7
2

CS 522 Term Project

Deployment and Evaluation of

Network Load Balancing

Jeremy D. Taylor

Paritosh Rohilla

Fall 2000

CONTENTS

1. INTRODUCTION …………………………………………………………..
3
2. NETWORK LOAD BALANCING …………………………………………
4
2.1
Network Load Balancing Driver ………………………………..…………
4

2.2
Network Load Balancing Algorithm …………………………….………..
4

2.3
Convergence ………………………………………………………………
5

2.4
Network Load Balancing Configurations ………………………….……..
5

2.5
Network Load Balancing Overhead ………………………………………
6
3. OUR CONFIGURATION …………………………………………………..
7
4. NETWORK LOAD BALANCING SETUP PROCEDURE ………………
8
4.1
Installing the Network Load Balancing Service …………………………..
8

4.2 Configuring Network Load Balancing ……………………………. ……..
8

5. INSTALLATION PROBLEMS …………………………………………….
9
6. EXPERIMENT SETUP ……………………………………………………...
10
7. EXPERIMENTAL RESULTS ………………………………………………
12
7.1 Test Set 1 ………………………………………………………………….
12

7.2 Test Set 2 ………………………………………………………………….
12

7.3 Test Set 3 ………………………………………………………………….
13

7.4 Test Set 4 ………………………………………………………………….
14

7.5 Graphical Representation …………………………………………………
15

8. CONCLUSION ………………………………………………………………
16
REFERENCES ………………………………………………………………
17

1.
Introduction
As our dependence on computers grows, the need for efficient and continuous information services becomes more vital. Database access, electronic mail, corporate intranets, web portals, and other services must be available 24 hours a day, seven days a week. Delays and denials of service are no longer acceptable. An organization’s network must be able to efficiently handle varying extremes of traffic with little or no delays and still provide continuous service during failures and maintenance. Clustering is a technology that meets this need by improving the availability of these services and increasing their scalability. A cluster is defined by G. Pfister as “a parallel or distributed system that consists of a collection of interconnected whole computers, that is utilized as a single, unified computing resource.” Microsoft provides two services with their Windows NT Server 4.0 and Windows 2000 Advanced Server and Datacenter Server operating systems which accomplish this: Cluster service and Network Load Balancing.

Microsoft’s Cluster service is a software that supports the connection of two or more servers into a cluster intended to run back-end applications, such as database and mail services. Cluster service load-balances network traffic for these services across multiple servers and provides failover support. To do this it requires each server to have a physical connection to a shared storage device and two network cards: one to interconnect the cluster subnet and one to connect each machine to the network. The benefit to the additional hardware required by Cluster service is that it is able to synchronize data between the separate servers, a necessity for services that write to the server. Microsoft’s Network Load Balancing is similar to Cluster service, except that it is designed to run front-end applications such as web servers and read-only databases. Network Load Balancing does not require any additional hardware, a second network card for the cluster subnet is recommended though. Due to the lack of a shared storage device and the fact that it was designed for front-end applications, Network Load Balancing is unable to provide synchronization of data between servers and cannot be used for services that require writing data to the server. Network Load Balancing is ideal for web services, such as Microsoft’s Internet Information Service, that provide read-only access to the server. Network Load Balancing will be the topic of discussion for the remainder of this paper.

2.
Network Load Balancing

Network Load Balancing manages incoming IP traffic using TCP, User Datagram Protocol, and Generic Routing Encapsulation. All other IP traffic is passed unchanged to the TCP/IP protocol software on all of the hosts in the cluster. It load-balances the above traffic by allocating a percentage of the network load to each server in the cluster. Network Load Balancing installs a driver on each host in the cluster that detects all incoming traffic for the cluster and contains the load-balancing algorithm. Each server in the cluster is required to have a unique, dedicated IP address for network traffic to that host and one or more shared IP addresses for the cluster. Network Load Balancing gives the appearance that the cluster is a single server by allowing clients to access the cluster using its virtual IP addresses.

Network Load Balancing is automatically installed during the installation of Windows 2000 Advanced Server and Datacenter Server. Configuring and enabling it can provide increased scalability and availability of network services. Network Load Balancing provides scalability by distributing client load across multiple hosts, allowing up to 32 servers per cluster. Servers can be added to the cluster as network traffic increases and the cluster will automatically detect and incorporate them. Distributing the client load across multiple hosts increases availability by decreasing the client-server response time and the multiple hosts can accommodate more connections, resulting in fewer denials of service. Network Load Balancing further increases availability by detecting server failure and repartitioning traffic amongst the remaining cluster hosts.

