CS522 TERM PROJECT

REPORT ON LEARNING LINUX NETWORKING

JIANHUA XIE

DEC. 6, 2000

Report on Learning Linux Networking

Jianhua Xie

1. GOAL

To learn the mechanisms of networking in Linux 2.4 kernel, including netfilter, NAT, traffic control, tunneling and how to use these mechanisms to implement load balancing, differentiated services and security control.

2. READING LIST

Linux 2.4 Advanced Routing HOWTO

by Gregory Maxwell etc.

Linux 2.4 Packet Filtering HOWTO: Introduction
by Russell

Linux 2.4 NAT HOWTO: Introduction

by Russell

Linux netfilter Hacking HOWTO

by Russell

Differentiated Services on Linux

by Werner Almesberger etc.

Definition of the Differentiated Services Field

In the Ipv4 and Ipv6 Headers

by K. Nichols etc.

An Architecture for Differentiated Services

by S. Blake

The Linux Kernel (Chapter 10)

by David A. Rusling

Fast Firewall Implementations for

Software-based Routers

by Lili Qiu etc.

Weighted Random Early Detection (WRED)

by Cisco

Cookie Tracking

by Chow

Link-sharing and Resource management Models

For Packet Networks
by Sally Floyd, etc.

iproute2+tc notes

by dragon@snafu.freedom.org
3. NETFILTER IN LINUX

When we connect our computer systems or internal network to another network, such as Internet, we need some facilities to lend us the control on the connection to minimize the potential risks by allowing some kinds of traffic and disallowing others. Netfilter is one of these in Linux box. Basically, netfilter is a piece of software which looks into the header of packets as they pass through, and decides the fate of the entire packet. It might decide to discard the packet, or send the packet, or deliver the packet to user space for further processing.

The infrastructure of Linux netfilter is illustrated in the following graph.

There are three chains (3 ellipsis in the graph above) in the netfilter table: INPUT, OUTPUT, FORWARD. A chain is a checklist of rules. When a packet comes in, the kernel first looks at the destination (routing decision). If the packet is destined for the machine, it passed downwards in the diagram to the INPUT chain. Otherwise if the packet is destined to another machine and there is a rout to forward this packet, then it passes to FORWARD chain. When a local process generates a packet, the packet will pass to OUTPUT chain. In the netfilter chains, the packet will be check through against the rules defined in the chain, it one rule matches, the action (ACCEPT, DROP, or QUEQUE) with the matched rule will be activated against the packet.

With netfilter, we can specify which kind of traffic we are interested and which kind we want to discard. The user space tool for system administrator to add/delete rules to/from Linux netfilter chains is iptables. We’ll discuss iptables tool in next section. But we will give some example of how to create filter rules to regulate access to your system and outside networks.

For example, if you have a single PPP connection (with interface name ppp0) to the Internet, and don’t want anyone coming back into your system, you can achieve this by the following configuration (before doing this, we should assure that ip_conntrack and ip_conntrack_ftp modules have been installed, this is done by command ‘insmod’ with module name as parameter):

create a new netfilter chain to block any connections from outside world

>iptables –N block

>iptables –A block –m state –state ESTABLISHED, RELATED –j ACCEPT

>iptables –A block –m state –state NEW –I !ppp0 –j ACCEPT

>iptables –A block –j DROP

to activate the user created chain, we should link the new chain to INPUT/FORWARD # chain, when packets are going through these two system embedded chains, netfilter will # jump to the user defined chain and check every rules specified there

>iptables –A INPUT –j block

>iptables –A FORWARD –j block

One thing we should pay special attention when we are using netfilter is how to handle fragmentations. The problem with fragments is that the initial fragment has the complete header fields, for example, TCP or UDP headers, but subsequent fragments only have the IP headers. Thus looking inside the subsequent fragments for some protocol headers is not possible. If we don’t tell specifically the filter how to process fragments, all fragments will be processed according to the default chain policy, which is normally DROP, this may not be what you want. We can use iptables with –f option to define fragments handling functions.

4. NAT IN LINUX

NAT is short for Network Address Translation, i.e., change the source and/or destination and/or port number of packets according to some rules specified. It is constructed under the Linux netfilter framework. There are three types of netfilter hooks in the NAT table: for non-local packets, the NF_PRE_ROUTING and NF_POST_ROUTING hooks are perfect for destination and source alterations respectively; and for altering the destination of local packets, the NF_IP_LOCAL_OUT hook is used. Only the first packet of a new connection will traverse the table, the result of this traversal is then applied to all future packets in the future. The following diagram illustrates how packets traverse the NAT hooks.

