Semester Project:
The Coda Distributed File System

Student Name:

Liliya Kaplan

Course:

CS522

1. Introduction

Distributed file systems have grown in importance in recent years. A distributed file system stores files on one or more computers called servers and makes them accessible to other computers called clients. Advantages of this kind of system are: files are more widely available because many computers can access the server, backup and safety of the information are easier because only the servers need to be backed up, system administration becomes easier when everybody share the same file. But there are can be many problems when designing distributed file system: network bottleneck and server overload can occur, security of data can also be an issue: how can we be sure that a client is authorized to access the information. Server failure can be a big problem because it disables all the clients from accessing the information. The Coda project paid attention to many of these issues and implemented them as a research prototype. Coda is designed to operate in an environment, where many hundreds or thousands of workstations span a complex local area network. It aspires to provide the highest degree of availability possible in such an environment. An important goal is to provide this functionality without significant loss of performance.

The Coda distributed file system was developed by the research group of Professor M. Satyanarayanan in the School of Computer Science at Carnegie Mellon University. It has a lot of features not existing in other systems. In his article "The Coda Distributed File System" Mr. Braam lists the following features:

1. Mobile Computing:

· Disconnected operation for mobile clients

· Reintegration of data from disconnected clients

· Bandwidth adaptation

2. Failure Resilience:

· Read/write replication servers

· Resolution of server /server conflicts

· Handles network failures which partition the servers

· Handles disconnection of client's client

3. Performance and scalability:

· Client-side persistent caching of files, directories and attributes for high performance

· Write-back caching

4. Security:

· Kerberos-like authentication

· Access control lists (ACLs)

5. Well defined semantics of sharing

6. Freely available source code.

Coda implements application-transparent adaptation in the context of a distributed file system.

Coda is the collective name for the programs and the kernel modules, which make up the Coda file servers and clients. Coda is implemented as a collection of substantial user level programs together with a small kernel module on the client, which provide the necessary Coda file system interface to the operating system. The user level programs comprise Vice, the server, and Venus, the client cache manager. The file server Vice is implemented entirely as a user-level program servicing network requests from a variety of clients.

On the client the kernel module does some caching of names and attributes, but it is mostly there to redirect system calls to Venus. The experience of the Coda project has been that placing complicated code in user-level processes offers tremendous development advantages without incurring unacceptable performance compromises. This is shown in Fig.1

 User-space

 Kernel-space

Figure 1

2. Mobile computing

This is very important feature in the present day world. The importance of being able to access data form any location is increasing. That implies that data from shared file system, relational and object-oriented databases, and other must be accessible to programs running on mobile computers.

In his article "Mobile Information Access" M. Satyanarayanan lists 4 fundamental constrains of mobility:

· Mobile elements are resource-poor relative to static elements

· Mobility is inherently hazardous - portable computers are more vulnerable to loss or damage

· Mobile connectivity is highly variable in performance and reliability - in some places a mobile element may have high-speed wireless LAN connectivity, when in another places it may have to rely on a low bandwidth wireless WAN with gaps in coverage

· Mobile elements rely on a finite energy source

These constrains complicate the design of mobile information systems. Mobile system cannot be static one. As the circumstances of mobile client change, it must react and dynamically reassign the responsibilities of client and server.

Coda implements application-transparent adaptation in the context of a distributed file system. Coda is experimental file system whose goal is to offer clients continued access to data when server and network fails. "Coda namespace is mapped to individual file servers at the granularity of subtrees called volumes. At each client, a cache manager, Venus, dynamically obtains and caches data and volume mapping."

Disconnected operations - in this mode of operations a client continues to have read/write access to data in its cache during temporary network failure. It provides resiliency without the storage overhead of multiple replicas or the performance penalty of replication protocol. But it only provides the access to data that was cached at the client at the start of disconnected operations.

