[image: image1.png][P S

sucomramecn
! [|\ o>

«o

==

—

e e s
e, TCPHP chack

[image: image3.wmf]
Contents:

I. Introduction ……………………………………………………………………..3

II. Working with Content Switching ……………………………………………...4

III. What Content Switch should not do? ………………………………………….4

IV. Content Switch Design Considerations ………………………………………..4

V. Centralized Software Processing on an L2/3 Switch Fabric …………………5

VI. Distributed Software Processing on an L2/3 Switch Fabric …………………5

VII. Integrated Network Processors in an L2-7 Switch Fabric …………………...5

VIII. Content Switching Benefits …………………………………………………….6

IX. Virtualization of Web servers and content ……………………………………7

X. Web Users Virtualization ………………………………………………………7

XI. Multimedia Applications ……………………………………………………….7

XII. Flexible Content-based Server Health Checks ……………………………….8

XIII. Flexible Content Location ……………………………………………………...8

XIV. Persistent Application Support …………………………………………….….8

XV. Increased Server Efficiency ……………………………………………………8

XVI. Improved Web Site Performance ……………………………………………..9

XVII. Enhanced Differentiated Services and Bandwidth Management …………...9

XVIII. Virtual Hosting Support ……………………………………………………….9

XIX. Complexity of Content Switching ……………………………………………..9

XX. Proposed Content Switch Algorithm …………………………………………10

XXI. Conclusion ……………………………………………………………………...10

XXII. References ………………………………………………………………………11

Introduction:
The content switching solution enables the network to deliver content faster to more users, without a costly investment in server infrastructure by scanning at a known location in a session for as specific number of bytes rather than session traffic for a string which is far more processor intensive. It helps in providing the Web content switches also known as URL switches or Layer7 switches which provides the highest level of control over incoming non-deterministic web traffic.

It temporarily terminates the TCP client connection for parsing its content pretending as server for the time being by asking what the client wants, examine the request, and then open a connection to an appropriate server. While this happens, the web switch temporarily buffers the request, which consumes system memory. This temporary termination is called a delayed binding, which can be seen in following figure.

[image: image4.wmf]
Figure 1 - How "TCP Connections Splicing" Works

With delayed binding, following two independent TCP connections span a Web session:

· One from the client to the Web switch

· Second from the Web switch to the selected server.

Slice extends the content switching concept to a file system context. The Web switch modifies the TCP header, including performing TCP sequence number translation and recalculating checksums on every packet that travels between the client and the server, for the duration of the session. This function, known as "TCP connection splicing," heavily tasks a Web switch, particularly when the switch must process thousands of these sessions simultaneously.

In addition to real-time traffic and connection processing, a content switch needed to monitor the servers to ensure that requests are forwarded to the best performing and healthy servers. This monitoring involves more than simple ICMP or TCP connection tests as servers continue to process network protocols while failing to retrieve any content. Furthermore, if content is segregated in different servers or server farms, the Web switch must provide a flexible, user-customizable mechanism allowing a relevant set of application and content tests to be applied to each server or server farm.

Working with Content Switching:
Working with session content is much more demanding than examining TCP/IP protocol headers because:

To fulfill the requirements described above, a Web switch needs to perform numerous processing tasks for each incoming session, including connection setup, traffic parsing, applying server selection algorithms, splicing connections and translating session addresses, metering and controlling server bandwidth usage, processing traffic filters, collecting statistics etc. These processing are not only CPU intensive but they performed whenever a new request arrives. In addition, the switch must also perform background processing such as updating network topology, checking the health/performance of servers, applications and server sites, measuring server performance, etc., on a periodic basis

The load for the web switch processing has to bear during a flash crowd when millions of requests flood a site within a few minutes time. Consequently, a content switch is fundamentally different from a conventional packet switch in that high performance and availability is dependent on powerful software processing capabilities, in addition to massive switch fabric capacity.

What Content Switch should not do?

To avoid the unpredictable Internet threat, it is also extremely important to NOT burden the Web switch with every content-related feature to avoid overloading the Web switch. In general, tasks that must occur inline are ideal for integration into the switch's small but tightly optimized processing environment, while complex background work that can bog down real-time traffic processing is best left to external host machines.

