron Budjen

 Secure Socket Layer (SSL) is a protocol that allows for the incorporation of encryption with computer communications. As corporate espionage and computer hacking are becoming more of a reality in our lives, encryption has been increasing in importance. The amount of encrypted data being transferred has been increasing. Given the increase in use of encryption algorithms, the use of computational time and resources is becoming an issue.

 The RSA encryption algorithm is the most popular algorithm being used in SSL. The nature of the algorithm allows for scalable security strengths. In addition, the algorithm allows for the balancing of computation between the sender and the receiver. The keys generated for the RSA encryption algorithm can be such that the sender performs less computation enciphering data than the receiver spends deciphering the data.

 While the RSA encryption algorithm has its benefits, it is very computationally intensive. Many countries such as Australia and France have established it as their standard, but have expressed their struggle with the time involved in enciphering and deciphering data. Fortunately, RSA is very suitable for parallel or distributed processing solutions. As communications using RSA through SSL increase, the interest in accelerating the tasks is growing.

 I chose to write a distributed implementation of RSA for a class project. There were two key objectives which I was looking to meet at that time. The first objective was to determine how many machines would be required to process a desired amount of data in a desired amount of time. The second objective was to try and decrease the processing time by considering the time involved in transferring data to several different computers. The architecture of one machine distributing data to several available nodes for processing has an inherent optimization problem. Given x amount of nodes, what is the optimal lengths of data to be sent to each node, and how many of the available nodes should be involved in the computations? It was discovered that the time necessary to transfer data to a separate computer for computation was insignificant.

 Writing the software to manage computers such that they operate as one machine is not trivial. I had software already available which consisted of a client, server, and as many nodes as desired. Unfortunately the communication protocol was not written for this purpose, and there were some memory problems which I encountered. As a result, several weeks of work was necessary to correct these errors. In producing the encryption implementation, I had some failures in the big integer computation library. There was not enough time to track down the errors, so I ran tests on the strings which I could confirm would work correctly.

 To conduct the experiments, I used several 66MHz computers with 10Mb network cards and a network hub. While this collection of hardware is considered to be very inferior, compared to what is available today, I was able to mathematically derive approximations for what the results would be given much faster hardware. One machine was used as a client which made requests of the server. The server divided the request to either encipher or decipher data amongst the available nodes on the network. The nodes performed the desired computations, and returned their results to the server. The server assembled the results and returned them to the client.

The Experiment:

 The first experiment was to determine the time required to process (either encipher, or decipher) a certain number of characters using only one node. The following table describes the time vrs. characters results.

Number of Characters Time Required (seconds)

 9 15.9

 18 30.6

 36 58.5

 72 117.8

 144 234.6

 288 467.3

 576 936.1

 Given the above data, I used the LU Decomposition curve fitting technique to derive an equation representative of the data.

y = 1.622863 * (number of characters) * (66 MHz) + .8356895

 From the equation derived using a 66 MHz computer I was able to derive the following general formula.

y = 107.10896 * (number of characters) / (number of MHz) + .8356895

 The two constant values are distinctive of my testing architecture. Corresponding to a linear equation of y=mx+b, the m is based on the efficiency of the encryption implementation. The b is based on the efficiency of the network communications and the processing required to divide the requests amongst the various nodes. It is clear by the equation that the time necessary to move the computations to other computers is very insignificant. The following graph represents the relationship between processing time and the number of characters processed using one computer.

[image: image1.png]70

60

50

Time to proces
in seconds

40

30

20

10

Linear equation for one node performing computation is:
y =107.10896 * x / (MHZ of the node's processor) + .8356895
Key length for processing is 14 bits.

This graph represents a 1GHZ processor

I I I I
100 200 300 400

Number of Characters

I
500

600

 The second experiment was to determine the time required to process (either encipher, or decipher) a certain number of characters using two nodes. The following table describes the time vrs. characters results.

Number of Characters Time Required (seconds)

 9 8.9

 18 16.3

 36 30.7

 72 59.1

 144 117.4

 288 234.1

 576 469.8

 Given the above data, I used the LU Decomposition curve fitting technique to derive an equation representative of the data.

y = .8125156 * (number of characters) * (66 MHz) + 1.056376

 From the equation derived using 66 MHz computers I was able to derive the following general formula.

y = 53.626 * (number of characters) / (number of MHz) + 1.056376

 As expected, the time necessary to process the data using a second computer is approximately half, compared to using one computer. The additional processing time needed to involve the second node is reflected in the b value, but it is still very insignificant compared to the time needed to process the characters. The following graph represents the relationship between processing time and the number of characters processed using two computers.

[image: image2.png]35

a0k Linear equation for two nodes performing computation is:
y =53.626 * x/ (MHZ of the node's processor) + 1.056376
Key length for processing is 14 bits.

25l This graph represents a 1GHZ processor i

Time to process
in seconds

20+ &

15 1

10 1

I I I I I
0 100 200 300 400 500 600

Number of Characters

 Given the above data, it was possible to extrapolate what the results would be as more nodes were involved in the computations. The following data table is derived by dividing the time for one node, by the number of nodes involved in the computations.

Number of Nodes Time Required (seconds)

 1 62.5

 2 31.3

 3 20.8

 4 15.6

 5 12.5

 6 10.4

 7 8.9

 The following graph represents the relationship between processing time and the number of computers used to process 576 characters of data.

[image: image3.png]70

60 il
Exponential representation of number of nodes vrs. time.
Key length is 14 bits. Number of characters is 576.
This graph represents a 1GHZ processors for each node.
50
Time to process
in seconds
40+
30+
20
10+
0 I I I I I
1 2 3 4 5 6 7

Number of Nodes

 Examination of the above graph reveals that additional computers involved in the processing of information does decrease the total time needed. However, there will come a point when the addition of another computer will not have a distinctive impact on the total decrease in time. An exponential curve fit of the above data would provide an equation which can automate the process of determining the maximum number of nodes to be used for optimal total performance. The equation will be dependent on the speed of the implementation and the speed of the network. Using the procedure outlined in this experiment, an equation can be derived dynamically by the server. Other factors to consider are the key length, and the number of characters being delivered to each node.

 The use of several computers to perform computationally intensive problem solving is a very viable alternative. While only so many computers can contribute effectively towards a final solution, the cost of moving data to other machines and back is insignificant.

