Linux Virtual Cluster With 2.4 Kernel

By Patricia Ferrao

UCCS-CS522

Nov 25/00

Table Of Contents

31.
Introduction

32.
Linux Virtual Server

42.1 LVS – NAT

52.2 LVS-DR

62.3 LVS-Tunnel

72.4 LVS common issues

93.
Networking Features of Linux 2.4 and their Interactions

93.1
Linux 2.4 Packet Filtering

103.2
Network Address Translation

113.3
Advanced Routing

144.
Linux Virtual Cluster

154.1
LVC – Source Nat at Real Servers

164.2
LVC – Virtual Server is Default Gateway

174.1
LVC Limitations

184.2
LVC Lab Configuration and Test Cases

184.4.1 Sample Lab Setup

194.4.2
LVC Test Cases

214.4.3
Configuring the Linux 2.4 Kernel

224.4.4
LVC Project Progress

235.
APPENDIX –1 “iptables” and “tc” datafill terms

246.
References

257.
Glossary Of Terms

1. Introduction

There is a software package called Linux Virtual Server (LVS) that runs on Linux 2.2.x kernels. This package allows a cluster of servers to function as one virtual server. The servers are under the control of an LVS director which receives service requests from clients. The director than forwards the service requests to the individual servers (real servers) to carry them out. All this is transparent to the clients. All clients use one IP address to request services from the LVS, the IP address of the director. It is up to the director to forward requests to the real servers. Under this setup, all real servers can offer identical functionality, or they can be setup with different services. LVS can be used for distributing work load among different machines, for combining a variety of services offered by various machines under one IP address, or for differentiating the quality of service given to different clients by forwarding the requests of more important clients to less heavily used servers.

In 2.4, the Linux kernel has been redesigned and rewritten to improve advanced features such as packet filtering and Network Address Translation (NAT). Furthermore, under 2.4 it is easier for packet filtering, NAT, advanced routing and differentiated services to work together. I believe it is possible to use these 2.4 advanced features to setup a functionality similar to LVS, called Linux Virtual Cluster (LVC). LVS software would not be required to setup LVC. This is important since the LVS software has not been rewritten to work with the new 2.4 features. Therefore, I believe that the LVC configuration can be more powerful than LVS because it can take advantage of the new architecture and the interactions between feature sets.

In this paper, I discuss my semester project for UCCS-CS522, Computer Communication. For this project, I will attempt to setup the LVC configuration using Linux 2.4 and run several test cases. First, I will discuss the three LVS setups and mention some of the benefits and shortcomings of each method. Then I will overview some of the Linux 2.4 advanced features and their interactions with each other and other existing features: mainly packet filtering, network address translation and advanced routing. Next, I will introduce the Linux virtual cluster configuration and discuss some of its benefits and shortcomings. Lastly I will talk about the lab setup, 2.4 kernel configuration, and test datafill.

2. Linux Virtual Server

The LVS software allows for three configurations: LVS-NAT , LVS-DR (Direct Routing), and LVS-Tunnel. I will discuss each of these.

2.1 LVS – NAT

[image: image1.wmf]Client

CIP

LVS Director

VIP

DIP

RIP1

Real Server 1

Real Server 2

Real Server 3

RIP2

RIP3

src = cip

dest=vip

(Router)

src=vip

dest=cip

src=cip

dest=rip1

src=rip1

dest=cip

VIP

-

 Virtual IP

CIP

-

 Client IP

DIP

-

 Director IP

RIP

-

 Real Server IP

Figure 1: LVS – Network Address Translation

Figure 1 shows the ‘LVS network address translation’ setup. Here, the client establishes a service with the LVS director using the LVS virtual IP address. The director wants to forward the service handling to real server 1. It performs network address translation on the destination IP address for all packets connected with the service. The NAT is performed using "ipchains" software, a method used prior to Linux 2.4. The reply packets from real server 1 to the client pass back through the director, who alters the source IP address to the VIP address. In other words, the LVS director is setup to be the default gateway for the real servers. This is required with LVS-NAT. If the director did not alter the source IP address of reply packets, the client would not be able to associate them with a service request that it made. This limitation implies that the real servers and the director must be on the same network. Also, the director has the burden of processing all reply packets from the servers to the clients.

The LVS director needs to run LVS software. It uses the NAT feature that comes with LVS to translate source and destination IP addresses. The LVS NAT feature makes use of “ipchains”. With LVS-NAT, the director must keep track of TCP and UDP connection that is alters. If desired, the NAT feature can be used to redirect a connection to a different port at the real server. This requires performing translation on both the IP address fields and TCP/UDP port fields of every packet involved with the connection.

