A STUDY OF CODA AND GFS

CS522 – Fall 2000

Term Project Report

Student: Rama Devi

CODA – Constant Data Availability
Acknowledgements

Materials for this paper were taken from the following.

Coda: A Resilient Distributed File System - M. Satyanarayanan, James J. Kistler, Ellen H. Siegel
The Coda Distributed File System - Peter J. Braam
Coda File System User and System Administrators Manual - M. Satyanarayanan, Maria R. Ebling, Joshua Raiff, Peter J. Braam, Jan Harkes

The Coda HOWTO - Peter Braam, Robert Baron, Jan Harkes, Marc Schnieder.

http://www.coda.cs.cmu.edu
Abstract

This part of the project report deals with a study of the CODA File System which is a distributed file system being developed at the Carnegie Mellon University (CMU). It summarizes what the CODA file system is about and also details some of its capabilities and features with regard to Storage Area Networks.

1.0 Introduction

Distributed file systems have grown in importance in recent years. As our reliance on such systems increases, the problem of availability becomes more acute. Today, a single server crash or network partition can seriously inconvenience many users.

Coda is a distributed file system that addresses this problem in its full generality. It was developed in 1987 and continues to be developed at the Carnegie Melon University (CMU). It is designed to operate in an environment where many hundreds or thousands of workstations span a complex local area network. Coda aspires to provide the highest degree of availability possible in such an environment. An important goal is to provide this functionality without significant loss of performance.

Coda distinguishes clients from servers and uses caching of entire files as its remote access mechanism. In addition to improving scalability, whole-file transfer simplifies the handling of failures since a file can never be internally inconsistent. Coda masks server failures and network partitions to the fullest extent possible. Failures during a file operation are totally transparent at the user level unless the operation requires data that is neither cached locally nor present at any accessible server.

Aggregates of files, called Volumes, are replicated at multiple server sites. When a file is fetched, the actual data is transferred from only one server. However, the other available servers are queried to verify that the copy of the file being fetched is indeed the most recent. After modification, the file is stored at all the server replication sites that are currently accessible. To achieve good performance, Coda exploits parallelism in network protocols.

Consistency, availability and performance tend to be mutually contradictory goals in a distributed system. Coda plans to provide the highest availability at the best performance. A close examination of the way files are shared in an actual file system indicates that an optimistic policy regarding consistency is likely to be successful. Two principles guide the design of consistency mechanisms in Coda. First, the most recently updated copy of a file that is physically accessible must always be used. Second, although inconsistency is tolerable, it must be rare and always detected by the system. Coda uses atomic transactions at servers to ensure that the version vector and data of a file are mutually consistent at all times.

Coda makes files available to a collection of client computers as part of their directory tree, but ultimately maintains the authoritative copy of the file data on servers. Coda has some features that make it stand out: it supports disconnected operation, i.e. full access to a cached section of the file space during voluntary or involuntary network or server outages. Coda will automatically reintegrate the changes made on disconnected clients when reconnecting. Furthermore, Coda has read-write, failover server replication, meaning that data is stored and fetched from any of a group of servers and Coda will continue to operate when only a subset of all servers is available. If server differences arise due to network partitions Coda will resolve differences automatically to a maximum extent possible and aid users in repairing what can't be done automatically.

Numerous people at CMU contributed to Coda which now incorporates many features not found in other systems. These are listed below.

· Mobile Computing

· disconnected operation for mobile clients

· reintegration of data from disconnected clients

· bandwidth adaptation

· Failure Resilience

· read/write replication servers

· resolution of server/server conflicts

· handles of network failures which partition the servers

· handles disconnection of clients

· Performance and scalability

· client side persistent caching of files, directories and attributes for high performance

· write back caching

· Security

· kerberos like authentication

· access control lists (ACL's)

· Well defined semantics of sharing

· Freely available source code

1.1 The Coda System

The Coda architecture recognizes three types of machines, clients, servers and a system control machine (or SCM). Client machines are typically single-user workstations used to access shared information. These machines are not trusted by servers except for the duration of a login session by an authenticated user. Server machines are secure, trusted machines whose purpose is to service client requests for shared data. As the custodians of shared information, servers must require authentication of each user before releasing shared data to the users client workstation. The third machine type is the system control machine (SCM). The purpose of the SCM is to provide a single point of control for ease of administration. Logically, the SCM is distinct from the servers, but, physically, the SCM can also act as a server.

1.2 Coda Terminology

A single name space: All of Coda appears under a single directory /coda on the client (or under a single drive under Windows). Coda does not have different exports or shares as do NFS and Samba that are individually mounted. Under /coda the volumes (aka file sets) of files exported by all the servers (living in your Coda cell) are visible. Coda automatically finds servers and all a client needs to know is the name of one bootstrap server that gives it information on how to find the root volume of Coda.

Coda Cell: A Cell is a group of servers sharing one set of configuration databases. A cell can consist of a single server or up to hundreds of servers. One server is designated as the SCM - the System Control Machine. It is distinguished by being the only server modifying the configuration databases shared by all servers, and propagating such changes to other servers. At present a Coda client can belong to a single cell.

Coda Volumes: File servers group the files in volumes. A volume is typically much smaller than a partition and much larger than a directory. Volumes have a root and contain a directory tree with files. Each volume is "Coda mounted" somewhere under /coda and forms a subtree of the /coda. Volumes can contain mountpoints of other volumes. A volume mountpoint is not a Unix mountpoint or Windows drive - there is only one drive or Unix mountpoint for Coda. A Coda mountpoint contains enough information for the client to find the server(s) which store the files in the volume. The group of servers serving a volume is called the Volume Storage Group of the volume.

Volume Mountpoints: One volume is special, it is the root volume, the volume which Coda mounts on /coda. Other volumes are grafted into the /coda tree using cfs mkmount. This command installs a volume mountpoint in the Coda directory tree, and in effect its result is similar to mkdir mountpoint; mount device mountpoint under Unix. When invoking the cfs makemount the two arguments given are the name of the mountpoint and the name of the volume to be mounted. Coda mountpoints are persistent objects, unlike Unix mountpoints which needs reinstating after a reboot.

Data Storage: The servers do not store and export volumes as directories in the local disk file system, like NFS and Samba. Coda needs much more meta data to support server replication and disconnected operation and it has complex recovery which is hard to do within a local disk file system. Coda servers store files identified by a number typically all in a directory tree in /vicepa. The meta data (owners, access control lists, version vectors) is stored in an RVM data file which would often be a raw disk partition.

RVM: RVM stands for Recoverable Virtual Memory. RVM is a transaction based library to make part of a virtual address space of a process persistent on disk and commit changes to this memory atomically to persistent storage. Coda uses RVM to manage its metadata. This data is stored in an RVM data file which is mapped into memory upon startup. Modifications are made in VM and also written to the RVM LOG file upon committing a transaction. The LOG file contains committed data that has not yet been incorporated into the data file on disk.

Client Data: Data on the client is stored somewhat similarly: meta data in RVM (typically in /usr/coda/DATA) and cached files are stored by number under /usr/coda/venus.cache. The cache on a client is persistent. This cache contains copies of files on the server. The cache allows for quicker access to data for the client and allows for access to files when the client is not connected to the server.

Validation: When Coda detects that a server is reachable again it will validate cached data before using it to make sure the cached data is the latest version of the file. Coda compares cached version stamps associated with each object, with version stamps held by the server.

Authentication: Coda manages authentication and authorization through a token. Similar (the details are very different) to using a Windows share, Coda requires users to log in. During the log in process, the client acquires a session key, or token in exchange for a correct password. The token is associated with a user identity, at present this Coda identity is the uid of the user performing the log in.