Connection tracking is fundamental to NAT, but it is implemented in a separate module (‘state’ module); this allows an extension to the packet filtering code to simply and cleanly use connection tracking. Because the kernel need to make a record for every connection, which takes memory space in the system, thus how to release these records properly and timely is very important for efficiency and security consideration.

Some protocols, such as FTP (every FTP session involves two kinds of connection: one for control which has a port number 21, and the other for real data transmission with port number 20), need special process if we want to NAT these types of packets. The extension needed includes connection tracking part and actual NAT part. For FTP, we need only install two integrated modules in current Linux kernel: ip_conntrack_ftp.o and ip_nat_ftp.o.

With current structure of netfilter, Masquerading is a special form of Source NAT; port forwarding and transparent proxying are special forms of Destination NAT. They are not implemented as independent entities.

The user space tool for system administrator to add/delete rules in NAT hooks is iptables with option ‘-t nat’. We will discuss this tool in next section.

We can realize load balancing with NAT easily. For example, suppose the IP address of the load balancing server is 202.120.1.10 and the three real www servers are 202.120.1.1, 202.120.1.2 and 202.120.1.3 respectively. At the load balancing server, we configure the prerouting hook (destination NAT) as:

>iptables -A PREROUTING –t nat –p tcp –d 202.120.1.10 –j DNAT –to \

 202.120.1.1-202.120.1.3

On the real servers, we use the following configurations (source NAT):

>iptables -A OUTPUT –t nat –p tcp –j SNAT –to 202.120.1.10

That’s all we need to do for configuring the load balancing system. The following chart illustrates the logical structure of this system.

There are other configurations which can also implement load balancing function. But we skip this.
5. IPTABLES: A USERSPACE TOOL

Iptables command is used to set up, maintain, and inspect the tables of IP packet filter rules in the Linux kernel. There are several different tables which may be defined, and each table contains a number of built-in chains, and may contain user-defined chains. Each chain is a list of rules which can match a set of packets: each rule specifies what to do with a packet which matches. This is called a `target', which may be a jump to a user-defined chain in the same table.

A legal iptables command consists of a target, a table and zero or more options.

There are four kinds of predefined targets: ACCEPT, DROP, QUEUE, or RETURN.

ACCEPT means to let the packet through. DROP means to drop the packet on the floor. QUEUE means to pass the packet to userspace. RETURN means stop traversing this chain, and resume at the next rule in the previous chain. If the end of a built-in chain is reached, or a rule in a built-in chain with target RETURN is matched, the target specified by the chain policy determines the fate of the packet.

There are current three tables (which tables are present at any time depends on the kernel configuration options and which modules are present). They are FILTER, NAT and MANGLE. Filter table is the default table, and contains the built-in chains INPUT (for packets coming into the box itself), FORWARD (for packets being routed through the box), and OUTPUT (for locally generated packets); NAT table which is consulted when a packet which is creates a new connection is encountered. It consists of three built-ins: PREROUTING (for altering packets as soon as they come in), OUTPUT (for altering locally generated packets before routing), and POSTROUTING (for altering packets as they are about to go out). MANGLE table is used for specialized packet alteration. It has two built-in chains: PREROUTING (for altering incoming packets before routing) and OUTPUT (for altering locally generated packets before routing).

We don’t address options here for length of this report.

6. TRAFFIC CONTROL IN LINUX--BANDWITH MANAGEMENT

Traffic control is implemented in iproute2 package in Linux 2.4. The two basic units of traffic control in Linux are classifiers and queues. Classifier place traffic into queues, and queues gather traffic and decide what to send first, send later, or drop. The traffic control infrastructure is illustrated as following:

There are many kinds of classifiers defined in Linux: fw, u32, route, rsvp, tcindex, protocol, parent, prio, handle, etc. The fw classifier relies on the firewall tagging the packets to be shaped. So to use fw classifier, we should first setup the firewall to tag the incoming packets. U32 classifier is the most advanced classifier in the current Linux traffic control implementation. Each u32 classifier has a list of records, each consisting of two fields: a selector and an action. The selectors are compared with the currently processed packet until the first match and the associated action is performed (generally direct into a defined CBQ). The route classifier is based on the results of the routing tables. When a packet that is traversing through the classes reaches one that is marked with the route classifier, it splits the packets up based on information in the routing table. For the route classifier to operate properly, we should first add the appropriate routing entry to give the interested route a ‘realm number’. Classifier rsvp bases the decision on the (destination, protocol) pair and classifier tcindex bases the decision on the DSCP (differentiated services code point) part of the packet (in ipv4, it is the TOS octet, in ipv6, it is the traffic class octet).