2.1
Network Load Balancing Driver

Each cluster host in a single subnet contains an identical copy of the Network Load Balancing driver running in parallel. The driver concurrently detects incoming network traffic for the cluster’s IP addresses and acts as a filter between the network interface card’s driver and the TCP/IP stack. It controls the network traffic received by each host allowing traffic for the host’s dedicated IP address to be forwarded to the upper layers and filtering traffic for the cluster’s primary IP address using an algorithm to determine what traffic should pass to the host’s upper layers. The driver maximizes throughput by using the broadcast subnet to deliver incoming traffic to all cluster hosts. By not routing traffic to individual hosts, the driver does not have the increased overhead of receiving, examining, rewriting, and re-transmitting the requests.

2.2
Network Load Balancing Algorithm

The load-balancing algorithm is designed to allow each host to independently and quickly make decisions for each incoming packet. It is optimized for a statistically even load from a large number of clients making many small requests. This kind of traffic models that of a web server, making Microsoft’s Internet Information Service an ideal service to cluster. Network Load Balancing delivers high throughput and low response time by using a simple algorithm. To make the algorithm simple and fast it does not respond to changes in the cluster host’s CPU load or memory usage and the algorithm does not ensure an identical load balance across each host. The algorithm is intentionally designed to not maximize cluster resources because excess resources are needed to support increased loads in the event of a cluster host failure.

2.3
Convergence
Network Load Balancing monitors the status of the cluster by having each host periodically transmit heartbeat messages within the cluster. In the event that there is a change in the cluster state, a machine is added, removed, or does not emit a heartbeat, the cluster undergoes convergence. Convergence is a process in which each host transmits a heartbeat message to determine a new consistent state for the cluster. In this process, a new default host is chosen as the host with the highest host priority. The default host in a cluster is responsible for handling all network traffic for the cluster that is not intended to be load-balanced. During convergence, all network traffic continues to be handled in the configuration prior to convergence. Any traffic to a down host will remain unanswered until convergence completes. Convergence can only complete once all cluster hosts transmit a consistent view of the cluster for multiple heartbeats. Once completed, traffic will be redistributed amongst the cluster hosts and a new default host will have been established.

2.4
Network Load Balancing Configurations
Network Load Balancing uses one of two configurable methods to send incoming network traffic to all cluster hosts: unicast or multicast. In both configurations the Network Load Balancing driver reassigns the MAC address of the network interface card for which it is enabled. It does this without restarting the operating system by setting a registry entry and then reloading the network interface card’s driver. In unicast mode the cluster adapter for each host in the cluster is assigned the same MAC address. The new MAC address is derived from the cluster’s primary IP address to ensure that it is unique. To prevent conflict with a switch, the MAC address is further modified for outgoing packets using the host’s priority number. This prevents the switch from learning the cluster’s true MAC address and ensures all incoming packets are broadcast to all ports. Multicast mode assigns a layer two multicast address to each cluster host’s network interface card. This mode gives each host a unique MAC address eliminating many of the problems associated with unicast mode.

Microsoft provides many other configurable options for Network Load Balancing. The administrator is able to micromanage how network traffic is handled by the cluster. Each host in the cluster is assigned a host priority number. As stated above, this number is used to determine a new default host during convergence. Because this machine handles all of the non-load-balanced traffic for the cluster, the administrator may want to rank each host by its processing power. Network Load Balancing also provides the option to configure how the load is balanced on each host. Client load can either be balanced evenly among all cluster hosts or load percentages can be specified for by server to give stronger servers a heavier load. Network Load Balancing allows up to 32 servers to be added to a single cluster. The ability to add and remove servers from the cluster without disrupting it and the large number of servers allowed per cluster make Microsoft’s Network Load Balancing flexible enough for any organization running a Windows network.