Protection: To grant permissions the cache manager and servers use the token with its associated identity and match this against priviliges granted to this identity in access control lists (ACL). If a token is not present, anonymous access is assumed, for which permissions are again granted through the access control lists using the System:AnyUser identity.

1.3 Distributed File Systems

A distributed file system stores files on one or more computers called servers, and makes them accessible to other computers called clients, where they appear as normal files. There are several advantages to using file servers: the files are more widely available since many computers can access the servers, and sharing the files from a single location is easier than distributing copies of files to individual clients. Backups and safety of the information are easier to arrange since only the servers need to be backed up. The servers can provide large storage space, which might be costly or impractical to supply to every client. The usefulness of a distributed file system becomes clear when considering a group of employees sharing documents. However, more is possible. For example, sharing application software is an equally good candidate. In both cases system administration becomes easier.

There are many problems facing the design of a good distributed file system. Transporting many files over the net can easily create sluggish performance and latency, network bottlenecks and server overload can result. The security of data is another important issue: how can we be sure that a client is really authorized to have access to information and how can we prevent data being sniffed off the network? Two further problems facing the design are related to failures. Often client computers are more reliable than the network connecting them and network failures can render a client useless. Similarly a server failure can be very unpleasant, since it can disable all clients from accessing crucial information. The Coda project has paid attention to many of these issues and implemented them as a research prototype.

Coda was originally implemented on Mach 2.6 and has recently been ported to Linux, NetBSD and FreeBSD. A large portion of Coda was ported to Windows 95 and currently porting to Windows NT is being studied. Current efforts are on ports to different platforms and on making the system more robust. A few new features are being implemented (write back caching and cells for example) and in several areas components of Coda are being reorganized.

1.4 Coda on a Client

If Coda is running on a client, such as a Linux workstation, typing mount will show that a file system of type “Coda” is mounted under /coda. All the files, which any of the servers may provide to the client, are available under this directory, and all clients see the same name space. A client connects to “Coda” and not to individual servers, which come into play invisibly. This is quite different from mounting NFS file systems which is done on a per server, per export basis. In the most common Windows systems (Novell and Microsoft's CIFS) as well as with Appleshare on the Macintosh, files are also mounted per volume. Yet, the global name space is not new. The Andrew file system, Coda's predecessor, pioneered the idea and stored all files under /afs. Similarly the distributed file system DFS/DCE from OSF, mounts its files under one directory. Microsoft's new distributed file system (dfs) provides glue to put all server shares in a single file tree, similar to the glue provided by auto-mount daemons and yellow pages on Unix. Why is a single mount point advantageous? It means that all clients can be configured identically, and users will always see the same file tree. For large installations this is essential. With NFS, the client needs an up to date list of servers and their exported directories in /etc/fstab, while in Coda a client merely needs to know where to find the Coda root directory /coda. When new servers or shares are added the client will discover these automatically somewhere in the /coda tree.

To understand how Coda can operate when the network connections to the server have been severed, let's analyze a simple file system operation. Suppose we type: “cat /coda/tmp/foo” to display the contents of a Coda file. What actually happens? The cat program will make a few system calls in relation to the file. A system call is an operation through which a program asks the kernel for service: for example, when opening the file the kernel will want to do a lookup operation to find the inode of the file and return a file handle associated with the file to the program. The inode contains the information to access the data in the file and is used by the kernel, the file handle is for the opening program. The open call enters the virtual file system (VFS) in the kernel, and when it is realized that the request is for a file in the /coda file system it is handed to the Coda file system module in the kernel. Coda is a pretty minimalistic file system module: it keeps a cache of recently answered requests from the VFS, but otherwise passes the request on to the Coda cache manager, called Venus. Venus will check the client disk cache for tmp/foo, and in case of a cache miss, it contacts the servers to ask for tmp/foo. When the file has been located, Venus responds to the kernel, which in turn returns the calling program from the system call.

The figure below shows how a user program asks for service from the kernel through a system call. The kernel passes it up to Venus, by allowing Venus to read the request from the character device /dev/cfs0. Venus tries to answer the request, by looking in it's cache, asking servers, or possibly by declaring disconnection and servicing it in disconnected mode. Disconnected mode kicks in when there is no network connection to any server which has the files. Typically this happens for laptops when taken off the network, or during network failures. If servers fail, disconnected operation can also come into action.

When the kernel passes the open request to Venus for the first time, Venus fetches the entire file from the servers, using remote procedure calls to reach the servers. It then stores the file as a container file in the cache area (currently/usr/coda/venus.cache/). The file is now an ordinary file on the local disk, and read-write operations to the file do not reach Venus but are (almost) entirely handled by the local file system (ext2 for Linux). Coda read-write operations take place at the same speed as those to local files. If the file is opened a second time, it will not be fetched from the servers again, but the local copy will be available for use immediately. Directory files (a directory is just a file) as well as all the attributes (ownership, permissions and size) are all cached by Venus, and Venus allows operations to proceed without contacting the server if the files are present in the cache. If the file has been modified and it is closed, then Venus updates the servers by sending the new file. Other operations which modify the file system, such as making directories, removing files or directories and creating or removing (symbolic) links are propagated to the servers also.

So we see that Coda caches all the information it needs on the client, and only informs the server of updates made to the file system. Studies have confirmed that modifications are quite rare compared to “read only” access to files. These mechanisms to aggressively cache data were implemented in AFS and DFS, but most other systems have more rudimentary caching.

1.5 From Caching to Disconnected Operation

The origin of disconnected operation in Coda lies in one of the original research aims of the project: to provide a file system with resilience to network failures. AFS, which supported 1000's of clients in the late 80's on the CMU campus had become so large that network outages and server failures happening somewhere almost every day became a nuisance. It turned out to be a well timed effort since with the rapid advent of mobile clients (viz. Laptops) and Coda's support for failing networks and servers, Coda equally applied to mobile clients.

Coda as mentioned in the previous section caches all information needed to provide access to the data. When updates to the file system are made, these need to be propagated to the server. In normal connected mode, such updates are propagated synchronously to the server, i.e. when the update is complete on the client it has also been made on the server. If a server is unavailable, or if the network connections between client and server fail, such an operation will incur a time-out error and fail. Sometimes, nothing can be done. For example, trying to fetch a file, which is not in the cache, from the servers, is impossible without a network connection. In such cases, the error must be reported to the calling program. However, often the time-out can be handled gracefully as follows.

To support disconnected computers or to operate in the presence of network failures, Venus will not report failure(s) to the user when an update incurs a time-out. Instead, Venus realizes that the server(s) in question are unavailable and that the update should be logged on the client. During disconnection, all updates are stored in the CML, the Client Modification Log, which is frequently flushed to disk. The user doesn't notice anything when Coda switches to disconnected mode. Upon re-connection to the servers, Venus will reintegrate the CML: it asks the server to replay the file system updates on the server, thereby bringing the server up to date. Additionally the CML is optimized - for example, it cancels out if a file is first created and then removed.

There are two other issues of profound importance to disconnected operation. First there is the concept of hoarding files. Since Venus cannot server a cache miss during a disconnection, it would be nice if it kept important files in the cache up to date, by frequently asking the server to send the latest updates if necessary. Such important files are in the users hoard database (which can be automatically constructed by “spying” on the users file access). Updating the hoarded files is called a hoard walk.

The second issue is that during reintegration it may appear that during the disconnection another client has modified the file too and has shipped it to the server. This is called a local/global conflict (viz. Client/Server) which needs repair. Repairs can sometimes be done automatically by application specific resolvers. Sometimes, but quite infrequently, human intervention is needed to repair the conflict.