The most notable queue is Class Based Queue. CBQ is a super-queue, in that it can contains other queues. There is a queuing discipline associated with every queue. For every packet in the queue, it is processed according to the queuing discipline. Linux kernel have implemented many queuing disciplines, including pfifo_fast (First In, First Out), SFQ (Stochastic Fairness Queuing), TBF (Token Bucket Filter), RED (Random Early Detection), Ingress, WRR (Weighted Round Robin), etc. FIFO queue is first in, first out, which means that no packet receives special treatment. SFQ is not quite deterministic. Every SFQ consists of dynamically allocated number of FIFO queues, one for every conversation. The discipline runs in round robin, and then it can allow fair sharing the link between several applications and prevent bandwidth take-over by one client. TBF only passes packets arriving at rate in bounds of some administratively set limit, with possibility to buffer short bursts. RED starts dropping packets when a link is filling up (before a link is completely saturated), which indicate to TCP/IP that the link is congested, and that it should down. Ingress queue discipline allow us to police incoming bandwidth and drop packets when this bandwidth exceeds our desired rate. WRR distributes bandwidth between its classes using the weighted round robin scheme.

The user space command for system administrator to make traffic control configuration is tc. We will discuss this command in detail in next section.

With these facilities, we can very sophisticated bandwidth management. For example, we have the following network topology:

The bandwidth to the Internet is 10 megabit. We want give 8 megabit bandwidth to Ethernet_1 and 2 megabit to Ethernet_2. We can configure Router 1 as the following:

++++++++++++control downstream+++++++++++++++

create the root CBQ handle to interface ethe0

>tc qdisc add dev eth0 root handle 10: cbq bandwidth 10Mbit avpkt 1000

create the root class

>tc class add dev eth0 parent 10:0 classid 10:1 cbq bandwidth 10Mbit \

 rate 10Mbit allot 1514 weight 1Mbit prio 8 maxburst 20 avpkt 1000

create subclass for Ethernet 1

>tc class add dev eth0 parent 10:1 classid 10:100 cbq bandwidth 10Mbit \

 rate 8Mbit allot 1514 weight 800Kbit prio 5 maxburst 20 avpkt 1000

#create subclass for Ethernet 2

>tc class add dev eth0 parent 10:1 classid 10:200 cbq bandwidth 10Mbit \

 rate 2Mbit allot 1514 weight 200Kbit prio 5 maxburst 20 avpkt 1000

add SFQ discipline to subclasses

>tc qdisc add dev eth0 parent 10:100 sfq quantum 1514b perturb 15

>tc qdisc add dev eth0 parent 10:200 sfq quantum 1514b perturb 15

direct the traffic from Ethernet 1 and Ethernet 2 to different subclass

>tc filter add dev eth0 parent 10:0 protocol ip prio 100 u32 \

 match ip dst 202.120.1.0/24 flowid 10:100

>tc filter add dev eth0 parent 10:0 protocol ip prio 100 u32 \

 match ip dst 202.120.2.0/24 flowid 10:200

In the same way, we can create upstream control for the system.

Besides bandwidth control, we can implements differentiated services with the traffic control infrastructure. The configuration needed is very similar to the example above, except we match the DSCP part of packet header instead of source and destination address.

7. TRAFFIC CONTROL IN LINUX--TUNNELLING

There are three kinds of tunnels in Linux: IPIP tunnel, GRE tunnel, and user space tunnel. IPIP tunnel is included in two modules, ipip.o and new_tunnel.o. It can’t forward ipv6 or broadcast traffic and doesn’t compatible to other operating systems or routers. But it do forward ipv4 traffic. For example, we have networks A and B with following configurations, and we want to tunnel the traffic between the two networks.

Network A:

network 202.120.1.0/24 router 202.120.1.1 and 212.111.111.111

Network B:

network 202.120.2.0/24 router 202.120.2.1 and 213.222.222.222

We need only the following configurations:

At the network A:

>ifconfig tun0 202.120.1.1 pointopoint 213.222.222.222

>route add –net 202.120.2.0 netmask 255.255.255.0 dev tun0

At the network B:

>ifconfig tun0 202.120.2.1 pointopoint 212.111.111.111

>route add –net 202.120.1.0 netmask 255.255.255.0 dev tun0

GRE (Generic Routing Encapsulation) is a tunneling protocol that was originally developed by Cisco, it has many kinds of variations. It can do all things which IPIP tunnel can offer and more, such as transporting multicast traffic and ipv6 traffic. For example, if you have an ipv6 network with address 3ffe:406:5:1:5:a:2:1/96, and you want to tunnel all the ipv6 to network B, then you can use the following configuration:

>ip tunnel add sixbone mode sit remote 213.222.222.222 local 212.111.111.111 ttl 255

>ip link set sixbone up

>ip addr add 3ffe:406:5:1:5:a:2:1/96 dev sixbone

>ip route add 3ffe::/15 dev sixbone

Many user space tunnels are available, among which are PPP tunnel and PPTP tunnel.