2.2 LVS-DR

[image: image2.wmf]Client

CIP

LVS Director

VIP

DIP

RIP1 VIP(lo:0)

Real Server 1

Real Server 2

Real Server 3

RIP2 VIP(lo:0)

RIP3 VIP(lo:0)

src = cip

dest=vip

(Router)

src=cip

dest=vip

dest mac = rip1 mac

VIP

-

 Virtual IP

CIP

-

 Client IP

DIP

-

 Director IP

RIP

-

 Real Server IP

(Router)

To client

src=vip

dest=cip

Figure 2: LVS - Direct Routing

The second LVS setup is ‘LVS-Direct Routing’. This configuration is shown in Figure 2. With this setup, clients also use the virtual IP address to establish a service with the director. The director does not alter the IP packets. It uses the MAC address associated with the RIP IP to forward the packets to a real server. So all client packets forwarded to real server 1 have the CIP as source IP, VIP as destination IP, and the RIP1 MAC address as the destination MAC address. In order for this method to work, the VIP address has to be assigned at the real servers and at the director. The director requires a network interface card with the VIP assigned to it, but the real servers can use the loopback interface to hold the VIP address. It is the RIP interfaces that pick up the packets at the real servers, but the VIP is required in order for the real servers to locally process packets that have destination address set to VIP. Otherwise, they’ll think that these packets are for forwarding or to be discarded. The real servers send reply packets directly to the clients without using the director as a gateway. In the figure, real server 1 replies back to the client using the VIP as source address. The reply packets go through a separate gateway. The advantage of not having the director as the default gateway for the servers is that the director does not have to process all reply packets from the servers to the clients. This puts less load on the director. However, the director and servers need to be on the same wire since the director must be able to ARP the servers and receive ARP responses back directly from the servers. This is how it obtains MAC addresses associated with the RIP IPs.

This setup is unusual because multiple machines on the same network share a common IP address. This creates an issue with the ARP protocol, known as the ARP problem. When the real server gateway router in Figure 2 wants to know the MAC address associated with the VIP address, it sends an ARP request. This request is received by the director and all the real servers, since these machines are on the same wire. They will all respond to the ARP request. The first ARP response that makes it back to the router will receive packets destined for VIP. This will not necessarily be the director. Therefore, it is possible under this setup that clients will not connect with the director, but with one of the real servers instead, thus defeating the whole purpose of LVS. The only way around this is to disable the loopback interface from answering ARP requests.

For LVS-DR, the director needs to run LVS software. The real servers running Linux 2.2.x may require a patch to allow the disabling of ARP response for the loopback interface. Since the director does not alter any IP header information, this setup has the advantage of speed. However, TCP/UDP port addresses cannot be remapped like in the LVS-NAT setup.

2.3 LVS-Tunnel

[image: image3.wmf]Client

CIP

LVS Director

VIP

DIP

RIP

1

VIP(

tun

:0)

Real Server 1

Real Server 2

Real Server 3

RIP2

VIP(

tun:

:0)

RIP3

 VIP(l

tun:

0)

src = cip

dest=vip

(Router)

src=

d

ip

dest=rip1

encapsu

l

ated packet (ipip tunnel

)

VIP

-

 Virtual IP

CIP

-

 Client IP

DIP

-

 Director IP

RIP

-

 Real Server IP

To client

src=vip

dest=cip

(Router)

(Router)

(Router)

(Router)

(Router)

(Router)

Figure 3: LVS - Tunnel
This third LVS setup follows the same philosophy as LVS-NAT. Instead of address translation, IPIP encapsulation is performed at the director. The director receives client packets with source address set to CIP and destination address set to VIP. It encapsulates the packets in IP packets with source address set to DIP and destination address set to RIP. The real servers then recover the original IP packets from the tunnel packets and respond directly to the client without going through the director again.

This setup has the advantage that all LVS machines can now be on separate networks. However, it shares the same ARP problem with LVS-DR. This time, the tunnel 0 interface can be used to hold the VIP address at the real servers. It must also be disabled from answering ARP requests. The same patch software that allows this disabling is required for Linux 2.2.x kernels. The director must run LVS software, and the real servers must run an OS that can support IPIP tunneling.

2.4 LVS common issues

This section discusses LVS issues that are common to all three setups.

Load balancing:

One of the common uses of LVS is for load balancing. If a server happens to get more requests from clients than it can handle, an LVS configuration with a director and multiple real servers behind it can be setup. All clients still know of only one IP address, the VIP. However, the director can now distribute the load among several machines.

LVS software offers a few techniques for doing the load balancing. The round-robin technique assigns new connections to each server in turn. The weighted round-robin style is a modified round-robin technique where servers are assigned different weights, and load is distributed to the servers in turn based on weight proportions. There is also a least connected technique which assigns new connections to the server with the least number of connections. This is not the same as sending new connections to the least busy server, but it is a step in that direction. A modified version of least connected is weighted least connected. It also assigns weights to servers and allocates connection based on least number of connections and weights.

Persistent port connections:

Some services like FTP pose a problem for load balancing methods. FTP requires two connections to be setup, one for control and one for data. It is imperative that both connections are established with the same machine. Load balancing may attempt to send the FTP control connection to one server and the data one to another. This is where persistent port connections (PPC) come into play. PPC establishes a time period (360secs) where all connections from a common IP client address go to the same real server. This way, both FTP connections for the same session will go to the same machine.