If all of the servers that an object resides on become inaccessible, then the client will use the cached copy of the object (if present) as a valid replica. When the client does this, it is operating in disconnected mode. Disconnected mode may be the result of a network failure, or it could be the result of removing a laptop from the network. If you make sure all of the files you want to use are cached on your laptop, you can travel with it and access your files as if you were still on the network.

Unfortunately, a cache miss while operating in disconnected mode is not maskable, and you will get a connection timed out error message. Coda allows you to mark or hoard files with caching priorities to help keep the ones you want in the cache. When you are in disconnected mode, you may want to checkpoint the modify log that Coda keeps of which directories have changed. Use cfs checkpointml to do this.

Checkpointing the modify log will ensure that changes you have made will not be lost if the cache manager crashes severely. The checkpointed log files are an identical copy of the in-memory logs that Coda uses when it re-integrates with the servers.

Coda adapts easily to low bandwidth connections like (PPP or SLIP modem links). You can use this to periodically reintegrate and cache new files when you are on a trip.

When you reintegrate after operating in disconnected mode, keep an eye on your codacon output or run the command:

% tail -f /usr/coda/etc/console
This file will let you know if the reintegration was successful. If it was not, then the files that you modified will be put in a tar file in /usr/coda/spool/uid. Reintegration fails, for example, when you modified a file in disconnected mode and someone else also modified that file on the servers.

1.6 Hoarding

Coda allows you to advise the cache manager, Venus, of critical files that it should try to keep in the cache. You indicate the relative importance of the files by assigning priorities to them. This is known as hoarding. Venus maintains an internal hoard database of these files. Hoarding a file helps to ensure that it will be available when operating in disconnected mode.

1.7 Volumes, Servers and Server Replication

In most network file systems the servers enjoy a standard file structure and export a directory to clients. Such a directory of files on the server can be mounted on the client and is called a network share in Windows jargon and a network file system in the Unix world. For most of these systems it is not practical to mount further distributed volumes inside the already mounted network volumes. Extreme care and thought goes into the server layout of partitions, directories and shares. Coda's (and AFS's) organization differ substantially.

Files on Coda servers are not stored in traditional file systems. The organization is broadly as follows. Partitions on the Coda server workstations can be made available to the file server. These partitions will contain files which are grouped into volumes. Each volume has a directory structure like a file system: i.e. a root directory for the volume and a tree below it. A volume is on the whole much smaller than a partition, but much larger than a single directory and is a logical unit of files. For example, a user's home directory would normally be a single Coda volume and similarly the Coda sources would reside in a single volume. Typically a single server would have some hundreds of volumes, perhaps with an average size approximately 10MB. A volume is a manageable amount of file data which is a very natural unit from the perspective of system administration and has proven to be quite flexible.

Coda holds volume and directory information, access control lists and file attribute information in raw partitions. These are accessed through a log based Recoverable Virtual Memory package (RVM) for speed and consistency. Only file data resides in the files in server partitions. RVM has built in support for transactions - this means that in case of a server crash the system can be restored to a consistent state without much effort.

A volume has a name and an Id, and it is possible to mount a volume anywhere under /coda. Coda does not allow mount points to be existing directories, it will create a new directory as part of the mount process. This eliminates the confusion that can arise in mounting Unix file systems on top of existing directories. While it seems quite similar to the Macintosh and Windows traditions of creating “network drives and volumes” the crucial difference is that the mount point is invisible to the client: it appears as an ordinary directory under /coda. A single volume enjoys the privilege of being the root volume, that is the volume which is mounted on /coda at startup time.

Coda identifies a file by a triple of 32bit integers called a Fid: it consists of a VolumeId, a VnodeId and a Uniquifier. The VolumeId identifies the volume in which the file resides. The VnodeId is the “inode” number of the file, and the uniquifiers are needed for resolution. The Fid is unique in a cluster of Coda servers.

Coda has read/write replication servers, i.e a group of servers can hand out file data to clients, and generally updates are made to all servers in this group. The advantage of this is higher availability of data: if one server fails others take over without a client noticing the failure. Volumes can be stored on a group of servers called the VSG (Volume Storage Group).

For replicated volumes the VolumeId is a replicated VolumeId. The replicated volume id brings together a Volume Storage Group and a local volume on each of the members.

The VSG is a list of servers which hold a copy of the replicated volume

The local volume for each server defines a partition and local volumeid holding the files and metadata on that server

When Venus wishes to access an object on the servers, it first needs to find the VolumeInfo for the volume containing the file. This information contains the list of servers and the local volume id's on each server by which the volume is known. For files the communication with the servers in a VSG is read-one, write-many, that is: read the file from a single server in the VSG and propagate updates to all of the Available VSG members, the AVSG. Coda can employ multicast RPCs, and hence the write-many updates are not a severe performance penalty.

The overhead of first having to fetch volume information is deceptive too. While there is a one time lookup for volume information, subsequent file access enjoys much shorter path traversals, since the root of the volume is much nearer by than what is common in mounting large directories.

Server replication, like disconnected operation has two cousins who need introduction: resolution and repair. Some servers in the VSG can become partitioned from others through network or server failures. In this case, the AVSG for certain objects will be strictly smaller than the VSG. Updates cannot be propagated to all servers, but only to the members of the AVSG, thereby introducing global (viz. server/server) conflicts.

Before fetching an object or its attributes, Venus will request the version stamps from all available servers. If it detects that some servers do not have the latest copy of files, it initiates a resolution process which tries to automatically resolve the differences. If this fails, a user must repair manually. The resolution, though initiated by the client, is handled entirely by the servers.

To repair the server all that needs to be done is to put in a new drive and tell Coda: resolve it. The resolution system brings the new disk up to date with respect to other servers.

1.8 Server Organization

The main program is the Coda fileserver codasrv. It is responsible for doing all file operations, as well as volume location service.

The Coda authentication server auth2 handles requests from clog for tokens, and changes of password from au and cpasswd. Only the the auth2 process on the SCM will modify the password database.

All servers in a Coda cell share the configuration databases in /vice/db and retrieve them from the SCM when changes have occurred. The updateclnt program is responsible for retrieving such changes, and it polls the updatesrv on the SCM to see if anything has changed. Sometimes the SCM needs a (non-shared) database from another server to update a shared database. It fetches this through an updatesrv process on that server using updatefetch.

On the server there are utilities for volume creation and management. These utilities consist of shell scripts and the volutil. There is also a tool to manipulate the protection databases.

Each of the dedicated file servers must run a number of processes. These processes are shown and described in the table below.

1.8.1 Server Processes

PRIVATE
File Server Process
The codasrv process interacts with the Venus process on clients. Together they fulfill user requests for shared data stored on the server. When started, the server process will salvage the file system. The presence of a file called SHUTDOWN in the /vice/srv directory indicates that the server process exited normally.

Auth Server Process
The auth2 process runs on all servers. It validates user passwords and issues a token for that user if the password is correct. However, passwords may only be changed at the SCM. Hence, the password database is read-only replicated to all servers and the SCM maintains the read-write replica. Changes to the password file are updated automatically through the updateclnt/updatesrv processes. On all servers (except the SCM), auth2 is invoked with the -chk option.

Update Client Process
The updateclnt process works in conjunction with the updatesrv process (running on the SCM) to keep read-only copies of system files and databases in sync with their corresponding read-write copy. The updateclnt process checks with the updatesrv process on the SCM periodically to ensure that the read-only copy on this server is the latest copy. Thus, when the read-write copy is updated, the read-only copies will be automatically updated after some delay.

The following lists the typical processes of a running file server.