Network Load Balancing can also be customized for a range of server ports. These ports can either be load balanced and distributed among all cluster hosts, with the multiple-host configuration, or handled by a specific host with the highest handling priority, with the single-host configuration. Multiple-host policies allow load percentages to be specified for each host. Hosts with higher processing power can be assigned higher loads than slower machines. Multiple-host load balancing requires one of three client affinity modes to be selected: no affinity, single-client affinity, or class C affinity. When no affinity is chosen client traffic from a single IP address and different source ports are load-balanced by multiple cluster hosts. This configuration minimizes response time, but cannot track the boundaries of SSL sessions or UDP streams and will not correctly support these. The single client affinity mode provides a solution to this problem by load-balancing all network traffic from a client’s IP address on a single cluster host. Similarly, the class C affinity mode load-balances all network traffic from a single class C address space on a single cluster host. Class C affinity accommodates traffic from clients that use multiple proxy servers to access the cluster. The use of multiple proxy servers causes requests from a single client to appear to originate from different computers. This configuration has the highest response time, but allows for SSL sessions and UDP streams to process correctly for all client types.

2.5
Network Load Balancing Overhead
Network Load Balancing does require some overhead to perform its tasks. Examining each incoming packet and making load-balancing decisions based on the packet requires some CPU overhead. By delivering each incoming packet to all cluster hosts and discarding those filtered by the load-balancing algorithm, there is less overhead than in dispatcher-based load-balancing solutions that must modify and retransmit packets to specific cluster hosts. The overhead created by filtering grows in proportion to the incoming packet rate. Microsoft’s testing showed that at a peak fast ethernet capacity of 100 Mbps, Network Load Balancing required 5.8 percent of a 450-MHz CPU to perform its packet filtering. Another source of overhead is switch occupancy. The broadcast subnet is used to deliver client request to all cluster hosts making switch flooding a concern. Microsoft’s testing of client GET requests for 10KB web pages on a 100Mbps switch showed that client requests used less than 2 percent of the switch bandwidth. Switch flooding can become a problem in applications with a significant percentage of network traffic directed to the cluster or when switches used to connect to the network backbone have a higher speed than the switch used to connect cluster hosts.

3.
Our Configuration

Machine 1

Machine name: Oblib

IP Address: 128.198.192.195

Processor: Intel Pentium III 500MHz

RAM: 128MB

Operating System: Windows 2000 Advanced Server

NIC: 3 Com Etherlink XL10/100 PCI TX

Machine 2

Machine name: Walrus
IP Address: 128.198.192.197

Processor: Intel Pentium II 200 MHz

RAM: 64MB

Operating System: Windows 2000 Advanced Server

NIC: HP DeskDirect 10/100VG PCI LAN

Cluster configuration (on both machines unless noted)

Cluster name: Odorf

IP Address: 128.198.192.196

Subnet mask: 255.255.0.0

Full Internet name: odorf.uccs.edu

Multicast support: not enabled

Port Range: 0 to 65535

Protocols: Both TCP and UDP

Filtering mode: Multiple hosts

Affinity: Single

Load weight: Equal

On Oblib

Priority: 1

Initial cluster state: active

Dedicated IP Address: 128.198.192.195

Subnet mask: 255.255.0.0
On Walrus

Priority: 2

Initial cluster state: active

Dedicated IP Address: 128.198.192.197

Subnet mask: 255.255.0.0

4.
Network Load Balancing Setup Procedure in Windows 2000

4.1
Installing the Network Load Balancing service

The first step in the setup procedure is to install the Network Load Balancing service. If Network Load Balancing is not installed on the machine, we can do so using the following steps.

1. Bring up the Network and Dial-up Connections from the control panel.

2. Right-click the interface on which we want to install Network Load Balancing, and then click Properties.

3. Click Install, click Service, and then click Add.

4. Click Network Load Balancing, and then click OK.

4.2
Configuring Network Load Balancing

After installing the Network Load Balancing service, the following steps are required to cofigure the Network Load Balancing

1. If Network Load Balancing is enabled, skip to step 2. If not:

a. Click Start, point to Settings, and then click Network and Dial-up Connections.

b. Right-click the interface that should act as the virtual adapter, and then click Properties.

c. Click to select the Network Load Balancing check box.

2. Click the Network Load Balancing component, and then click Properties.

3. Type the cluster-specific data on the Cluster Parameters, Host Parameters, and Port Rules tabs.

For example, in the Primary IP Address box, we should type the IP address we want the cluster to load balance (also known as the virtual IP address or VIP). In our experiment the cluster IP Address was 128.198.192.196. Make sure the Full Internet name is registered in your network’s DNS.

4. Click Internet Protocol (TCP/IP), and then click Properties. Each machine must have a unique dedicated IP address, and the subnet mask must be identical for all cluster hosts. Click the Advanced tab. Under IP Settings enter the cluster’s primary IP Address. Then enter any additional virtual IP addresses the cluster will respond to. All cluster hosts must have their dedicated IP address followed by the cluster’s primary IP address and any virtual IP addresses for Network Load Balancing to work.