Failover:

Failover is a technique that allows the director to monitor if services on the real servers are alive. It the director detects that a service on a real server has failed, it can refuse to forward requests to that server for the service. Likewise, when it detects that the service is back online, it can resume normal operations. Failover also provides for when the director fails. The idea is to setup a duplicate director and run heartbeat between the two directors. When the active one fails, the one in stand-by mode is in a position to take over. It is also possible to have a real server fill in for the director when the director dies.

LVS failover is based on a Linux program called “mon”. Mon can run independently of LVS software. It periodically pings servers in order to detect if services like FTP, HTTP, and TELNET are alive. If it detects a failure, it executes some action (an alert) like send email, page someone, etc. LVS software has created a new alert that takes the service offline while it’s down.

3. Networking Features of Linux 2.4 and their Interactions
Some of the features discussed here are new to 2.4. Some existed in 2.2.x, but I include them here to show how they interact with the new 2.4 feature. In later chapters, I show how these features can be included in the LVC framework.

3.1 Linux 2.4 Packet Filtering

The Linux 2.4 kernel restructured packet filtering. The “ipchains” tool of Linux 2.2.x has been replaced with “iptables”. “Iptables” is a userspace tool designed to work with the changes made to packet filtering in 2.4. It inserts and deletes rules from the kernel’s packet filtering table, table ‘filter’. “Ipchains” can still be used in 2.4, since the 2.4 kernel is backwards compatible.

By default, the kernel has three lists of rules in the filter table. They are the INPUT chain, OUTPUT chain and FORWARD chain. All packets that enter the node and are destined for the node will be processed by the INPUT chain. All packets that originate at the node and are sent out by the node are processed by the OUTPUT chain. Finally, all packets that enter the node to be forwarded on to another node are processed by the FORWARD chain. There is a default policy setup for each chain to determine how to handle packets that fall out of the chain because they do not match any specific rule encountered in the chain. That policy can be to either ACCEPT the packets , DROP the packets, or do something else. The rules in a chain are traversed in order until a match is found, or the packets fall off the end of the chain. At this point, the default policy is applied. It is possible to create new chains other than the three default ones. The default chain for the packet is always entered first. From there, it is possible for a packet to match a rule that states to jump to a user-defined chain. If the packet matches a rule in that chain, the rule is applied. If the packet falls off the end of the user-defined chain, it continues to traverse the default chain from where it left off.

There are many ways to filter packets with “iptables”. For instance, packets can be filtered based on protocol, source IP address, destination IP address, TCP/UDP port number, input and output interface, and so forth. Here is an example of “iptables” datafill:

>iptables –A INPUT -i eth0 –s 10.1.2.3 –p icmp –j drop

This example appends a rule to the INPUT chain. The rule says to drop all ICMP packets coming from interface eth0 with source IP address 10.1.2.3. See Appendix 1 for a more detailed explanation of the datafill terms.

3.2 Network Address Translation

Network address translation is a Linux feature that was also redesigned in 2.4. In 2.4, an infrastructure for packet mangling called “netfilter” was introduced. A layer on top of “netfilter” called ”NAT” provides address translation. Network address translation refers to the altering of source or destination IP address in the IP header of packets. The source and destination TCP/UDP port numbers can also be altered.

NAT is performed through rules, just as in packet filtering. The “iptables” tool is also used for NAT. The difference is that now the “iptables” tool needs to alter table “nat”. The “nat” table also operates on three chains, but they are different from the packet filtering chains. For NAT, there is a PREROUTING chain that handles all packets entering a node, an OUTPUT chain that handles all packets originating at a node to be sent out, and a POSTROUTING chain that handles all packets to be sent out from the node. Therefore, unlike in the packet filtering case, here packets can be processed by more than one chain. For instance, packets being forwarded at a node go through both the PREROUTING and POSTROUTING chains. Likewise, packets that originate at a node go through the OUTPUT and POSTROUTING chains. Packets that terminate at a node go through the PREROUTING chain only. The PREROUTING chain is the first one that packets traverse, and the POSTROUTING chain is the last one to be traversed. Source NAT is performed at POSTROUTING only, while destination NAT is performed at PREROUTING and OUTPUT. Therefore, if the destination IP address of a packet is altered by the PREROUTING chain, any rule in the POSTROUTING chain will see the packet’s altered destination address. Likewise for packets altered by the OUTPUT chain. Note that if a rule wants to use the input or output interfaces for filtering packets for NAT, the input interface is only valid at PREROUTING, and the output interface is only valid at POSTROUTING.

The following examples show how to datafill NAT using “iptables”.

>iptables –t nat –A POSTROUTING –s 10.1.2.0/24 –p tcp -dport 80 -o \

 eth1 –j SNAT –to 1.2.3.4

The above example uses “iptables” to append a rule to table “nat” at POSTROUTING. The rule specifies that all packets with source address from the 10.1.2.0 network with protocol tcp and destination port 80 leaving the node through “eth1” will have their source IP addresses changed to 1.2.3.4.