PID TT STAT TIME COMMAND

 0 ?? DLs 0:35.41 (swapper)

 1 ?? Is 0:00.26 /sbin/init

 2 ?? DL 0:39.89 (pagedaemon)

 115 ?? Ss 4:27.31 syslogd

 198 ?? Is 55:36.88 update 30

 200 ?? Ss 2:06.16 cron

 7297 ?? Ss 0:00.61 /usr/pkg/sbin/rpc2portmap

 7301 ?? Ss 0:12.36 /usr/pkg/sbin/updatesrv -p /vice/db

 7601 ?? Is 0:04.51 auth2

 9624 ?? Ss 0:05.78 updateclnt -h falla -q coda_udpsrv

 9907 ?? S<s 0:11.37 codasrv -t 1000 -trunc 5 -rvm /dev/rwd1a /dev/rwd0g 94

 9899 p0 IW 0:00.02 /bin/sh /usr/pkg/sbin/startserver

1.8.2 The Kernel Module and the Cache Manager

Like every file system a computer enabled to use the Coda file system needs kernel support to access Coda files. Coda's kernel support is minimal and works in conjunction with the userspace cache manager Venus. User requests enter the kernel, which will either reply directly or ask the cache manager Venus to assist in service.

Typically the kernel code is in a kernel module, which is either loaded at boot time or dynamically loaded when Venus is started. Venus will even mount the Coda file system on /coda.

1.8.3 Data Location

The information stored on Coda servers is organized into several directories. These directories are described below.

· /vice/auth2 This directory contains information related to the authentication process, including its log file.

· /vice/bin contains the Coda file system binaries for servers and the SCM.

· /vice/db contains the log file for the update processes as well as a number of databases important to servers.

· /vice/srv contains information related to the server process, including its log file.

· /vice/vol contains information related to the volumes contained in the Coda file system.

· /vice/vol/remote exists only on the SCM and contains volume information for all remote servers.

· /vice/misc is where the updateclnt and updatesrv processes live and store their logfiles.

1.9 Utilities

To manipulate ACL's, the cache, volume mountpoints and possibly the network behaviour of a Coda client, a variety of small utilities is provided. The most important one is cfs. There is also a clog to authenticate to the Coda authentication server. The codacon allows one to monitor the operatoin of the cache manager, and cmon gives summary information about a list of servers.

1.10 Authentication

Once you are logged in to your workstation, you need to get a Coda authentication token by running the clog. Clog will prompt you for your Coda password and use it to get a token from the authentication server. This token will expire in about 25 hours. After the token expires, you must use clog to authenticate for another 25 hours.

The following in an example of running clog twice. The first time, the wrong password was entered:

% clog
Password:

Invalid login (RPC2_NOTAUTHENTICATED (F))

% clog
Password:

%

To see your newly acquired token, use ctokens. This will display the tokens and their expiration time for your UID.

% ctokens
Token held by the Cache Manager:

Local uid: 9010

Coda user id: 9010

Expiration time: Thu Apr 6 18:51:35 2000

Use the cpasswd to change your Coda password. As with passwd, cpasswd will prompt for your current password, then ask you to enter a new password twice.

% cpasswd
Changing password for raiff

Old password:

New password for raiff:

Retype new password:

Password changed, it will be in effect in about 1 hour

You can "log out" of Coda by using the cunlog to tell venus to forget your tokens. Once you run cunlog, you will have the same privileges as an anonymous Coda user until you acquire a new authentication token.

1.11 Coda File Protection

Coda provides a close approximation to UNIX protection semantics. An access control list (ACL) controls access to directories by granting and restricting the rights of users or groups of users. An entry in an access list maps a member of the protection domain into a set of rights. Userrights are determined by the rights of all of the groups that he or she is either a direct or indirect member. In addition to the Coda access lists, the three owner bits of the file mode are used to indicate readability, writability, and executability. You should use chmod(1) to set the permissions on individual files. Coda rights are given as a combination of rlidwka where:

· r - Read. Allows the user to read any file in the directory.

· l - Lookup. Lookup allows the user to obtain status information about the files in the directory. An example is to list the directory contents.

· i - Insert. Allows the user to create new files or subdirectories in the directory.

· d - Delete. Allows the user to remove files or subdirectories.

· w - Write. Allows the user to overwrite existing files in the directory.

· k - Lock. The lock right is obsolete and only maintained for historical reasons.

· a - Administer. Allows the user to change the directory's access control list.

Coda also has negative rights, which deny access. Any of the normal rights listed above can also be negative.

Access control lists are managed with the cfs with the listacl and setacl options. They can be abbreviated as la and sa respectively. To see the access control list of any directory in a Coda file system, use cfs la. The following example displays the current directory's ACL:

% cfs la .
 System:AnyUser rl

 raiff rlidwka

The displayed list, shows that the user "raiff" has all of the access rights possible on the directory and that the group System:AnyUser has read and lookup privileges. System:AnyUser is a special Coda group, that includes all users.

A second example shows another group, System:Coda. Anyone who is a member of the group, will have the groups access rights:

% cfs la /coda

 System:coda rlidwka

 System:AnyUser rl

Use cfs sa to change or set a directory's access control list. Options to cfs sa include -negative to assign negative rights to a user and -clear to clear the access list completely before setting any new access rights. You can also use all or none to specify all rights or no rights respectively.

To remove System:AnyUsers access to the current directory, you would issue the following command:

% cfs sa . System:AnyUser none
To give System:AnyUser read and lookup rights, use:

% cfs sa . System:AnyUser rl
To deny rights to a user, use the -negative switch:

% cfs sa -negative . baduser rl
This will deny baduser read and lookup rights, even though any other user has these rights. Note that negative rights are maintained separately from the normal rights, so to re-instate badusers' read and lookup access, you must use:

% cfs sa -negative . baduser none
If you omit the -negative switch, then baduser will still be denied read and lookup access.

1.12 Repairing Conflicts

As a result of Coda's optimistic replica management, object replicas can conflict on different servers. A conflict arises when the same object is updated in different partitions of a network. For instance, suppose a file is replicated at two sites (say, serverA and serverB). If these two sites become partitioned and a user on each side of the partition updates the file (userA updates the file on serverA while userB updates the file on serverB), the file will be in conflict when the partition ends. Conflicts may also arise at the end of disconnected operation.

Coda guarantees conflict detection at the first request for that object when both servers are accessible. When a conflict is detected, Coda attempts to perform automatic conflict resolution. In simple cases, the conflict will be resolved automatically, a process which is transparent to the user except for a time delay in accessing the object. However, in more difficult cases, automatic conflict resolution fails and the object is marked in conflict. File system calls on an object which is in conflict fail with the same error code as if the object were a dangling, read-only symbolic link. The conflict must be resolved by a user with appropriate access to the object. To help users resolve conflicts, Coda provides a repair tool.

Each Coda client sees the Coda File System as a single tree, /coda. In reality this tree is an illusion supported by System Control Machine (SCM), several dedicated file servers, and a local area network. One of the servers may double as the (SCM).

1.13 Where can Coda be used?

There are a number of compelling future applications where Coda could provide significant benefits.

FTP mirror sites could be Coda clients. As an example let's take ftp.redhat.com, which has many mirrors. Each mirror activates a Perl script, which walks the entire tree at RedHat to see what has been updated and fetches it - regardless of whether it is needed at the mirror. Contrast this with RedHat storing their ftp area in Coda. Mirror sites could all become Coda clients too, but only RedHat would have write permission. When RedHat updates a package, the Coda servers notify the mirror sites that the file has changed. The mirror sites will fetch this package, but only the next time someone tries to fetch this package.