5.
Installation Problems

We had the following issues when installing the Network Load Balancing cluster service between two Windows 2000 servers.

· No communication between Cluster machines - When both servers had Network Load Balancing enabled, the two machines would not talk to each other. By this we mean neither machine would acknowledge the presence of other. We tried pinging one of the machines in the cluster with the other machine, but the ping would always fail, though any machine outside the cluster could ping both cluster hosts. We also tried to access the Web site on one machine with the other and it would fail also.

We found the reason why they could not see each other. The reason being the cluster machines were setup in unicast mode. One side effect of unicast mode is that cluster hosts cannot talk to each other. To let them talk to each other they have to be in multicast mode or have a second network card for cluster communication.

· Network Load Balancing requires one machine to be a domain controller – In order for the Network Load Balancing to work among the cluster machines, it is important that one of the machines in the cluster be setup as the Domain controller. After installing and configuring the Network Load Balancing we tried to access the cluster, but in vain. It was only after we had setup one as the domain controller and put both machines in the same domain did the cluster start working.

6.
Experiment Setup

We ran the experiments on our cluster setup to measure the performance of the cluster. The experiments were carried out in two stages. First we ran a set of test on the entire cluster, and then we ran the same test on the individual machines that formed the cluster. We used Webstone 2.5 benchmarking software for Web Servers. The following steps explain how we set up or experiment.

a. Configuring Internet Service Manager– We configured web sites on both machines of the cluster, walrus and oblib. We created two web sites on each machine. One site corresponded to the dedicated IP address on each of the machines. For walrus it was 128.198.192.197 and for oblib it was 128.198.192.195. The other web site corresponded to the IP of the cluster. The cluster’s site name was odorf and its IP was 128.198.192.196.

b. Setting up Clients – We chose two separate machines as clients to run our test on the Web servers. The two machines chosen were crestone and sanluis. These machines already had the Webstone benchmarking software installed. The benchmarking software reads from the configuration file to start the benchmarking tests. Every test run first involved editing the configuration file to setup the test parameters. The various parameters that were adjusted for the test run are listed below

i. MINCLIENTS – This parameter sets up the minimum number of clients that the benchmarking software will spawn. All these clients will then connect to the Web server and send request for documents.

ii. MAXCLIENTS – This parameter sets up the maximum number of clients that will be spawned by the benchmarking software for the test run.

iii. TIMEPERRUN – The duration of the test is specified here. The value is a number, which represents the number of minutes the test will run.

iv. SERVER – The domain name of the Web sever on which we want to run the benchmarking tests is specified here. For our experiments this parameter is the either the name of the cluster (odorf.uccs.edu) or the names of individual machines of the cluster (walrus.uccs.edu and oblib.uccs.edu), for different simulation runs. So if we want to run the simulation on the cluster we would specify odorf, otherwise it would be either walrus or oblib when running the simulation on individual machines of the cluster.

v. CLIENTS – Here we specify the names of the machines on which the clients will be spawned. For our tests we always include both client machines i.e. crestone and sanluis. The number of clients specified in the two parameters above will be shared between these two machines.

c. Evaluation of Network Load Balancing – Webstone software was used to run the benchmarking tests to evaluate the Network Load Balancing feature provided in Windows 2000 Advanced Server. It takes the parameters contained in the configuration file described above. When executed the software spawns the clients on the machines specified in the CLIENTS parameter. These clients then send simultaneous requests to the Web server specified in the SERVER parameter. Each test is run for the number of minutes specified in TIMEPERRUN.

The evaluation data for Network Load Balancing was obtained by running benchmarking tests on a Web server when it was under a cluster of two machines each having a Web server configured for the cluster. For comparison purposes we also ran same tests on the Web servers of the individual machines.