Coda clients view disconnected operation as a temporary state and revert to normal operation at the earliest opportunity. In normal operation a cache miss is transparent to a user, and only imposes a performance penalty. But in disconnected operation a miss impedes computation until normal operation is resumed or until the user aborts the corresponding file system call. Consequently it is important to avoid cache misses during disconnected operation. During brief failures, the normal LRU caching policy of Venus is adequate to avoid cache misses to a disconnected volume. Coda allows a user to specify prioritized list of files and directories that Venus should strive to retain in the cache. Objects of the highest priority level are sticky and must be retained at all times. As long as the local disk is large enough to accommodate all sticky files and directories, the user is assured that he can always access them. Since it is often difficult to know exactly what file references are generated by a certain set of high level user actions, Coda provides the ability for a user to bracket a sequence of high-level actions and for Venus to note the file references generated during these actions.

Disconnected operations are useful even when connectivity is available: to extend battery life, reduce communication expense, allows radio silence to be maintained (military use).

Cache management: To support disconnected operations Venus operates in one of 3 stages: hoarding, emulating and reintegrating (see Fig.2).

Figure 2

Venus normally is in hoarding state, always on the alert for possible disconnection. The key responsibility of Venus in this state is to ensure that critical objects are cached at the moment of disconnection. Upon disconnection, Venus enters the emulating state and stays there for the duration of disconnection. While disconnected, Venus services file system requests by relying solely on the contents of its cache using operation log. Upon reconnection, Venus enters the reintegrating state, resynchronizes its cache with the servers, and then reverts to the hoarding state.

Conflict detection and resolution: Coda uses different strategies for handling concurrent updates on directories and files. For directories Venus processes enough semantic knowledge to attempt transparent resolution of conflicts. Since UNIX treats files as uninterpreted byte streams Coda cannot resolve file conflicts. But it offers a mechanism for installing and transparently invoking application-specific resolvers (ASRs). This program is "…encapsulates the detailed, application-specific knowledge necessary to distinguish genuine inconsistencies from reconcilable differences."

Weakly connected operations

Weak connectivity is fact of life in mobile computing (low-bandwidth, expensive networks). Coda group implemented a series of modifications that exploit weak connectivity: at the lowest level transport protocol has been extended to be robust, efficient, and adaptive over a wide range of network bandwidth. At the higher level modification includes those needed for rapid cache validation after an intermittent failure, for background propagation of updates over a slow network, and for user-assisted servicing of cache misses when weakly connected.

3. Performance and scalability

Scale should be recognized as a primary factor influencing the architecture and implementation of distributed systems. Client caching, bulk data transfer, token-based mutual authentication, and hierarchical organization of the protection domain in Coda have emerged as mechanisms that enhance scalability. The separation of concerns made possible by functional specialization has also proved valuable in scaling. Physical separation of clients and servers turns out to be a critical requirement for scalability.

Thus, the scale of distributed system is a fundamental influence on its design. Mechanisms which work well in a small distributed system fail to be adequate in the context of larger system. Scalability should thus be a primary consideration in the design of distributed system.

Coda provides resiliency to server and network failures through the use of two distinct but complementary mechanisms. One mechanism, server replication, stores copies of a file at multiple servers. The other mechanism, disconnected operation, is a mode of execution, in which a caching site temporarily assumes the role of replication site. Disconnected operation is particularly useful for supporting portable clients.

A fundamental issue is how files are named and located in distributed environment. Coda offers true location transparency: the name of the file contains no location information. Rather, this information is obtained dynamically by clients during normal operation. It is simpler and more convenient for a user to remember logical name devoid of location information.

The caching of data at clients contributes most to scalability in distributed file system. Coda cache is on the local disk, with a further level of file caching by the UNIX kernel in main memory. Disk caches contribute to scalability by reducing network traffic and server load on client reboots. They also contribute to scalability in the more indirect way by enabling disconnected operation in Coda. Since disconnected operations allows user to continue in the event of remote failure, and since the latter tends to be more numerous as a system grows, caching on local disks can be viewed as contributing to scalability. When a client caches an object, the server hands out a promise (called a callback) that it will notify the client before allowing any other client to modify that object. This approach minimizes server load and network traffic, thus enhancing scalability. Callbacks further improve scalability by making it viable for clients to translate pathname entirely locally.