WWW replication servers could be Coda clients. Many ISPs are struggling with a few WWW replication servers. They have too much access to use just a single http server. Using NFS to share the documents to be served has proven problematic due to performance problems, so manual copying of files to the individual servers is frequently done. Coda could come to the rescue since each server could be a Coda client and hold the data in its cache. This provides access at local disk speeds. Combine this with clients of the ISP who update their web information off line and we have a good application for mobile clients too.

Network computers could exploit Coda as a cache to dramatically improve performance. Updates to the network computer would automatically be made when and as they become available on servers, and for the most part the computer would operate without network traffic, even after restarts.

References

Coda: A Resilient Distributed File System - M. Satyanarayanan, James J. Kistler, Ellen H. Siegel
The Coda Distributed File System - Peter J. Braam
Coda File System User and System Administrators Manual - M. Satyanarayanan, Maria R. Ebling, Joshua Raiff, Peter J. Braam, Jan Harkes

The Coda HOWTO - Peter Braam, Robert Baron, Jan Harkes, Marc Schnieder.

http://www.coda.cs.cmu.edu
GFS – Global File System

Acknowledgements

Materials in this section were obtained from the following.

The Global File System – Steven R. Soltis, Thomas M. Ruwart, Matthew T. O’ Keefe

A 64-bit, Shared Disk File System for Linux – Kenneth W. Preslan, Andrew P. Barry, Jonathan E. Brassow, Grant M. Erickson, Erling Nygaard, ChrisJ. Sabol, Steven R. Soltis, David C. Teigland and Matthew T. O’Keefe

Storage Clusters for Linux – Andrew barry and Matthew O’Keefe

http://www.sistina.com
Abstract

The Global File System (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network like Fibre Channel. Networks and network attached storage devices have advanced to a level of performance and extensibility that the once believed disadvantages of “shared disk” architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of device technologies where as the client-server architecture diminishes a device's role to a simple components. GFS distributes the file system responsibilities across the processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage device controllers to facilitate atomic read-modify-write operations. GFS is implemented in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and utilities.

GFS (the Global File System) allows multiple Linux machines to access and share disk and tape devices on a Fibre Channel or SCSI storage network. GFS will perform well as a local file system, as a traditional network file system running over IP, and as a high­performance cluster file system running over storage networks like Fibre Channel. GFS device sharing provides a key cluster­enabling technology for Linux, helping to bring the availability, scalability, and load balancing benefits of clustering to Linux. Our goal is to develop a scalable, (in number of clients and devices, capacity, connectivity, and bandwidth) server­less file system that integrates IP­based network attached storage (NAS) and Fibre­Channel­based storage area networks (SAN).

2.0 Introduction

Traditional local file systems support a persistent name space by creating a mapping between blocks found on disk drives and a set of files, file names, and directories. These file systems view devices as local: devices are not shared so there is no need in the file system to enforce device sharing semantics. Instead, the focus is on aggressively caching and aggregating file system operations to improve performance by reducing the number of actual disk accesses required for each file system operation. New networking technologies allow multiple machines to share the same storage devices. File systems that allow these machines to simultaneously mount and access files on these shared devices are called shared file systems. A shared file system offers several advantages as follows.

1. Availability is increased because if a single client fails, another client may continue to process its workload because it can access the failed client's files on the shared disk.

2. Load balancing a mixed workload among multiple clients sharing disks is simplified

by the client's ability to quickly access any portion of the dataset on any of the disks.

3. Pooling storage devices into a unified disk volume equally accessible to all machines

in the system is possible, which simplifies storage management.

4. Scalability in capacity, connectivity, and bandwidth can be achieved without the limitations inherent in network file systems like NFS designed with a centralized server.

2.1 The Global File System

The Global File System is a prototype design for a distributed file system. Network attached storage devices are physically shared by the cluster nodes. The machines and storage devices are connected via a Fibre Channel network. GFS views storage as a Network Storage Pool (NSP) - a collection of network attached storage devices logically grouped to provide node machines with a unified storage space. These storage pools are not owned or controlled by any one machine but rather act as shared storage to all machines and devices on the network. NSPs are divided into subpools where each subpool takes on the attributes of the underlying hardware. GFS targets environments that require large storage capacities and bandwidth such as multimedia, scientific computing, and visualization. These large capacities influence tradeoffs, such as caching and the metadata structure, associated with the design of a file system. Chip integration has transformed storage devices into sophisticated units capable of replacing many of the functions performed by a server machine in a client-server environment. These devices can schedule accesses to media by queuing multiple requests. They possess caches of one or more megabytes to be used for read and write caching and prefetching.

GFS caches data in the nodes' main memories only during I/O request processing. After each request is satisfied, the data is either released or written back to the storage devices. To exploit locality of reference, GFS caches data on the storage devices. GFS informs the devices on each request what data is appropriate to cache - such as metadata that is accessed repetitively and small files like directories which are frequently accessed. Consistency is established by using a locking mechanism maintained by the storage device controllers to facilitate atomic read-modify-write operations. This form of locking has the simplicity of a centralized mechanism yet is distributed across a large number of devices. The figure below represents an example of the GFS distributed environment. The nodes are attached to the network at the top of the figure and the storage pool at the bottom. Connecting the nodes and the devices is a Fibre Channel network which may consist of switches, loops, and hubs. In the example, three different subpools exist: /single is a single disk, /wide is a striping of several disks, and the /fast is a disk array.

To the figure's left is a tape device which is directly connected to the network. Such a tape drive may be used for data backup or hierarchical storage management. A node could initiate third party transfers between the disk devices and the tape drive. The figure also shows how a GFS host can act as a NFS server. This ability allows machines without GFS capabilities to access GFS data via an NFS exported file system. The operating systems VFS interface handles the translation between GFS and NFS.

2.2 File System Structure

Each GFS file system is divided into several Resource Groups (RG). Resource groups are designed to distribute file system resources across the entire storage subpool. Multiple RGs exist per device and they can be striped across several devices. Resource groups are essentially mini-file systems. Each group has a RG block, data bitmaps, dinode bitmaps (used as the dinode free list), dinodes, and data blocks. The RG block contains information similar to what traditional superblocks maintain: number of free dinodes, number of free data blocks, and access times of the RG. File data and metadata may span multiple groups. GFS also has a superblock which contains information that cannot be distributed across the resource groups. This information includes the number of nodes mounted on the file system, bitmaps to calculate unique identifiers for each node, the device on which the file system is mounted, and the file system block size. The superblock also contains a static index of the RGs. This RG index describes the location of each group as well as their attributes and configuration.

2.3 Dinodes

A GFS dinode takes an entire file system block. Each dinode is divided into a header section which contains standard dinode fields and a section of pointers. Each pointer points to an indirect block which in turn points to data blocks.

GFS Dinode

Indirect Blocks
Data Blocks

2.4 Device Locks

Device Locks are mechanisms for node machines to maintain mutual exclusion of file system data. They are implemented on the storage devices and accessed with a single SCSI command. The Dlock command instructs the devices to perform primitive operations on the locks test and set and clear. The implementation of the device locks on the device are limited by the following constraints:

1. The device lock commands are independent of all other SCSI commands.

2. Devices supporting device locks have no awareness of the nature of data that is locked for mutual exclusion.

3. Each lock requires only minimal amounts of disk controller memory - as little as one byte per lock.

Device Locks are also used to help maintain the coherence of the metadata when it is cached by several clients. The locks are implemented on the storage devices (disks) and accessed with the SCSI device lock command, Dlock. The Dlock command is independent of all other SCSI commands, so devices sup­ porting the locks have no awareness of the nature of the resource that is locked. The file system provides a mapping between files and Dlocks. In the original specification, each Dlock is basically a test­and­set lock. A GFS client acquires a lock, reads data, modifies the data, writes the data back, and releases the lock. This allows the file system to complete operations on the metadata that are “atomic” with respect to other operations on the same metadata. Each Dlock also has a “version number” associated with it. When a client wants to do a read­modify­write operation on a piece of metadata, it acquires the lock, does the read­modify­write, and releases the lock using the unlock increment action. When a client just wants to read metadata, it acquires the lock, reads the metadata, and releases the lock using the unlock action. If all clients follow this scheme, consistency can be checked by comparing the version number returned by a lock action with the value of the version number when the lock was previously held. If the version numbers are the same, no client modified the data protected by the lock and it is guaranteed to be valid. Version numbers were also used for caching in the distributed lock manager of the Vaxcluster.