For example, the job of content replication is a function ideally performed by content management systems designed to process and compare large electronic files, provide version control, execute data compression and security encryption, interface with Web event logging systems and perform bulk data copies. The Web switch is not the right platform for content staging and replication, A non-real time process with long duty cycles. If replication of a large file occurs at the same time as a sustained traffic burst, it will interfere with session processing and adversely affect site performance.

Content Switch Design Considerations:

The main function of content classification involves parsing information of variable sizes, often at non-deterministic locations within a Web session, it is impractical, if not impossible, to integrate the entire function directly in hardware. Hence the first and foremost criterion in designing a content switch is to insert ultra high performance processors into the switching path. Several designs can be found in Web switch products today.

Centralized Software Processing on an L2/3 Switch Fabric:

The shortcut method is to force-fit content switching software into the management processor on a L2/3 packet switch. From a design perspective, this involves little more than software programming and is the fastest way for hardware vendors to add value to their existing LAN switch offerings. But when traffic is heavy, every packet requiring layer 4 to 7 processing must pass through the central processor, which easily becomes a bottleneck. As described in the preceding section, content classification is extremely processing intensive. Adding to that the need to support concurrent traffic management services, such as load balancing and bandwidth management, performance degrades as a function of traffic and processing load if enough processing capacity is not readily available. The scalability limitation of this design under heavy traffic and processing load was demonstrated when first generation multi-protocol routers were made obsolete by routers with distributed processing functions across all line cards. This architecture is only suitable for sites with low traffic expectation and simple traffic management requirements.

Distributed Software Processing on an L2/3 Switch Fabric:

A better approach is to integrate content classification software in multiple processors within the switch, as parallel processing improves performance. However, this model generates more intra-switch communications, (between the distributed processors and the switch ports) which either exerts higher load on the switch fabric or requires a separate, out-of-band link between the CPUs and the switch fabric.

Hence, the merit of this design is highly dependent on the "distance" between the distributed processors and the switch fabric, as every packet within a session must depart the switch fabric for one or more side trips to a processor. Distance is a function of the architectural proximity (such as the speed of the shared memory) between the processors and the switch, as well as the speed of the medium over which they communicate (such as the bus rate). For example, if the switching fabric operates at multiple gigabits per second but the internal link between the fabric and each distributed processor operates at one-tenth the speed, the internal link can become the performance bottleneck.

Integrated Network Processors in an L2-7 Switch Fabric:

To eliminate the distance between the processors and the switch fabric, many companies are working on new switch designs based on "network processor" ASICs. This state-of-the-art approach embeds network processors directly into a high-speed switch fabric so that software processing can occur inline at any stage of the switching function, without packets ever leaving the fabric.

Other performance-boosting advances in Web switching include new switching fabrics that integrate L2/3 packet switching and L4 session switching performed directly in hardware. Certain L7 content-switching tasks, such as TCP connection splicing, can also be embedded into hardware to minimize software processing load.

Content Switching Benefits:

Traditionally, redirecting Web requests using content or user classification has been a function of Web servers. However, Internet traffic and business growth is fast outpacing that of computing power. Offloading content classification to Web switches provides leverage for the entire Web site infrastructure.

 [image: image2.png]

Figure 2- Web switches improve reliability and response time by examining content requests in detail and directing users to the best site and best server at that moment

Virtualization of Web servers and content:

The days of a single host serving a Web site are gone. More often than not, multiple servers, represented by a virtual IP address (VIP), work in tandem to support a Web site. Load balancers are deployed to direct traffic across the server farm by intercepting client requests destined for the VIP and distributing each request to the best performing, healthiest server. Server load balancing allows a service to continue in the event of a server failure. It also enables processing capacity to grow smoothly through simple addition of more servers.

The virtualization of Web servers has led to content management challenges. If all servers in a Web site were to be able to service any request, then they must all have access to the entire Web site's content. This was feasible when Web content was smaller and Web sites were hosted in a single data center. But with Web content growing at a blazing pace of 60% per year1 from 2000 to 2003, replicating entire content on every server in multiple data centers will no longer be economically viable.