An important issue related to caching is the granularity of data transfers between client and server. The approach used in Coda is to cache entire files. This enhances scalability by reducing server load, because clients need only contact servers on file open and close requests. The far more numerous read and write operations are invisible to servers and cause no network traffic. Whole-file caching also simplifies cache management, because clients only have to keep track of files, not individual pages, in their cache. It also offers another important advantage: remote failures are only visible on open and close operations. But it also has two drawbacks. First, files larger than the local disk cannot be accessed. Second, the latency of open requests is proportional to file size, and can be intolerable for extremely large files. The creators of Coda think that simplicity and robustness of this model outweigh the merits of partial-file caching scheme.

4. Design Principles for Scalability

The essence of the Coda strategy is to decompose a large distributed system into a small nucleus that changes relatively slowly, and a much larger and less static periphery. From the perspective of security and operability, the scale of the system appears to be that of the nucleus. But from perspective of performance and availability, a user at the periphery receives almost stand-alone service. Such a strategy is feasible and effective.

Client and server need to be physically distinct machines. If not, one cannot make different security and administrative decisions about clients and servers, nor can one optimize their hardware and software configurations independently.

"Clients have the cycles to burn". Whenever there is a choice between performing an operation on a client and performing it on server, it is preferable to choose the client. This will enhance the scalability of the design, since it lessens the need to increase central resources as clients are added. The only functions performed by servers in Coda are those critical to the security, integrity, or location of data. There is very little interserver traffic. Pathname translation is done on clients rather than on servers. The parallel update protocol in Coda depends on the client to directly update all accessible servers, rather than updating one of them letting it relay the update.

"Cache whenever possible." Scalability, user mobility and site autonomy motivate this principle. Caching reduces contention on centralized resources, and transparently makes data available whenever it is being currently used. Caching is the basis of disconnected operations in Coda.

"Exploit usage properties." Knowledge about the use of real systems allows better design choices to be made. Almost one third of the file references in a typical UNIX system are to temporary files. Since these files are shared, Coda makes them part of the local name space. The executable files of system programs are often read, but rarely written, and Coda therefore supports read-only replication of these files to improve performance and availability. Coda's use of optimistic replication strategy is based on observation that sequential write-sharing of user files are rare.

"Minimize system-wide knowledge and change." In a large distributed system it is difficult to be aware at all times of the entire state of the system. It is also difficult to update distributed or replicated data structures in a consistent manner. The scalability of a design is enhanced if it rarely required global information to be monitored or automatically updated.

Clients in Coda only monitor the status of servers from which they have cached data. They do not require any knowledge of the rest of the system. File location information on Coda servers changes relatively rarely. Caching by Venus, rather than file location changes in Vice, is used to deal with movement of users.

Coda integrates server replication with caching to improve availability without losing scalability. Knowledge of a caching site is confined to those servers with callbacks for the caching site. Coda doesn't depend on knowledge of a system-wide topology, nor does it incorporate any algorithms requiring system-wide election or commitment.

"Trust the fewest possible entities." System like this is more likely to remain secure as it grows. Rather than trusting thousands of clients, security in Coda is predicated on the integrity of the much smaller number of Vice servers. Responsibility for client integrity is delegated to the owner of each client. Coda relies on end-to-end encryption rather than physical link security.

"Batch if possible." Grouping operations together can improve throughput, and hence scalability, although it is often at the cost of latency. The transfer of files in their entirety in Coda is an instance of the application of this principle. The second phase of the update protocol is deferred and batched. Latency is not increased in this case, because control can be returned to application programs before the completion of the second phase.

5. Access Control Lists

Controlling access to data is substantially more complex in large-scale systems than it is in smaller systems, There is more data to protect and more users to make access control decisions about. To enhance scalability Coda organizes its protection domains hierarchically and supports a full-fledged access-list mechanism. The protection domain is composed of users and groups. Membership in a group is inherited and a user's privileges are the cumulative privileges of all the groups he belongs to, either directly or indirectly. Inheritance of the membership conceptually simplifies the maintenance and administration of the protection domain.

Coda uses access-list mechanism for file protection. The total rights specified for a user are the union of the rights specified for him and the groups he belongs to. Although the real enforcement of protection is done on the basis of access lists, Venus superimposes an emulation of UNIX protection semantics by honoring the owner component of the UNIX mode bits on a file. The combination of the access lists on directories and mode bits on files has proved an excellent compromise between protection at fine granularity, scalability and UNIX compatibility.