2.5 Lock States

The state of each lock is described by one bit. If the bit is set to 1, the lock has been acquired and is owned by a machine node. If the bit is 0, the lock is available to be acquired by any node. The Dlock command action test and set first determines if the lock value is 1. If value is 1, the command returns with a status indicating that the lock has already been acquired. If the value is 0, Dlock sets the lock to 1 and returns a good status to the initiator. The Dlock command clear simply sets the lock bit to 0.

2.6 Clocks

Associated with each lock is a clock. The clocks are logical clocks in the sense that they do not relate to time but instead keep an ordering of events for each lock. These clocks are incremented when a successful action is performed. The clocks are used to monitor how often a lock is accessed; i.e., how many times the lock has been set and then cleared. Such a clock gives insight into load balancing hot­spots. These occur when some locks are accessed more often than others. More importantly, these clocks are useful for error recovery. The clocks are implemented using a minimal amount of memory - typically 7 to 16 bits each. The initiators must be aware that the clock values periodically roll­over from their maximum value to zero. This may happen several times a second on a highly accessed lock, so care should be taken by the initiator not to assume that the clock value is slowly growing. The clock value is returned after each Dlock command.

2.7 Device Failures

The device locks and their accompanying clocks are stored in volatile memory on the device, though the locks are held across SCSI resets. When a device is powered on or a failure occurs which results in the locks being cleared, the device notifies all nodes by setting Unit Attention. Upon finding a unit attention, a node checks to see if its locks are still valid. Before proceeding, it will then reacquire any locks that may have been lost.

2.8 Node Failures

A node that fails could leave device locks in a locked state indefinitely. These locks will remain in this state until some node clears them. A node attempting to acquire a lock that is owned by a failed node can identify that the lock has been untouched by checking the activity of the lock's clock. If the clock has remained unchanged for an extended time period, a node can identify such a case and clear the lock. Care must be taken by the node clearing a lock that it does not own. The true owner may have failed or it may be in a hung state from which it will eventually return still believing it owns the lock. Furthermore, two separate nodes may simultaneously identify the same lock which must be cleared and send resets. It may be possible that the first node clears the lock and sets the lock the following command. The second node which has already decided to clear the lock sends the command after the lock has been acquired by the first node. This second clear request must be ignored. When a node wishes to clear a lock as failure recovery, the device compares the current clock with the input clock from the node. This test ensures that the lock will only be cleared if the node can identify the current value of the clock.

2.9 Deadlocks and Starvation

Deadlocks are avoided by the file system. The file system only acquires locks in an increasing order. Circular dependencies are avoided. Starvation is handled by the file system and device drivers. The file system does not hold locks for more than a few I/O requests to storage. A node's device drivers test for its own starvation by checking the activity of the lock-based clock values. The node can increase the rate at which lock requests are performed in an attempt to feed its starvation.

2.10 Consistency and Caching

Consistency is maintained by using atomic operations guaranteed by the device locks when modifying data. Given the limited number of practical device locks per device - on the order of 1024 - individual locks cannot be assigned to each file. One lock is assigned to the super block, one lock is assigned to each resource group, and the remaining locks are divided among the dinodes. When device locks are generally not implemented on the storage device, the SCSI commands Reserve and Release can be used to perform atomic operations on data. These commands provide exclusive access to the entire device for one node by not servicing requests from other nodes. These commands guarantee exclusive access but do not provide much parallelism. With only one reservation per device, many non-conflicting requests have to wait until the storage device is released. In a distributed environment such limited access decreases system throughput and response times. The SCSI protocol describes the optional commands Reserve and Release on Extents. These commands allow initiators to reserve for exclusive access only the data blocks that they may need. These commands decrease the granularity of exclusion from the device level to the block level. While potentially increasing the throughput of the distributed system, Reserve and Release on Extent commands require the devices to maintain complicated states of access permissions. For this reason, these commands are not implemented by the majority of device manufacturers.

2.11 The Network Storage Pool

The network storage pool (NSP) volume driver supports the abstraction of a single unified storage address space for GFS clients. The NSP is implemented in a device driver layer on top of the basic SCSI device and Fibre Channel drivers. This driver translates from the logical address space of the file system to the address space of each device. Subpools divide NSPs into groups of similar device types which inherit the physical attributes of the underlying devices and network connections.

2.12 Resource Groups

GFS distributes its metadata throughout the network storage pool rather than concentrating it all into a single superblock. Multiple resource groups are used to partition metadata, including data and dinode bitmaps and data blocks, into separate groups to increase client parallelism and file system scalability, avoid bottlenecks, and reduce the average size of typical metadata search operations. One or more resource groups may exist on a single device or a single resource group may include multiple devices. Like resource groups, block groups exploit parallelism and scalability by allowing multiple threads of a single computer to allocate and free data blocks; GFS resource groups allow multiple clients to do the same. GFS also has a single block, the superblock, which contains summary metadata not distributed across resource groups. (The superblock may be replicated to improve performance and ease recovery.) This information includes the number of clients mounted on the file system, bitmaps to calculate the unique identifiers for each client, the device on which the file system is mounted, and the file system block size. The superblock also contains a static index of the resource groups which describes the location of each resource group and other configuration information.

2.13 Flat File Structure

GFS uses a flat pointer tree structure as shown in the diagram above. Each pointer in the dinode points to the same height of metadata tree. (All the pointers are direct pointers, or they are all indirect, or they are all double indirect, and so on.) The height of the tree grows as large as necessary to hold the file. The more conventional UFS file system's dinode has a fixed number of direct pointers, one indirect pointer, one double indirect pointer, and one triple indirect pointer. This means that there is a limit on how big a UFS file can grow. However, the UFS dinode pointer tree requires fewer indirections for small files.

2.14 VFS Caching

Every time the VFS layer needs information from the file system specific layer, it makes a function call to the file system dependent layer for that information. It remembers almost nothing about previous requests. This is very good for a networked file system. One machine can change data in the file system without worrying about other machine's VFS layers caching that data. The VFS layer always asks the file system specific layer when it wants information. The file system specific layer can always provide the most up to date metadata. All disks accesses go though the VFS layer anyway, so the VFS layer might as well cache the data as it goes by. Local file systems can be very quick because the VFS avoids the overhead of calling the necessary function and waiting for the file system specific layer to locate and encode the requested information. It just reads the data from its own copy. Uncontrolled caching in a networked file system, especially a shared­disk file system, can result in data inconsistencies between machines.

2.15 File System Improvements

Many improvements have been made to the file system and metadata. These changes will, we believe, dramatically increase GFS's scalability.