Here is another rule:

>iptables –t nat -I PREROUTING –i eth0 –j DNAT –to 1.2.3.4-1.2.3.7

This example inserts a rule at the beginning of the PREROUTING chain for table “nat”. The rule states that all packets entering through “eth0” will have their destination IP addresses changed to one of 1.2.3.4, 1.2.3.5, 1.2.3.6, or 1.2.3.7. The least recently used address will be applied to a given packet. Since netfilter software does connection tracking, the rules are applied to packets on a UDP/TCP flow basis (all packets with common source IP address and port number will be treated as a flow). Therefore, in the above example all packets belonging to the same flow will be forwarded to the same address.

Note that for netfilter, the “iptable” rules are processed in the order that they are placed in the chains until a match is found.

Packet filtering and Network Address Translation:

As you can see from the two examples above, packet filtering can be applied to packets that need to be NATed. In other words, not all packets get their addresses altered. The packets have to match a specific rule in the “nat” table chains. Packet filtering and NAT can also be specified separately and work together. The table “nat” rules are applied first, then the other filtering rules. The following example shows the point:

>iptables –t nat –A PREROUTING –i eth0 –s 10.2.3.4 –j DNAT 1.2.3.5

>iptables –A FORWARD –d 1.2.3.5 –j drop

First, all packets entering through “eth0” with source IP address of 10.2.3.4 will have their destination IP address changes to 1.2.3.5. Then all packets being forwarded with destination address 1.2.3.5 will be dropped. When the two rules are applied together, all packets that initially matched the table “nat” rule will be dropped.

3.3 Advanced Routing

Linux has a very sophisticated infrastructure for bandwidth management and traffic control, called “iproute2”. It has various methods for performing traffic classification, prioritization, and bandwidth sharing. Some of these features are new to 2.4, and some existed in 2.2.x. What is more important is that the networking features in 2.4 comes together in a way that is both powerful and unrivaled in the general OS arena.

 Bandwidth management through queuing:

Queuing determines the priority in which packets are transmitted. The simplest queue is a First-In-First Out (FIFO) queue where packets are processed in the order in which they come in. Linux has, various queuing methods, each with their own strengths and weaknesses. A brief description of some of these queues is given below:

FIFO-fast:

This is the Linux default queue. This queue has three bands: 0, 1 and 2. As long as there are packets waiting in band 0, no other band is processed. Band 1 is processed after band 0, and band 2 last. Within each band, the first-in-first-out rules apply.

Stochastic fairness queuing:

All packets with common source and destination IP address, protocol and port numbers are given their own queue. One packet from queue 1 is processed, then from queue 2, etc. The queues are handled this way in a round-robin fashion. This way, any one UDP or TCP flow cannot take up more than its fair share of the bandwidth.

Token bucket filter:

This queue requires that parameters be set to limit the amount of traffic passing through it. This queue is assigned a fixed set of buffers. If traffic arrives faster than buffers can be processed, packets will be lost. This queue also has parameters to limit the speed at which transmission bursts can be received.

Random early detect:

This queue will discard packets a bit before the queue fills up. This is a way of simulating congestion before congestion really occurs. When the TCP protocol detects the loss of packets, it will slow down its transmission, thus preventing full-blown congestion.

Ingress policer qdisc:

This queue allows for policing of incoming bandwidth. Packets can be dropped when the rate of packets entering a node exceeds some desired limit.

WRR:

This queue maintains classes with different weights. Packets from different classes are serviced in proportion to the class weight, in a weighted-round-robin fashion.

Linux provides a broader system of queuing called class-based queuing (CBQ). CBQ enables bandwidth to be subdivided into classes and subclasses, with each subclass getting its own piece of the bandwidth. These subclasses can choose to share their allocated bandwidth with other subclasses if they are not using it all. In the case where some classes require extra bandwidth for a while, they can choose to borrow bandwidth from classes willing to share. Once a chunk of bandwidth has been assigned to a class, it can be managed by token bucket, WRR, or any other of the queuing methods discussed above.

The iproute2 user space tool “tc” is used to setup traffic control and queuing. The following example shows how to subdivide bandwidth into classes and manage each class with a queuing discipline:

>tc qdisc dev eth0 root handle 5: cbq bandwidth 100Mbit avpkt 1000

>tc class add dev eth0 parent 5:0 classid 6:1 cbq bandwidth 100Mbit rate \

 100Mbit allot 1514 weight 10Mbit prio 4 maxburst 10 avpkt 1000

>tc class add dev eth0 parent 6:1 classid 6:100 cbq bandwidth 100Mbit rate \

 10Mbit allot 1514 weight 1Mbit prio 3 maxburst 20 avpkt 1000 bounded

>tc class add dev eth0 parent 6:1 classid 6:200 cbq bandwidth 100Mbit rate\

 20Mbit allot 1514 weight 2Mbit prio 2 maxburst 20 avpkt 1000 isolated

>tc qdisq add dev eth0 parent 6:100 sfq quantum 1514b perturb 15

>tc qdisc add dev eth0 parent 6:200 sfq quantum 1514b perturb 15

 There is a lot in this example to digest. I will not explain all the numbers, since a more detailed explanation can be obtained in [1] and [6]. However, I’ll go over some of the more important points of this example. In the first line, a root class is being allocated to eth0, a 100Mbit ethernet card. This root class is given a handle of 5, and the average packet size of packets going through this ethernet card is 1000 bytes. From this root class, a subclass is created in the second line. This subclass is for the whole 100Mbits. It is given a handle of 6.1, and a priority of 4 Classes with higher priority are serviced before those with lower priority. The two lines that follow allocate portions of the 100Mbits to two subclasses, 6:100 and 6:200. Both these two subclasses stem from 6:1. 6:100 is allocated 10Mbits and 6:200 is allocated 20Mbits. Subclass 6:100 is set to bounded, meaning that it cannot borrow bandwidth from other classes if it runs out. Subclass 6:200 is set to isolated meaning that it cannot lend its bandwidth to non-descendant classes. The last two lines assign the stochastic fair queuing management scheme to subclasses 6:100 and 6:200. This means that the 10Mbits reserved for 6:100 will be managed using SFQ, and likewise for the 20Mbits reserved for 6:200. This example is not complete, since there are no packets being assigned to any of the subclasses. I will first discuss packet markers and classifiers before completing the above example.

Packet markers and classifiers:
The “iptables” tool allows packets to be marked for further processing down the road. The packets are marked with a number in the IP header. This is done using the “-j mark –set-mark #” option in datafill. The following example shows the point:

>iptables –A PREROUTING –t mangle –s 10.2.3.4 –j mark –set-mark 1

In this example, all packets having source IP address 10.2.3.4 will get marked with the number 1. Iproute2 can then use this header information to either select special routes for the marked packets or assign the marked packets to CBQ flowids.

The iproute2 package has several classifiers to decide how to route packets or what queues to place packets into. Two of these are fw and u32. The “fw” classifier selects packets based on if and how the packets are marked. The “u32” classifier allows bits to be matched within packet headers. This selector allows a single bit or multiple bits, upto 32, to be matched anywhere in the IP or transport header. The parameters ‘pattern’, ‘mask’, and ‘offset’ need to be specified when using the u32 selector. However, the u32 selector also has predefined specific selectors to simplify its use, like “ip dst”, “tcp src”, and “ip tos”. These specific selectors replace the mask and offset parameters. However, the more general version of u32 can still be used for cases where specific selectors do not exist. Here is an example:

>tc filter add dev ppp0 parent 2:0 prio 20 u32 match u8 64 0xff at 8 …

Here, we are using the u32 selector to match the pattern 64 starting at the 8th byte after the ip header. This happens to be the TTL field. “u8” means that we are matching at most 8 bits, and 0xff means that we are matching exactly 8 bits.

We are now in a position to complete the above CBQ example. We append the following two lines to the six lines in the CBQ example:

>tc filter add dev eth0 parent 5:0 protocol ip prio 100 u32 match ip dst 1.2.3.4 \

 flowid 6:100

>tc filter add dev eth0 parent 5:0 protocol ip prio 50 u32 match ip dst 1.2.3.5 \

 flowid 6:200

In these two lines, we are using the u32 classifier to send packets destined for 1.2.3.4 to flowid 6:100, and packets destined for 1.2.3.5 to flowid 6:200. Filters with higher priority are serviced before those with lower priority. The priority is useful in case a packet matches multiple filters with conflicting actions. In this case, the packet will match the filter with highest priority first, and that filter will decide the packet’s fate.

4. Linux Virtual Cluster

This section discusses how the Linux features of section 3 can be used to setup LVC, a service similar to LVS, but without the LVS software package. I use the Linux 2.4 kernel and these advanced features to setup two LVC configuration.

4.1 LVC – Source Nat at Real Servers

[image: image4.wmf]Client

CIP

Virtual Server

VIP

SIP

RIP1

Real Server 1

Real Server 2

Real Server 3

RIP2

RIP3

src = cip

dest=vip

(Router)

src=cip

dest=rip1

VIP

-

 Virtual IP

CIP

-

 Client IP

SIP

-

 Server IP

RIP

-

 Real Server IP

To client

src=vip

dest=cip

(Router)

(Router)

(Router)

(Router)

(Router)

(Router)

Figure 4: LVC - SNAT at real servers

Figure 4 shows the ‘LVC- SNAT at real servers’ setup. The client establishes a service with the virtual server using the VIP address. The virtual server performs destination network address translation by altering the packets’ destination IP address to one of the real server IP address, real server 1 in this example. The DNAT is done using 2.4 kernel “iptables” tool. The real servers reply directly to the client without going back through the virtual server. In this example, real server 1 performs SNAT on the reply packets by altering the source IP address from RIP1 to VIP. The SNAT at the real servers is also done using the 2.4 “iptables” tool and netfilter package. The reply packets back to the client have source IP set to VIP, and destination IP set to CIP.