6. First versus second class replication
The use of two distinct mechanisms for high availability in Coda, server replication and disconnected operations, is indirect consequence of Coda's desire to scale well. Since disconnected operation is almost free while server replication incurs additional hardware costs and protocol overhead, why the latter mechanism is needed at all? The answer to this question depends critically on assumptions made about clients and servers in Coda that reflect the usage and administrative characteristics of a large distributed system. Clients can be turned off and on, they have limited disk storage capacity, their software and hardware may be tampered with, and they owners may not be diligent about backing up the local disks. Servers, in contrast, have much greater disk capacity, are physically secure, and are carefully monitored and administered by professional staff. Therefore we distinguish between first-class replicas on servers and second-class replicas on clients. First-class replicas are of higher quality, they are more persistent, widely known, secure, available, complete, and accurate. Second-class replicas are inferior along all these dimensions. Only by periodic revalidation with respect to a first-class replica can second-class replica be useful.

The function of a cache coherence protocol is to combine the performance and scalability advantages of a second-class replica with the quality of a first-class replica. Hence, server replication is important, because it reduces the frequency and duration of disconnected operation, which is properly viewed as a measure of last resort.

7. Data Aggregation

In a large system, considerations of operability and system administration assume major significance. To facilitate these functions, Coda organizes file system data into volumes. A volume is a collection of files located on one server and forming a partial subtree of the Vice name space. The set of servers that contain replicas of a volume is its volume storage group (VSG). Volumes are invisible to the application programs and are only manipulated by system administrators. The aggregation of data provided by volumes reduces the apparent size of the system as perceived by operators and system administrators. Operational experience in Code confirms the value of the volume abstraction in a large distributed file system.

Virtually all administrative functions in Coda are done at the granularity of volumes (for example, volumes are the units of read/write replication). Balancing of the available disk space and utilization on servers is accomplished by redistributing volumes across one or more servers. These modifications can be made during normal operation without disrupting service to users. Disk storage quotas are specified and enforced on individual volumes. Volumes also form the basis of the backup and restoration mechanism.

8. High availability in Coda

The ideal that Coda strives for is constant data availability, allowing a user to continue working regardless of failure elsewhere in the system. Coda provides users with the benefits of a shared data repository, but allows them to rely entirely on local resources when that repository is partially or totally inaccessible.

9. Conclusions:

Since 1992 the source code of Coda has been distributed to several sites outside of Carnegie Mellon University. Coda has been ported to LINUX, NetBSD, FreeBSD, large portion of Coda was ported to Windows 95 and Windows 98. Porting Coda to a new machine type has proven to be relatively straightforward. Most of the code is outside the kernel. The in-kernel code is small and machine-independent.

The ability to access information on demand is and will be a very important issue. Adaptation is a key to this capability. Coda will help to resolve these issues.

Consistency, availability and performance tend to be mutually contradictory goals in a distributed system. Coda will provide the highest availability at the best performance.

In order to effectively support mobile computers, system designers must view the network as the first class resource, expending CPU and disk resources to reduce the use of network resources during periods of poor network connectivity. Coda's approach systematically substitutes local resources to minimize the effect of the network bottleneck, at the same time aggressively exploit cheap network resources, when available. Such an adaptive approach to network usage is essential for effective operation in a mobile environment.

The increasing dependence of users on distributed file systems makes the availability of these systems a matter of concern. The two mechanisms of Coda that address this issue, server replication and disconnected operation, provide resiliency in the face of many failures while minimally impacting performance.

By providing the ability to move seamlessly between zones of normal and disconnected operation, Coda may be able to simplify the use of cordless technologies in distributed file systems.

Grows is an inevitable characteristic of successful and long-lived distributed systems. Designers should therefore prepare for gross a priori, rather tan treating it as an afterthought. Coda has a collection of mechanisms that have been shown to enhance scalability and a set of general principles to guide future design choices.

10. Current activities on Coda

(This information was taken from http://www.coda.cs.cmu.edu/)

"…CMU is making a serious effort to improve Coda. We believe that the system needs to be taken from its current status to a widely available system. The research to date has produced a lot of information regarding performance and implementation on which the design was based. We are now in position to further develop and adapt the system for wider use. We will emphasize:

· Reliability and performance

· Ports to important platforms

· Documentation, mailing groups

· Extensions in functionality

The current activities with Coda are mostly aimed at making this very good filesystem widely available, and a network file system of choice."