2.15.1 Directories and Extendible Hashing

One of the places where traditional file systems don't perform well is large directories. Most early file systems (and a surprising number of modern ones) store directories as an unsorted linear list of directory entries. This is satisfactory for small directories, but it becomes too slow for big ones. On average, the file system must search through half of the directory to find any one entry. Not only is this costly in CPU time, but it causes excessive I/O to the disk. Large directories can take up megabytes of disk space. The Global File System uses Extendible Hashing for its directory structure. Extendible Hashing (Ex­Hash) provides a way of storing a directory's data so that any particular entry can be found very quickly. Large amounts of searching aren't required.

2.15.2 GFS Consistency

Great care must be taken when metadata is accessed and updated. If the proper Dlocks aren't held at the right time, metadata and data corruption can easily result. Much of the recent GFS work has focused on making sure that locks are held in all the right places.

This new locking has also increased the potential for deadlock. There are many places where the file system must hold two or more Dlocks to perform an operation. For example, the lookup operation requires two simultaneous locks. The lookup operation takes a directory and the name of a file in that directory and returns the inode for that file. Two locks must be acquired for this operation: one lock must be held while the directory is read and the file's inode number is determined. The other lock must be held while the inode is read. These two locks must be held at the same time or race conditions exist with other processes on the same machine doing lookups on the same file, and other processes and machines trying to unlink this file. There are a few other places where two or more locks are held and deadlock can occur. Ordering the acquisition of the Dlocks is difficult because Dlocks are assigned arbitrarily to different parts of the directory structure. An order that would prevent deadlock for one part of the file system tree could cause deadlock in other parts. GFS handles this problem by implementing a system of back­offs and retries. If a client is holding one Dlock and wants another, it tries to get the new lock for a certain amount of time. If it doesn't get the lock in this time, it assumes a deadlock condition exists. It releases the first lock, sleeps for a random amount of time, and then retries the whole operation. This avoids deadlock, but it isn't optimal. The new version of the Dlock protocol allows clients to talk to each other directly, so that a separate fairness and sharing protocol can be applied if necessary. Another new feature is that processes can now recursively acquire Dlocks. This was implemented by adding a layer between the file system and the NSP volume driver that examines each Dlock command before it is issued. If the Dlock has already been acquired by a process with the same process ID, a counter is incremented and the command is passed back up to the file system as if it was issued to the lock device and succeeded. If the lock is held by another process, the requesting process is put to sleep until the first process releases the lock. If the Dlock isn't

currently held, the command is passed down to the pool device and is issued to the actual Dlock device. When an unlock command is issued, the counter is decremented. When it reaches zero, the unlock command is passed down to pool and issued to the device. An interesting and useful side effect of this algorithm is that it prevents multiple simultaneous lock requests to a lock device from the same machine. If one process has a Dlock and another process wants the same Dlock, the second process sleeps on a semaphore waiting for the first process to finish. This minimizes the amount of traffic on

the network. This recursive Dlock layer will be very important in the next generation GFS. In this new version, GFS will hold Dlocks much longer that it does now. This allows write caching and minimizes the effects of Dlock latency. Recursive Dlocks allow these locks to be held longer with minimal changes to the code. To enable caching, when a Dlock is first acquired, the “Number of times locked” counter is set to 2 (instead of the usual 1). From this point forward the code acquires and releases locks as it normally would. The difference is that the lock and release command are all internal to the file system and don't access the lock device. When the file system needs to release the lock on the lock device, it calls the unlock routine one more time. This decrements the “Number of times locked” counter to zero and the unlock command is issued to the lock device.

2.15.3 Using the Buffer Cache

The buffer cache is an important component of modern UNIX operating systems. To prevent excessive disk accesses the operating system saves recently used disk blocks in a section of memory called the “buffer cache”. Future requests for data already in the buffer cache can be completed quickly since no disk access is required. If the requested data is not in the buffer cache, it is read from disk and then copied into the buffer cache as well as to the user program. This applies to both metadata and file blocks. In this case performance is greatly enhanced by using the buffer cache instead of accessing the disk. Caching metadata blocks also improves performance for large file requests because of repeated indirect block references. Using the buffer cache in GFS is complicated by the ability of multiple clients to access and cache the same disk blocks. When a client detects data has changed on disk (indicated by a new Dlock counter value), it needs to invalidate those blocks in its buffer cache so the new data will be re­read. Recent changes in GFS keep track of cached buffers associated with each Dlock so they can be invalidated when necessary. This allows use of the buffer cache for reads, providing data for repeated small file requests and speeding up large file accesses. Without this ability in the past, all buffers were immediately invalidated after a read. Caching of writes is more difficult and cannot be implemented in GFS until the latest Dlock specification is in use.

2.15.4 Free Space Management

The current implementation of free space management in GFS is based on the bitmap approach. For every file system block in a given resource group there is a single bit to represent whether the block is free or not. This method is space efficient but as the file system fills with data, a search through an increasing number of bits is required in order to find the necessary free space. This becomes more costly with respect to performance with every additional byte we need to check, and even more expensive when it is necessary to search through individual bits. The new approach, using an extent­based scheme, can potentially cost more in terms of space but should provide better performance. Instead of keeping track of each file system block in a resource group, we restrict ourselves to the free blocks. For every group of free file system blocks in a resource group there will be an extent that keeps track of the starting block and the number of blocks in the group. When the file system is created, it has one extent in each resource group. When files are added only the starting address in the extent needs to be changed. As files are removed, if the space freed cannot be added to an existing extent, a new one must be added. If the file system becomes highly fragmented, the amount of space necessary to hold the extents may become large. There are two distinct advantages to this method. First, there is no need to search through a mapping of blocks in order to find the blocks that are free. Since we already know the blocks we are tracking are free, our focus is to find a group of free blocks that is large enough to hold our entire file. The second advantage of this scheme is that we can give the block allocator a “goal” block, i.e., a block that we would like our new space to follow. This way we can attempt to group metadata and data together on disk. While this approach may require more time to search through the extents to find an extent that starts closely after the goal block, it has the potential to reduce disk latencies in the future.

2.15.5 The Network Storage Pool

The pool driver coalesces a heterogeneous collection of shared storage into a single logical volume called the Network Storage Pool. The pool driver is built atop the SCSI and Fibre Channel drivers. It allows striping across multiple devices and provides a pool of Dlocks for GFS, hiding the implementation details. Devices may be divided into subpools according to specific performance characteristics. The device locking options in the pool driver have also evolved to support exponential back­off from failed lock requests, multiple attempts to acquire locks, and giving up on Dlocks. Other pool driver additions include user­level tools to dynamically update pools in the kernel, and to dynamically create file systems based on pool parameters. Ptool is a user­level tool which configures pool devices according to a parameter file edited by the user. The pool name, subpool definitions, subpool devices (individual disk partitions), striping sizes and scope, and Dlock devices can be specified in the parameter file. Labels containing all this information are written by ptool to the beginning of each disk partition used by the pool. Ptool needs to be run only once by one client for a pool to be created and accessible to all clients. Passemble is the user level program which scans all the devices accessible to a client to determine what pools exist and can be used. All the labels on the shared devices (written by ptool) are read to construct the logical pool definitions. This information is then passed to the kernel which adds these definitions to its own list of managed pools. New storage pools can be written, assembled and added to the kernel dynamically. Passemble needs to be run by each client at bootup and when a new pool has been created. Pool device files are also created and removed by passemble as storage pools are added and destroyed.

2.15.6 New Dlock Features

The new version of the Dlock protocol has features that allow GFS to perform better and more reliably. The main additions are:

· Dlocks Time Out

Each Dlock now has a timer associated with it. If the lock is left in the locked state for too long, the lock expires and is unlocked. A client that wishes to hold a lock for a long time can send “Touch Lock” commands that reset the timer on the lock. This new feature fixes one of the bigger performance problems in GFS. It allows the addition of write caching. Previously, clients had to discover failed clients by pinging the lock for some minimum time; the lock was reset manually if there was no activity. This meant there was a maximum amount of time that a lock could be held. In the new version, when Dlocks time out, the lock device determines which clients have failed. A client can hold a lock for a long period of time and be assured that no other client can read or write the data protected by the lock. This means that the client doesn't have to synchronously write back modified data so that extensive write­caching is now possible.