7.
Experimental Results

The tests were performed in sets of three. Each configuration was run over the cluster and on the individual machines. The following tables show the values used for each test set and also the results obtained when running the test set on the cluster and the individual machines:

7.1
Test Set 1

Configuration Parameters
Value

MINCLIENTS
40

MAXCLIENTS
40

TIMEPERRUN
5 minutes

CLIENTS
“crestone, sanluis”

Results

1. SERVER = odorf

Server connection rate = 40.24 connections/sec

Server throughput = 6.56 Mbit/sec

2. SERVER = walrus

Server connection rate = 30.52 connections/sec

Server throughput = 4.60 Mbit/sec

3. SERVER = oblib

Server connection rate = 40.64 connections/sec

Server throughput = 6.64 Mbit/sec

7.2
Test Set 2

Configuration Parameters
Value

MINCLIENTS
60

MAXCLIENTS
60

TIMEPERRUN
10 minutes

CLIENTS
“crestone, sanluis”

Results

1. SERVER = odorf

Server connection rate = 42.16 connections/sec

Server throughput = 6.70 Mbit/sec

2. SERVER = walrus

Server connection rate = 40.85 connections/sec

Server throughput = 6.51 Mbit/sec

3. SERVER = oblib

Server connection rate = 40.62 connections/sec

Server throughput = 6.63 Mbit/sec

7.3
Test Set 3

Configuration Parameters
Value

MINCLIENTS
80

MAXCLIENTS
80

TIMEPERRUN
10 minutes

CLIENTS
“crestone, sanluis”

Results

1. SERVER = odorf

Server connection rate = 41.03 connections/sec

Server throughput = 6.60 Mbit/sec

2. SERVER = walrus

Server connection rate = 42.48 connections/sec

Server throughput = 6.43 Mbit/sec

3. SERVER = oblib

Server connection rate = 39.97 connections/sec

Server throughput = 5.99 Mbit/sec

7.4
Test Set 4

Configuration Parameters
Value

MINCLIENTS
100

MAXCLIENTS
100

TIMEPERRUN
10 minutes

CLIENTS
“crestone, sanluis”

Results

1. SERVER = odorf

Server connection rate = 44.13 connections/sec

Server throughput = 6.66 Mbit/sec

2. SERVER = walrus

Server connection rate = 41.24 connections/sec

Server throughput = 6.59 Mbit/sec

3. SERVER = oblib

No Results Obtained - Sever Timed Out on all retrys.

7.5
Graphical Representation

[image: image1.wmf]0

10

20

30

40

50

40

60

80

100

MAXCLIENTS

Server Connection Rate

(Conn/sec)

Cluster

(Odorf)

Walrus

Oblib

Graph 1. Server Connection Rate v/s MAXCLIENTS

[image: image2.wmf]0

1

2

3

4

5

6

7

8

40

60

80

100

MAXCLIENTS

Server Throughput (Mbps)

Cluster

(Odorf)

Walrus

Oblib

Graph 2. Server Throughput v/s MAXCLIENTS

8.
Conclusion

The experimental results show that the cluster is slightly better than the individual machines in its performance. Since walrus is a slower machine we hypothesize that it slows down the entire cluster, so we don’t see much increase in the performance of the cluster over individual machines. When we ran our experiments with number of clients over 100, we obtained no results either with the cluster or with individual machines. For every configuration the results would always timeout over 100 clients, so we don’t have any performance data for very high traffic.

We also observed that for some cases walrus performed better than oblib even though the latter is a much faster machine. This could be attributed to the fact that oblib was also setup as the domain controller for the cluster and this could put additional overhead on it, thus resulting in comparatively slower performance but not significantly lower compared to walrus. Also we did not obtain any data for oblib at 100 clients, this could be also be attributed to oblib being the domain controller.

We also conducted some tests on the cluster where we would disconnect one machine from the cluster and then test if we could get the Web server to respond. The cluster did its job as expected and would serve pages from the machine that was alive within the cluster.

Overall based upon the results we achieved we were satisfied with the Windows 2000 Network Load Balancing service, but we would like to comment that a thorough evaluation can only be made if there are more than 2 or 3 machines on the cluster. We expect we would really see some gains in the performance of the cluster over individual machines. Network Load Balancing comes as a service of Windows 2000 Advanced Server and Datacenter Service and does not require any additional hardware making it a viable option for an organizations clustering needs.

References

1. www.microsoft.com
2. www.mindcraft.com/webstone
3. Windows 2000 Help Topics on Network Load Balancing

� EMBED MSGraph.Chart.8 \s ���

� EMBED MSGraph.Chart.8 \s ���

[image: image3.wmf]0

10

20

30

40

50

40

60

80

100

MAXCLIENTS

Server Connection Rate

(Conn/sec)

Cluster

(Odorf)

Walrus

Oblib

[image: image4.wmf]0

1

2

3

4

5

6

7

8

40

60

80

100

MAXCLIENTS

Server Throughput (Mbps)

Cluster

(Odorf)

Walrus

Oblib

_1037888178

_1037888160