8.TC: A USERSPACE TOOL

TC is a user space tool for system administrators to configure traffic control functions at run time, the command line usage is as following:

>tc qdisc [add | del | replace | change | get] dev STRING

 [handle QHANDLE] [root | ingress | parent CLASSID]

 [estimator INTERVAL TIME_CONSTANT]

 [[QDISC_KIND] [help | OPTIONS]]

>tc qdisc show [dev STRING] [ingress]

Where:

QDISC_KIND := { [p|b]fifo | tbf | prio | cbq | red | etc. }

>tc class [add | del | change | get] dev STRING

 [classid CLASSID] [root | parent CLASSID]

 [[QDISC_KIND] [help | OPTIONS]]

>tc class show [dev STRING] [root | parent CLASSID]

Where:

QDISC_KIND := { prio | cbq | etc. }

>tc filter [add | del | change | get] dev STRING

 [pref PRIO] [protocol PROTO]

 [estimator INTERVAL TIME_CONSTANT]

 [root | classid CLASSID] [handle FILTERID]

 [[FILTER_TYPE] [help | OPTIONS]]

>tc filter show [dev STRING] [root | parent CLASSID]

Where:

FILTER_TYPE := { rsvp | u32 | fw | route | etc. }

9. TONADO DEVELOPMENT ENVIRONMENT
Tornado from WindRiver Company is an integrated environment for software cross-development. It provides an efficient way to develop real-time and embedded applications with minimal intrusion on the target system. Tornado comprises the following elements:

VxWorks—a real-time embedded operating system

Application-building tools—compilers and associated programs

Integrated development environment (IDE) that facilitates managing and building projects, establishing and managing host-target communication, and running, debugging, and monitoring VxWorks applications. The Tornado development environment is organized in the following way:

In this section, we only address briefly on the host system.

Tornado Editor

The Tornado source code editor have the standard text manipulation capabilities, and it also some cool extras, such as C and C++ syntax element color highlighting, debugger integration, compiler integration, etc.

Project Management

The Tornado project facility includes graphical configuration of the build environment, as well as graphical configuration of VxWorks. It also provides for basic integration with common configuration management tools such as ClearCase.

Compiler

Tornado includes the GNU compiler for C and C++ programs, as well as a collection of supporting tools that provide development tool chain, such as cpp, gcc, make, ld, as and binary utilities.

WindSh Command Shell

WindSh is a host-resident command shell that provides interactive access from the host to all run-time facilities. The shell provides a simple but powerful capability: it can interpret and execute almost all C-language expressions. It also supports C++, including ‘demangling’ to allow developers to refer to symbols in the same form as used by the original C++ source code.

CrossWind Debuger

The remote source-level debugger is an extended version of the GNU source-level debugger (GDB). The most visible extension to GDB is a straightforward graphical interface. CrossWind also includes a comprehensive TCL scripting interface that allows users to create sophisticated macros or extensions for your own debugging requirements. The debugger console window also synthesizes both the GDB command-line interface and the facilities of WindSh.

Browser

The Tornado browser is a system-object viewer, a graphical companion to the Tornado shell. The browser provides display facilities to monitor the state of the target system.

WindView Software Logic Analyzer

WindView is the Tornado logic analyzer for real-time software. It is a dynamic visualization tool that provides information about context switches, and the events that lead to them, as well as information about instrumented objects.

VxWorks Target Simulator

The VxWorks target simulator is a prot of Vxworks to the host system that simulates a target operating system. No target hardware is required. The target simulator facilitates learning Tornado usage and embedded systems development. It also provides an independent environment for developers to work on parts of applications that do not depend on hardware-specific code and target hardware.

The Tornado system is now available in room 148, engineering bldg.

Prerouting

(D-NAT)

Routing

Decision

Postrouting

(S-NAT)

Local Processes

Output

(D-NAT)

Load Balancing Server

202.120.1.1

Real Server 1

202.120.1.1

Real Server 2

202.120.1.2

Real Server 3

202.120.1.3

client

client

client

client

to clients

Routing

Decision

INPUT

FORWARD

OUTPUT

Local Processes

Classifier

Classifier

Classifier

Queue (with queuing discipline)

Queue (with queuing discipline)

Router 2

Router 1

Bandwidth Manager

Router 3

Ethernet 1: 202.120.1/24

Ethernet 2: 202.120.2/24

eth0

eth1

Internet

Shell

Debugger

Editor

Project

Brower

WindView

Target

Server

Target

Agent

VxWorks

Target

Simulator

Applications

VxWorks

Target

Agent

Host System

Target System

PAGE
2