Furthermore, the use of content- and function-specific server appliances also drives the need for content segregation. For example, dynamic Web content is best hosted on high-performance servers optimized for executing scripts and applets. Conversely, static content such as logos, templates, videos clips, and the like can be hosted on low-end servers with large storage capacity to reduce costs. Likewise, deployment of specialized servers for streaming video, compressing graphics for mobile devices, etc, has become commonplace.

In brief, content segregation mandates intelligent routing of user requests to the correct content locations.

1. Web Users Virtualization:
With the use of DHCP servers and proxy firewalls, IP users are no longer uniquely identifiable by IP address. In fact, with widespread use of proxies at Internet access points, continuous requests generated by a user to the same Web site may actually carry different source IP addresses.

This presents a challenge for organizations looking to differentiate their services based on user categories. This also makes it difficult for Web site designers to have multiple requests from each individual user be processed by the same server - a requirement known as persistent- or sticky-connections that helps maximize server efficiency and enables stateful transactions such as e-shopping and multi-page forms.

To solve this problem, many Web sites insert an electronic "cookie," representing a unique user identifier, into a new visitor's browser. The browser will automatically transmit the cookie in subsequent visits to the same Web site. The ability for a device to recognize these cookies is mandatory to providing any user-aware traffic management services.

2. Multimedia Applications:
Multimedia content is growing fast. Real Time Streaming Protocol (RTSP) and Voice-over-IP (VoIP) protocols use separate channels for transmitting control and data traffic between a client and a server. The specific sockets (TCP or UDP port numbers) used for the data transmission channels are generated dynamically and communicated between clients and servers over pre-established control channels. To properly route these applications to the right servers, a traffic management device must parse the control channels to extract the dynamic socket numbers for the data channels, so related control and data channels can be processed as a single, logical session
3. Flexible Content-based Server Health Checks:

Web switches allow Webmasters to customize server health checks to verify content accessibility in large Web sites. As the amount of content grows and information is distributed across different server farms, flexible, customizable content health checks are critical to ensuring end-to-end availability.

4. Flexible Content Location:

By examining the URL in a Web request, the Web switch can determine the type of content being requested and direct the request to servers hosting the requested URL. With content switching, Web site content can be segregated with no change to the applications. This allows partial instead of entire content mirroring on each server and makes it easy for e-businesses to deploy servers optimized for specific content types or processing functions.

5. Persistent Application Support:

Applications such as shopping cart, payment transactions, search display and multi-page forms require persistent connections. This means a client must constantly talk to the same real server for the duration of the transaction, which typically spans multiple TCP connections. If a client-server association is not persistent, it may result in broken shopping carts and disgruntled users. In a mega-proxy environment, the only reliable way to match multiple connections to the same user is by matching the cookies embedded in non-secure HTTP connections or the SSL session identifiers embedded in secure HTTP-S sessions. The ability to parse content enables the Web switch to accurately associate consecutive requests from a user with the same server, ensuring transaction integrity.

6. Increased Server Efficiency:

Even if an application doesn't break when visitors are sent to different servers during the course of a transaction, there are other reasons for persistent sessions. Servers store recently accessed information in memory. Retrieving information from local memory is many times faster than retrieving it from a back-end database or hard drive. A content-intelligent Web switch can send successive requests with the same cookie to the same server, taking advantage of server cache memory to improve server efficiency and performance. Where cache servers are used, the content switch can intelligently filter incoming client requests to avoid passing irrelevant requests to the cache servers. For example, requests for dynamic content, requests with embedded cookies, requests other than HTTP GET, etc, can be forwarded directly to the origin server to reduce unnecessary load on the cache servers.

7. Improved Web Site Performance:

HTTP version 1.1 allows multiple HTTP transactions to be transported over a single TCP connection to reduce TCP processing overhead. A layer-4 Web switch with no content intelligence will forward all HTTP 1.1 requests on each TCP connection to a single server. In contrast, a content switch can forward each request within the TCP connection to a different server, increasing load distribution granularity. This optimizes resource utilization and speeds overall Web site performance.