Like LVS-Tunnel, this solution has the advantage of allowing all machines to be on separate networks. Unlike LVS-Tunnel, it allows for the remapping of ports, and it does not have the “ARP” problem. This solution is probably not as fast as the LVS-DR solution, since it alters IP headers for both original and reply packets. It should have the same speed issues as LVS-NAT. All LVC machines need to run Linux 2.4 for this configuration.

4.2 LVC – Virtual Server is Default Gateway

[image: image5.wmf]Client

CIP

Virtual Server

VIP

SIP

RIP1

Real Server 1

Real Server 2

Real Server 3

RIP2

RIP3

src = cip

dest=vip

(Router)

src=vip

dest=cip

src=cip

dest=rip1

src=rip1

dest=cip

VIP

-

 Virtual IP

CIP

-

 Client IP

SIP

-

 Server IP

RIP

-

 Real Server IP

Figure 5: LVC- VS is Default Gateway

Figure 5 shows the setup for the second LVC configuration. This configuration is very similar to LVS-NAT. The virtual server is setup to be the default gateway for the real servers. Therefore, all replies back to the client must go through the virtual server. The client establishes a service with the virtual server using the VIP as the destination address. The virtual server performs destination address translation on the packets using “iptables” and netfilter. The destination IP address is changed from VIP to one of the real server IP addresses, real server 1 in this example. The real server replies to the client as normal, but the reply packets go back through the virtual server. The virtual server performs SNAT on the reply packets using “iptables” and netfilter. The source address of the reply packets is changed from RIP1 to VIP.

This solution can be used in cases where SNAT cannot be performed at the real servers. Maybe the real servers are not running the Linux operating system. Like LVS-NAT, the virtual server and the real servers must be on the same network. Also, this solution probably shares the same speed limitations as LVS-NAT.

4.1 LVC Limitations

In section 2.4, I discussed some issues for which LVS software provides the solution. Since we are not using LVS software to do LVC, these issues now become limitations for LVC.

Direct Routing:

LVS direct routing is an LVS software function that cannot be copied simply by using Linux 2.4 features. Therefore, this is an LVC limitation.

Scheduling Algorithms:

LVC can do load balancing. However, it only offers round robin as a scheduling algorithm. In “iptables” datafill, a range of IP addresses can be entered as the destination address when doing DNAT. The NAT software will pick the least recently used IP address as the new destination IP address for the current flow. I believe that the IP addresses entered must be consecutive, ie: 1.2.3.3-1.2.3.7. However, CBQ can be used to provide more scheduling algorithms. See TC3 in section 4.4.2 for an example.

Persistent port connections:

When configuring the Linux 2.4 kernel, I did notice a parameter that deals with FTP connection tracking. This is the ‘FTP protocol support’ parameter. Since netfilter software does connection tracking, it is possible that it also deals with the multiple connections per service issue. However, I am not sure if this is the case, since I did not get a change to test load balancing with FTP.

Failover:

It may be possible to setup “mon” software with LVC, since “mon” is a Linux program independent of LVS. However, LVC cannot take advantage of the changes that LVS software made to provide failover.

4.2 LVC Lab Configuration and Test Cases

This section provides sample datafill for some test cases that can be executed to verify LVC functionality. These test cases have not been tried and are not guaranteed to work, nor is the datafill guaranteed to be error free They are the next step to this project.

4.4.1 Sample Lab Setup

[image: image6.wmf]client machine

(any OS)

IP: 1.2.3.1

virtual server machine

(Linux 2.4)

IP eth0: 1.2.3.3

 (vip)

IP eth1: 1.2.3.4

real server 1

machine

(Linux 2.4)

IP: 1.2.3.5

real server 2

machine

(Linux 2.4)

IP: 1.2.3.6

eth 0

-

 10Mbit

eth 1

-

 100Mbit

eth 0

-

 100Mbit

eth 0

-

 100Mbit

eth 0

Figure 6: sample LVC lab used for running tests

Since this is supposed to be a setup in a lab environment, we will assume that all machines are on the same network. This lab setup will be assumed for the test cases discussed in the next subsection. All test cases will use the LVC configuration with SNAT performed at the real servers, since this is the configuration we are really interested in. The other LVC configuration is just a slight variation of the first. Therefore, the lab setup will not require that the virtual server be the gateway for the real servers. Also, we will assume that the virtual server and real servers only handle LVC traffic, since their sole purpose is to be LVC servers. This does not have to be the case, but the datafill would have to reflect otherwise.

4.4.2 LVC Test Cases

TC 1: LVC Load Balancing
This test case test basic LVC load balancing. Try this test case with TELNET, FTP, and HTTP. Also, try with NFS just to see that a UDP connection also works.
At the virtual server, change destination IP address to RIPx

· iptables -t nat –A PREROUTING –i eth0 –j DNAT to 1.2.3.5-1.2.3.6

At the real servers, change source IP address to VIP

· iptables –t nat -A POSTROUTING –o eth0 –j SNAT to 1.2.3.3

TC 2: Directing Specific Services to Specific Servers
This test case has the virtual server direct all FTP services (tcp port 21 and 22) to real server 1 and all HTTP services (tcp port 80) to real server 2. Try this test case with HTTP and FTP.

