CS522

Fall 200

Semester Project

Jeremy Bryan

Packet Receive/Transmit Threads

For the Intel IXP1200 Network Processor
Overview

This project implements two separate processes to be run on a special processor. The first process handles the receipt of a packet from the network, and the second has the responsibility to transmit the packet back onto the network. The design is relatively simple, however there was a huge learning curve associated with implementing even these simple tasks.

Initially, I would like to have provided more functionality in the final deliverable of the project. I started researching this potential project with the best of intentions, but once I actually started writing code I realized that I was somewhat delusional when initially proposing my project.

The Intel IXP1200 Network Processor

The project was based on the architecture of a special processor, made by Intel, designed specifically for network communications solutions. The highlights of this network processor include:

· Six integrated, programmable, multi-threaded microengines

· Open IX bus architecture

· High bandwidth I/O bus

· Integrated PCI interface

· Integrated Intel StrongArm processor core

· High performance memory controllers

[image: image1.wmf]IX Bus Interface

SRAM

Interface

SDRAM

Interface

PCI Bus

Interface

Str

ongArm

Core @ 166 MHz

Microengines 1

-

6

Each of the microengines has the ability to run four separate threads. This ability provides the designer with a maximum of 24 unique processes. In addition to that, the StrongArm core is available for higher level computing. The following is a block diagram of the part:

The chip was designed to have the microengine threads handle the initial data coming in and going out. Simple calculations, such as layer 1 or possibly even layer 2 data checks and/or changes, could be handled in the microengines. When some in-depth processing needs to be done, the microengines could put the data in external memory and let the StrongArm core deal with it. This approach enables the chip to handle extreme network speeds such as Gigabit Ethernet. Of course, the bandwidth bottleneck is the amount of processing and how far up the OSI model you need to traverse.

The Receive Thread

The receive thread follows a simple algorithm. The thread enters an infinite loop and waits for a receive ready flag. When it receives that flag it reads the receive request from the port. It then gets the receive control register data. After moving data around and writing pertinent information to SDRAM, it signals the transmit thread that it is time for it to do its job.

For simplicity, the receive thread has been limited to one instance. Checking the context number does this. Each thread within a mircoengine has a unique identifier called the context number. The first thing this tread does is check that value.

br!=0ctx[0, rec_done#]

The instruction is br!=0ctx. It checks the context number and branches to a specified location if the two given values are not equal. Basically, this instruction says, “If the value of the context number is 0, keep going, otherwise branch to the label rec_done.”

The next part of the code just initializes the general public registers (GPRs) that will be used. This is done with the “immed” instruction.

immed[data_addr, 0x100]

This says immediately move the hexadecimal value 100 into the GPR data_addr.

After the begin label, the next thing we do is wait on the receive ready flag. While the thread is waiting, it swaps out its process so that other threads have the opportunity to run while it is waiting on data. When we finally get the flag and our port is ready, we write data to the receive request register. Specifically, we write our thread ID, port number, and receive FIFO element number.

At this point, it is going to take some time for the IX bus unit to put the packet data into the specified receive FIFO element. Therefore, we will swap out until the IX bus unit signals us that the data is ready by sending us the “start_receive” flag. When we get that flag the next step is to read the receive control register. Once that is done the thread moves the packet data from the FIFO element to SDRAM. A simple address-mapping scheme is used to place the FIFO element into a specific SDRAM address. That is, multiply the element number taken from the receive control register by 8. Eight is picked because that is the number of quadwords per element.

There is a packet descriptor format that both processes use to describe the packet data. The receive thread will take the quadword count, byte count, end of packet flag, start of packet flag, and port number from the receive control data then write a descriptor to SRAM.

Finally, the receive thread will signal the transmit thread with the “inter_thd_sig.” This lets the transmit thread know that it is time to wake up and go to work. The packet count is incremented, then the receive thread swaps out and goes to sleep. It will not wake up again until the transmit thread is done. When the transmit thread is done, the receive thread will go back to waiting for a receive ready flag from the IX bus.

The Transmit Thread

The transmit thread is also limited to one instance, so there is an context number check here too. Again, like the receive thread, we initialize the GPRs that will be used.