8. Enhanced Differentiated Services and Bandwidth Management:

In order to provide preferential services based on user categories, (frequent shoppers versus frequent browsers, for example,) a Web switch needs to be cookie-aware. Likewise, to enforce the appropriate bandwidth and jitter characteristics for transporting different content types, the Web switch must be URL-aware. Without content awareness, traffic classification and hence, quality of service, can only be applied at gross levels such as per IP address or application port.

9. Virtual Hosting Support:

Virtual hosting conserves IP addresses by allowing multiple domains to be represented by a single public IP address. When a content-intelligent Web switch receives a client request for the shared IP address, it can extract the requested domain name from the "Host Header" portion of the HTTP header, concatenate it with the IP address to obtain the unique host identifier, and redirect the request to the appropriate server or server farm.

Complexity of Content Switching:

The Content Switching technology may be considered another level of complexity to Web sites that already are difficult to build, maintain and troubleshoot, especially if one derive direct business revenue from his site. Any technology that might hurt service without improving the customer experience is not required.

If a particular site is operating under heavy load, the performance hit may take up by using Web content switches. It could cause more problems than it is worth. Just imagine the business impact if these advanced switching features are the sole cause of delaying the customer request in your site when they are trying to make purchases. Chances are very good that those people will not be repeated visitors or customers.

Another issue to consider (In any critical network component) is reliability. If one switch makes all traffic decisions for a particular web site, some failure and redundancy features must be built in. Just as in the case of a core router, if that device fails and the site is designed to work exclusively by the URL rules established by the content switching, It needs to recover the system as quickly as possible. Fortunately, redundant configurations abound. Some Web content switches exchange session information in real time to prevent existing sessions from losing persistence, and almost every vendor has some take on how to work with or without VRRP (Virtual Router Redundancy Protocol) by placing the switches in different locations on the network.

Proposed Content Switching Algorithm:

The web performance can be improved by controlling the web traffic on network. Web content switches look all the way into the HTTP header to make load-balancing decisions, rather than stopping at the TCP port number. By examining the HTTP header, these switches can make decisions on how individual Web pages and images get served for the request. A content smart switching solution enables to deliver content faster to more users, without a costly investment in server infrastructure. The new program resolves the conflict of redirecting the request to appropriate server. This utility checks to see if there is any conflict in redirecting request from the current content switch algorithm. An enhancement is added to find all the conflict and write it into a conflict file. Right now it just right all the conflicts into a file but It can be later on modified by adding some decision in this utility to reach a consensus where it can check for the forwarded server. It can even “health check” or “load check” of the server before forwarding it to the server. And this will help arrive to a decision after checking the result coming from Content Switching rule. Currently, The algorithm compares the content switch redirection and check to see whether there any conflict for same source then forward it otherwise it blocks it then and there and write it into conflict file. The example simulates for requests, which can be for different, type (.jpg, .smil, .htm etc) of source and the content switch forward the request to different server based on the source type. But if there is any existing conflict then make a decision. So to avoid this conflict there is a decision-making process before finally forwarding it to the destined server. If there is a conflict between them then this utility writes it into a conflict file. If all the rules matches with each other then forward it where it was destined.

Conclusions:
Content switching is becoming a mandatory traffic management service in new Web data center infrastructures in order for e-businesses to scale their server and application architectures and respond quickly to new business demands.

Content classification is extremely processing intensive. It calls for an advanced, purpose-built platform optimized for both performance and flexibility simultaneously. Web switches with network processor cores integrated directly into their high-speed switch fabrics to deliver an architecture that combines performance with feature scalability and flexibility.

References:

URL’s:

CISCO:

http://www.ieng.com/warp/public/cc/pd/si/11000/prodlit/cstes_wi.htm
Network Computing:

http://www.networkcomputing.com
Arrowpoint: http://www.arrowpoint.com/solutions/white_papers/printer/secure_scalable_ecommerce.html#conclusion
Books:

Communication Networks: Fundamental Concepts and Key Architectures

By: Leon-Garcia. Widjaja
� EMBED MS_ClipArt_Gallery ���

2
11

_1037917763