· Client Identification Numbers are returned

Each GFS client in the new locking scheme is assigned a unique four­byte integer. The Client ID is passed to the Dlock device in the SCSI Command Descriptor Block of the Dlock command. Dlock commands that fail because the lock is held by another client return the Client IDs of the machines that are currently holding the lock. This allows out­

of­band communication between clients while still keeping GFS Dlock­centric. This also helps clients hold locks for longer amounts of time. If a client wants a lock that is held by another client, it can use the returned Client ID to send a non­SCSI message to the client holding the lock. This message can either ask for the lock to be released or, perhaps, ask for authorization to do a third­party­ transfer to or from the disk.

· Reader/Writer Locks

Many pieces of data, especially metadata, are read often but written infrequently. This type of access pattern lends itself well to reader/writer locks. Readers acquire one of a multitude of reader locks. Writers acquire a writer lock that precludes both readers and other writers. Each Dlock in the new protocol is a reader/writer lock. This should help scalability in high traffic areas like the root directory.

2.16 Error Recovery

Error recovery is particularly important in a shared­disk file system. All the clients are directly manipulating the metadata, so the failure of any client could leave metadata in a inconsistent state. Furthermore, since there are so many machines accessing the disks, it is impractical for all of them to unmount and wait for a file system check (fsck) to complete every time a client dies. It is important that the inconsistencies caused by a failed client are localized and easily repairable while the file system is online. We are currently investigating a number of methods of recovery that will allow quick consistency checking. Snapshots, journaling, and logging are among them.

2.17 Growing File Systems

As devices are added to the storage network, the file system should be able to dynamically grow and use the new space. Enlarging the pool on which the file system resides is the first step. This is accomplished by making the new space an additional subpool. (Striping is confined to a subpool.) Passing the new data to the kernel and adding the subpool to the in­core structures is a simple process. The complexity arises in expanding ptool and passemble to dynamically change the pool defining labels and correctly assemble the pool definitions from new, in­use and unused devices belonging to multiple pools. At the file system level, a program needs to update the superblock and resource indexes on disk and prompt the file system on each client to reread this data so the new space will be used. Work on making the changes to allow the file system to grow like this is being done.

2.18 SCSI over IP

The key to SCSI over IP is two pieces of software, the client and the server. A server daemon waits for IP connections. When a connection is made, the daemon receives SCSI commands that are transmitted to it over the network. It then repackages those commands and sends them out across its local SCSI bus to a local disk. (It could also send them to a Fibre Channel disk it might be attached to.) It takes the response from that disk, packages it up, and sends it back out over IP. The client presents an interface to the operating system that looks like a standard SCSI disk. When it gets a request from a higher level, it packages the command up and sends it across the network to the appropriate server machine. It then passes the response that comes back from the server up to the higher level. The technology to package up parallel SCSI commands and send them over a serial line or network is already part of SCSI­3. All that is required is implementing the drivers. This should be straight forward. Van Meter has implemented just such a scheme and shown that it can achieve parallel SCSI speeds over fast Ethernet. The server side can also be used to emulate SCSI commands. The server would look to see what type of SCSI command was being transfered. If it was is special command, the server daemon could handle it by itself and send a reply back to the client without ever talking to the disk. Other commands could be passed through to the disk. The Dlock command could be implemented this way. The command is currently in the process of being standardized, but until it becomes wide spread in SCSI devices, the server daemon could emulate it.

References

The Global File System – Steven R. Soltis, Thomas M. Ruwart, Matthew T. O’ Keefe

A 64-bit, Shared Disk File System for Linux – Kenneth W. Preslan, Andrew P. Barry, Jonathan E. Brassow, Grant M. Erickson, Erling Nygaard, ChrisJ. Sabol, Steven R. Soltis, David C. Teigland and Matthew T. O’Keefe

Storage Clusters for Linux – Andrew barry and Matthew O’Keefe

http://www.sistina.com
3.0 Conclusion

The CODA file system looks promising as far as disconnected operations and network failures are concerned. Caching is done on each client machine which enables a client to continue working during disconnects and network failures. Consistency of the centralized data after many clients have worked on the same resource using their local cached copies does not sound very reliable. But still it looks like a viable solution for mobile computing.

The GFS approach to a distributed file system using shared storage devices seems promising given the high bandwidth natures of new networks and the increasing sophistication of devices. The architecture places more responsibilities on storage devices than message-based architectures. Modern devices are able to cache, perform mutual exclusion, and schedule requests freeing these burdens from the node machines.

It is believed that by using 100 MB/sec Fibre Channel and multiple storage devices this shared storage scheme will scale well to several machines even with large workloads. Furthermore, the fine grain mutual exclusion implemented using the device locks will decrease conflicts to further increase the performance of each node and the system.

It is still not very clear how these two file systems can scale or how reliable or efficient each one can be and what they can offer as far as consistency of the shared data is concerned. These file systems are still in their experimental stages and have been tested with only a small number of machines(16 or less). With whatever information was available, I tried to come up with a summation in the form of a comparison as shown in the section below.

Comparison between CODA and GFS

CODA
GFS

Coda is essentially like NFS in that there is a server for any piece of data.
GFS is a high availability cluster file system that offers high performance characteristics. There is no server for storage. All clients interact directly with the storage pool.

Coda is a little more sophisticated in that there are multiple servers, allows for clients to work even when disconnected, but it makes no guarantees about the consistency of files during disconnected service. This is especially useful for mobile computing. Also provides continued operation during network failures.
GFS uses Journalling for fast recovery after disconnects or failures.

In CODA, because there is a server, it becomes a single point of failure.
In GFS, all nodes of a cluster have direct access to the storage, so any node or nodes can fail, and the remaining nodes retain access to the storage. So there is no server to be a "single-point-of-failure"

The traffic has to go through a CODA server.
Since the data traffic does not need to go through one server, aggregate performance can be hugely better (depending on the underlying hardware).

Caching is done on each client machine in main memory.
Caching is done on the network storage devices instead of on the main memory of clients.

Each client can make changes to its cached copy and then these updates are moved onto the CODA servers to be available universally. The CODA server then resolves update issues(cases where two or more clients have updated the same shared resource).
A locking mechanism is used when updates to shared resources needs to be done.

Scalability – Currently a 5-15 user base with knowledgeable users is recommended by the Coda group.
Scalability – Currently GFS has been tested with about 16 machines.

As of date CODA is available for Linux, FreeBSD, NetBSD, Windows 95 and Windows NT.
As of date GFS is available for Irix and Linux. Ports to BSD Unixes are in the works.

System Control Machine(SCM)

File Server

Auth Server

Update Server

Kernel

CODA Server

File Server

Auth Server

Update Server

Kernel

Coda Server

File Server

Auth Server

Update Server

Kernel

Coda Server

File Server

Auth Server

Update Server

Kernel

Coda Clients

Client

 KERNEL

 VENUS

(CACHE MANAGER)

CODA Servers

GFS Client

CPU, Memory, Disk

GFS Client

CPU, Memeory, Disk

GFS Client

CPU, Memory, Disk

 	 Network Storage Pool

(Solid State, Single Disk, RAID5, Software Striped Disks)

Storage Area Network

Resource Group Number

File Type

Mode

Owner/Group

Number of Links

Access Times

Bookkeeping Info