The transmit thread initially swaps out and waits for the receive thread’s signal. Once the signal is received, the transmit thread reads the packet descriptor from SRAM. The descriptor address is hard coded to 0x100 for this project. This is done as follows:

sram[read, $descriptor, descriptor_addr, 0, 1], ctx_swap

Notice the dollar sign in front of the descriptor variable. This indicates to the processor that the given variable is located in SRAM. Again, the thread will have to wait a significant amount of time for the requested data to become available so, in good practice, it swaps out to let other potential threads run. Both receive and transmit threads know the packet descriptor format so that they can extract the proper information.

Before actually transmitting the data, the availability of both the MAC port and the next transmit FIFO element must be checked. If the MAC port is not ready, then we will keep reading the flags and pointer until it is. Once the MAC port is ready to accept packet data, we must ensure the transmit FIFO element we plan to use is ready to be transmitted by the Transmit State Machine. It is ready to transmit if the state machine’s transmit pointer is equal to our pointer. This means that the transmit state machine is waiting to transmit our target FIFO element. If the FIFO element is not ready, then we re-read the ready flags and transmit pointer.

Once we know everything is ready to transmit, the packet data must be transferred from SDRAM to the transmit FIFO element. Some ALU operations must be performed to get all the transmit data into the appropriate register positions. After the data has been calculated, the following instruction moves the data:

sdram[t_fifo_wr, --, data_addr, 0, 8], indirect_ref, cxt_swap

Basically, this is saying write to the t_fifo from sdram address data_addr. The 0 parameter is an offset from the address we specified. 8 indicate the number of contiguous SDRAM quadwords to be references with this operation. Indirect_ref tells the instruction to use whatever data is on the output of the ALU for the SDRAM transfer register, that is why the second variable is represented by “—“. Finally, the thread swaps out while waiting for the memory accesses to occur.

With the data moved into the TFIFO, it is time to write the control word to the FIFO element. The descriptor definition matches that of the control word so it is written to the control word as is. To tell the IX bus interface to actually transmit the packet to the MAC, a fast write of “XMIT_VALIDATE” is made to the TFIFO element.

alu[--, 1, OR, current_inptr, <<5]

fast_wr[0, XMIT_VALIDATE], indirect_ref
The ALU instruction executes and OR operation with current_inptr and left shifts the result 5 bits. The fast_wr instruction writes the XMIT_VALIDATE value into the value of the data on the output of the ALU (as per the indirect_ref).

Finally, we signal the receive thread that we are done. Before the thread swaps out the FIFO pointer is incremented for the next iteration.

Conclusion

According to Intel, if I had 12 receive threads and 12 transmit threads this design could handle speeds comparable to Gigabit Ethernet. For the project I only implemented one of each, but duplicating the processes is just a simple build setting. The code builds and debugs ok, but there is one major disappointment. I cannot get the packet generator script to work. This is a script I lifted straight from Intel to simulate incoming packets. When I tell the simulator to start with this script it complains about syntax error in the script file. I looked everywhere for documentation on the scripting language/process, but to no avail. As a result, I must present this project without any stimulus for verification.

Due to this unfortunate circumstance, I cannot show any concrete output and or verify functionality. I am pretty comfortable with the code and truly believe that it would perform as expected. I can say this because I have closely modeled and followed Intel’s examples and documentation while developing this project.

Initially, we had talked about examining the incoming packets and re-routing the packet to a server after an address lookup. This functionality is definitely achievable with the processor and its development environment, but I did not have the time or resources to research the topic to that depth. A table lookup re-route should be relatively easy to add at a later date. Basically, after the receive thread reads the packet into SDRAM it would extract the destination address. That destination address would then be used for a table lookup that would return an appropriate server that could handle the incoming packet. The new destination address could be written into the packet before the transmit thread is called. Ideally, there would be no change to the transmit thread.

I regret not being able to implement some of the features we had discussed during the project proposal. However, once underway it became apparently obvious that I would not be able to achieve that level of proficiency in the amount of time given. The submitted code would definitely be a solid starting point for further investigation in the IXP1200 area.

� EMBED MSDraw.Drawing.8.2 ���

[image: image2.wmf]IX Bus Interface

SRAM

Interface

SDRAM

Interface

PCI Bus

Interface

Str

ongArm

Core @ 166 MHz

Microengines 1

-

6

_1037536391.unknown