At the virtual server, change destination IP address to RIPx based on service type

· iptables –t nat –A PREROUTING –i eth0 –p tcp –dport 80 –jDNAT to 1.2.3.6

· iptables –t nat –A PREROUTING –i eth0 –p tcp –dport 21 –jDNAT to 1.2.3.5

· iptables –t nat –A PREROUTING –i eth0 –p tcp –dport 22 –jDNAT to 1.2.3.5

At the real servers, change source IP address to VIP

· iptables –t nat -A POSTROUTING –o eth0 –j SNAT to 1.2.3.3

TC3: LVC and Bandwidth Management
This test case assigns more bandwidth and higher priority to real server 1. This example can be used if real server 1 is a much faster server than real server 2. In this case, it makes sense to give more work to real server 1. Run this test case with multiple HTTP downloads. You can try to run the same data without the CBQ datafill in order to see the difference in behaviour.

At the virtual server, change destination IP address to RIPx

· iptables -t nat –A PREROUTING –i eth0 –j DNAT to 1.2.3.5-1.2.3.6

At the virtual server, setup CBQ for eth1 and allocate 70Mbits to real server 1 and 30Mbits to real server 2. We will give priority 2 to real server 1 and priority 4 to real server 2, assuming that the lower number priority is the higher priority. I’m not sure about that. The bandwidth for real server 1 and real server 2 will be managed using SFQ. Filter all packets destined for real server 1 to go to the higher bandwidth queue, and those destined for real server 2 to go to the lower bandwidth queue.

· tc qdisc add dev eth1 root handle 10: cbq bandwidth 100Mbit avpkt 1000

· tc class add dev eth1 parent 10:0 classid 10:1 cbq bandwidth 100Mbit \

 rate 100Mbit allot 1514 weight 1Mbit prio 8 maxburst 20 avpkt 1000

· tc class add dev eth1 parent 10:1 classid 10:100 cbq bandwidth 100Mbit \

 rate 70Mbit allot 1514 weight 70Kbit prio 2 maxburst 20 avpkt 1000

· tc class add dev eth1 parent 10:1 classid 10:200 cbq bandwidth 100Mbit \

 rate 30Mbit allot 1514 weight 30Kbit prio 4 maxburst 20 avpkt 1000

· tc qdisc add dev eth1 parent 10:100 sfq quantum 1514b perturb 15

· tc qdisc add dev eth1 parent 10:200 sfq quantum 1514b perturb 15

· tc filter add dev eth1 parent 10:0 prio 5 u32 match ip dst 1.2.3.5 flowid 10:100

· tc filter add dev eth1 parent 10:0 prio 6 u32 match ip dst 1.2.3.6 flowid 10:200

At the real servers, change source IP address to VIP

· iptables –t nat -A POSTROUTING –o eth0 –j SNAT to 1.2.3.3

TC 4: LVC and Differentiated Services
This test case combines LVC with differentiated services by giving preferential treatment to packets that have the IP TOS field set to 00110000. Run this test case with connections that have TOS bit set to the special value, and with those that do not. You can run multiple large FTP and HTTP downloads to create a lot of traffic. The HTTP traffic can have the TOS bit set. You can try to run the same data without the CBQ and TOS datafill in order to see the difference in behavior.

At the virtual server, change destination IP address to RIPx

· iptables -t nat –A PREROUTING –i eth0 –j DNAT to 1.2.3.5-1.2.3.6

At the virtual server, setup CBQ for eth1 and allocate 30 Mbits for traffic with TOS set to 00110000. We will give priority 2 to the bandwidth set aside, and priority 8 to all other traffic. assuming that the lower number priority is the higher priority. I’m not sure about that. The bandwidth set aside will be managed using SFQ. The rest will be managed using the default FIFO method. Filter all packets with the desired TOS field to go to the higher priority queue, and the rest to go to the default queue.

· tc qdisc add dev eth1 root handle 10: cbq bandwidth 100Mbit avpkt 1000

· tc class add dev eth1 parent 10:0 classid 10:1 cbq bandwidth 100Mbit \

 rate 100Mbit allot 1514 weight 1Mbit prio 8 maxburst 20 avpkt 1000

· tc class add dev eth1 parent 10:1 classid 10:100 cbq bandwidth 100Mbit \

 rate 30Mbit allot 1514 weight 30Kbit prio 2 maxburst 20 avpkt 1000

· tc qdisc add dev eth1 parent 10:100 sfq quantum 1514b perturb 15

· tc filter add dev eth1 parent 10:0 prio 2 u32 match ip tos 0x30 0xff flowid 10:100

At the real servers, change source IP address to VIP

· iptables –t nat -A POSTROUTING –o eth0 –j SNAT to 1.2.3.3

4.4.3 Configuring the Linux 2.4 Kernel

I used the linux 2.4-test10 kernel version for this project. It can be obtained from HTTP://www.kernel.org. The test11 version has since been released. Please see [8] for how to unpack, run the configuration tool, compile and install the load. This section discussed how to configure the kernel for packet filtering, advanced routing and network address translation. The following parameters need to be enabled:

· Processor type and features: make sure that you don’t pick a processor type that is too advanced for your machine. Otherwise, the kernel won’t boot. 386 works for all x86 machines.
Under Networking options:

· Packet socket: needed in order to use Tcpdump
· Kernel/user netlink socket and
· Routing messages: needed for user process to receive iproute2 information from the kernel
· Network packet filtering: needed for netfilter
· Network packet filtering debugging: to get netfilter debug messages
· Unix domain sockets: good to have
· TCP/IP networking

· IP:advanced router: to run Linux as router
· IP:policy routing: allows routing to be based on more than just destination IP address
· IP:use netfilter MARK value as routing key: allows routing to be based on whether packets are marked
· IP:fast network address translation: needed for NAT
· IP:equal cost multipath: allows alternate routes to be set for packets
· IP:use TOS value as routing key: allows routing to be based on TOS value
· IP:verbose route monitoring: good for debugging. Kernel will print verbose messages regarding routing

Under IP:Netfilter Configuration:

· Connection tracking: allows NAT and packet filtering to be done on connection basis
· FTP protocol support: allows NAT to be performed on FTP connections
· IP tables support: needed for “iptables”
· MAC address match support: allows for the matching of packets based on source Ethernet address

· Netfilter MARK match support: allows packet matching based on marked values

· Multiple port match support: allows the matching of TCP/UDP ports based on a series of source and destination ports

· TOS match support: allows packets to be matched based on TOS field

· Connection state match support: allows packet matching based on their relationship to tracked connections

· Packet filtering: needed for “filter” table used with “iptables”

· Full Nat: used with network address translation

· Packet mangling: needed for table “mangle”

· TOS target support: allows the altering of TOS field prior to routing

· MARK target support: allows marking of packets prior to routing

· LOG target support: allows for the recording of packet headers to syslog

4.4.4 LVC Project Progress

I managed to configure, compile and install the linux 2.4-test10 kernel in the lab. I tried to enter some of the datafill, but I did not perform any of the test cases due to lack of time. The “iptables” tool seems to be fine in 2.4-test10, but the “tc” tool is not. It does not want to accept datafill. It returns with error “RTNETLINK answers: invalid argument”. I’m not sure if there is a patch for this, or if this is fixed in later 2.4 kernel versions.

5. APPENDIX –1 “iptables” and “tc” datafill terms
· iptables: 2.4 netfilter tool
· tc: iproute2 tool
· -t nat: modify table ‘nat’ for network address translation
· -A: append to end of chain
· PREROUTING: perform rule as soon as packet is received
· POSTROUTING: perform rule just before placing packet on outgoing interface
· -i eth0: apply to packets incoming from eth0 interface
· -o eth1: apply to packets outgoing on eth1 interface
· -j DNAT: perform destination network address translation
· -j SNAT: perform source network address translation
· -to <ipaddress>: change src/dst IP address to this one
· -p tcp –dport 80: apply to TCP packets with destination port 80
· qdisc: define queuing discipline
· root: create root class
· bandwidth: maximum bandwidth to subdivide

· rate: bandwidth being assigned to subclass

· parent: parent class id

· classid: subclass id

· avpkt: average number of bytes in packets belonging to this class

· prio: priority assigned to a ‘tc’ class or filter

· maxburst: the number of bytes that will be sent in longest possible burst

· bounded: class cannot borrow unused bandwidth from ancestors

· isolated: class will not share bandwidth with any non-descendant class

6. References
1. Linux 2.4 Advanced Routing HOWTO, Bert Hubert, et al., 08/31/2000
2. Linux 2.4 Packet Filtering HOWTO, Rusty Russell, 05/01/2000
3. Linux 2.4 NAT HOWTO, Rusty Russell, 05/01/2000
4. LVS HOWTO, Joseph Mack, 12/99
5. Differentiated Services on Linux, Werner Almesberger, et al., 02/99
6. Linux Advanced Networking Overview, Version 1, Saravanan Radhakrishnan, 08/22/99
7. Linux Traffic Control – Implementation Overview, Werner Almesberger, 11/30/98
8. The Linux Kernel HOWTO, Brian Ward, 06/05/00
7. Glossary Of Terms
· ARP: Address Resolution Protocol

· CBQ: Class Based Queuing

· CIP: Client IP address

· DIP: Director IP Address

· FIFO: First-In-First-Out

· LVC: Linux Virtual Cluster

· LVS: Linux Virtual Server

· NAT: Network Address Translation

· OS: Operation System

· PPC: Persistent Port Connection

· QDISC: Queuing Discipline

· RIP: Real IP Address

· SIP: Server IP Address

· SFQ: Stochastic Fairness Queuing

· TOS: Type Of Service

· TTL: Time To Live

· VIP: Virtual IP Address

· WRR: Weighted Round Robin

PAGE
2

_1036681086.unknown

_1037370672.unknown

_1037637279.unknown

_1037374419.unknown

_1036689221.unknown

_1036677615.unknown