11. Future Research

· Caching metrics - caching plays a very important role in mobile computing today, but evaluating alternative caching strategies for mobile computing is problematic. Today, the only metric of cache quality is miss ratio, has an assumption that all cache misses are equivalent (have same penalty from user). This assumption is not always correct. For example, it doesn't take into account the timing of missing. To be useful new caching metrics must satisfy 2 important criteria: First they should be consistent with qualitative perceptions of performance and availability experienced by users in mobile computing. Second, they should be cheap and easy to monitor.

· Semantic callbacks and validators - Coda maintain cache coherence at multiple levels of granularity and use callbacks. It preserves correctness while reducing the cost of cache coherence under conditions of weak connectivity. The idea of maintaining coherence at multiple granularities can be generalized to a variety of data types and applications in the following way:

· A client caches data satisfying some predicate P from a server.

· The server remembers predicate Q that is much cheaper to compute, and possesses the property Q implies P.

· On each update, the server reevaluates Q. If Q becomes false, the server notifies the client that its cached data might be stale.

· Prior to its next access, the client must contact the server and obtain fresh data satisfying P.

We refer to Q as semantic callback for P. Semantic validation can be extended to domains beyond mobile computing. It will be especially valuable in geographically widespread distributed systems, where the timing difference between local and remote actions is too large to ignore even when communication occur at the speed of light. Some open questions in this approach are: under what circumstances are semantic callbacks most useful, what form can P and Q take for data types and applications in common use, how do we estimate their relative costs in those cases, how does one derive Q from P quickly, are there restrictions on P that makes it simpler, and so on.

· Global estimation from local observations - adaptation requires mobile client to sense changes in its environment, make inferences about the cause of these changes, and then react appropriately. These imply the ability to make global estimates based on local observations. But one needs to be careful: if an incorrect cause is inferred from an observation, the adaptation performed by the client may be ineffective or counterproductive. At present there is no systematic theory to guide global estimation from local observations.

12. References:

· "Network Management Systems Essentials" by Divakara K. Udupa, McGraw-Hill Series on Computer Communications, 1996

· "Network Management" by Gilbert Held, John Wiley & Sons, 1992

· "Storage-Area Networks" by Christy Walker, Computerworld, 2000

· http://www.coda.cs.cmu.edu/

· "The Coda Distributed File System" by Peter J. Braam, Linux Journal No.50, June 1998

· "Fundamental Challenges in Mobile Computing" by M. Satyanarayanan, 15th ACM Symposium on Principles of Distributed Computing, May 1996, Philadelphia, PA

· "Coda: A Resilient Distributed File System" by M. Satyanarayanan, James J. Kistler, Ellen H. Siegel, IEEE Workshop on Workstation Operating Systems, Nov. 1987, Cambridge, MA

· "Mobile Information access" by M. Satyanarayanan , IEEE Personal Communications, Vol. 3, No. 1, February 1996

· "The Influence of Scale on Distributed File System Design" by M. Satyanarayanan, IEEE Transactions on Software Engineering, Jan. 1992, Vol. 18, No. 1

· "Overcoming the Network Bottleneck in Mobile Computing" by Maria R. Ebling, Lily B. Mummert, David C. Steere, Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, Dec. 1994, Santa Cruz, CA

· "Scalable, Secure, and Highly Available Distributed File Access" by M. Satyanarayanan, IEEE Computer, May 1990, Vol. 23, No. 5

· "Porting the Coda File System to Windows" by Peter J. Braam, Michael J. Callahan, M. Satyanarayanan, Marc Schnieder, Proceedings of the FREENIX Track: 1999 USENIX Annual Technical Conference, Jun. 1999, Monterey, CA

· "Coda: A Highly Available File System for a Distributed Workstation environment" by M. Satyanarayanan, Proceedings of the Second IEEE Workshop on Workstation Operating Systems, Sep. 1989, Pacific Grove, CA

Physical

reconnection

Logical

reconnection

Disconnection

Hoarding

Emulating

Reintegrating

Vice

Venus

Application

Coda FS

Disk FS

1
18

