SX.canary: A Network Diagnostic Tool for PCs

Semester Project

CS 522

John E. Harvey, Jr.

12/9/2000

Introduction

NxTrend Technology Inc. develops software solutions for warehouses and distributors. The software relies on remote access to a central database. Whenever two computers need to communicate, some sort of network must be used. The network must meet certain minimum requirements in terms of speed, reliability, and services in order for the software to function properly.

Networks come in many varieties. When one considers the number of products available and the possible combinations of those products, one would soon realize that it would be impossible to list every possible network situation. Also, every organizations needs are different when one considers their number of users and the location of those users. Therefore, NxTrend did not want to specify to their customers specific networking configuration requirements. Instead, the customer is allowed to use whatever network they feel they need as long as it meets minimum specified requirements.

However, this flexibility causes certain difficulties. First, for already-existing networks, how does the customer know if their network is able to support the product? Second, how are network related issues identified without detailed experience with a particular network?

The answer is called SX.canary. Canary is an application that runs on a Windows-based PC that tests the network that PC is connected to. The goal is to have it test all of the minimum requirements needed and report back to the user the results of the tests. Other requirements include a user-interface that allows the customer to run the program without any technical knowledge. Also, the program should record test results so that they can be sent to NxTrend for analysis if needed.

At this time, SX.canary works in a basic sense. The user-interface framework is in place as well as a logging mechanism. It performs five tests: network socket support, host name resolution, reverse DNS resolution, ping connectivity, and effective bandwidth. Other tests will be added in the future, but the basic program will function as is. Therefore, it does work, but it is not complete.

Background Information

The Product Environment

Nxtrend’s flagship product, SX.enterprise, utilizes an n-tiered architecture. At the center is a Unix-based computer that houses the database. The next tier is a Windows NT Server system. This system is called a Staging Client. It is a master client that is used to manage the software on other clients. The next tier is also a Windows NT Server and is called a code server. A code server manages the clients at a remote office. The last tier is called a Network Client. It is also a Windows-based system, but it does not have to be Windows NT Server. These are thin clients that don’t have much software on them.

There are many relationships between the various systems. All of the clients need to access the database on the Unix system. All of the Network Clients must also be able to access either the Staging Client or a Code Server. Access to the database is accomplished using socket connections. Access between clients is accomplished using Windows Networking and shared disks.

There are many functions and services that require communication between the systems. The first and most basic is a simple (single record) query to the database. In this case, the client makes a connection directly to a database server process using a socket connection. The next case is a more complex query against the database that involves many records. These queries are actually handled by a different process called an Application Server. The Application Server is running on the same system as the database servers. The query is performed on one machine without large amounts of intermediate results being transferred over the network. In this case, the client makes a socket connection to the Application Server to transfer data. Communication also happens between a Network Client and the Staging Client or a Code Server to get programs to run. When a Network Client needs to run a program that is missing from its cache, it must get the program from the Staging Client or a Code Server. This is handled through a filesystem “share” using Windows Networking. The final scenario is when SX.enterprise is being installed or updated. This is the primary function of the Staging Client. The software is first installed there. During the installation, a staging area is setup and that area is shared. Other clients can then access the installation files through that share on the Staging Client. During the software update process, there is an additional step where patched programs are also transferred to the Unix system from the Staging Client using FTP.

Network Requirements

In order for SX.enterprise to operate properly, the appropriate communications must be able to take place between the various systems. Therefore, clients need to connect to the Unix host, and they need to connect to drive shares of other clients.

Most networking applications make use of the Berkeley Sockets API. A socket is two endpoints of a communication which are each identified by an IP address and a port number [STEVENS98]. Unix-based computers make extensive use of Berkeley Sockets, and it is now standard on most (if not all) Unix distributions. Windows systems have more recently included support for sockets. Sockets are implemented through an API known as WinSock. The WinSock API provides the interface to the lower layers of the Windows networking system [QUINN96]. The earlier versions of WinSock were related to the Berkeley sockets, but not the same. The latest version of WinSock, however, has gone a long way to make Windows Sockets work and look the same as Berkeley Sockets. So, for a Windows-based system to make use of any kind of socket, it must have the WinSock API library. This exists on a PC in the form of a Dynamically-Linked Library (DLL). However, there are incompatibilities between versions of the WinSock library, therefore the first requirement for a PC is to have the correct version of the WinSock DLL.

To connect to a Unix host, the PC must be able to find an IP address for that host. There are two places where an IP address can be found. Unix system and PCs have a file that consists of a list of host names and their respective IP addresses. This is generally called a hosts table, and the file itself is usually called “hosts”. This file is often used for small networks and stores the names of the hosts on that local network. The other method is called Domain Name System (DNS). DNS is a distributed database on the Internet [LEON00]. This database can be queried to return the particular IP address for a given host. This method is used when the host is not part of the local network, or when the local network has enough hosts to make the hosts tables on individual machines too large and unwieldy.

The next step to establishing a connection to a Unix host is actually being able to send a packet to the Unix system over the network. A packet needs to be formed in the application, delivered to the lower network layers, and then sent to the system. With the IP address, the packet can get routed using the Internet Protocol to the destination.

There is another aspect of communications that needs to be addressed. For the data to be useful, certain performance characteristics are needed. These are defined and are somewhat subjective. The two main measures of performance are response time and bandwidth. Response time expresses how fast data can move from one computer to another. Bandwidth expresses how much data can be moved within a certain timeframe.

Communications between Windows-based systems often happens using NetBIOS for Windows networking. Windows Networking is used to provide services particular to a Windows environment. Some of these services are analogous to the ones previously mentioned. Actually, both TCP/IP and NetBIOS are used, with NetBIOS running on top of TCP/IP.

Most of the data transferred between two PCs (as far as SX.enterprise is concerned), is done through a drive “share”. A Windows-based computer may elect to share a drive across the network. Permissions are set up on a particular directory within its local filesystem, and it is given a share name to identify the directory on the network.

Since Windows networking is still running in a TCP/IP environment, a PC still needs to have an IP address to receive packets. Most PCs these days use a dynamically assigned IP address. This is accomplished using the Dynamic Host Configuration Protocol (DHCP). When a PC is connected to a network, it broadcasts a message on the network requesting configuration information. A DHCP server responds to this broadcasted message and gives the PC an IP address [LEON00].

Next, the PC’s name needs to be associated with its IP address. Since the IP address is dynamic, DNS can not really be used to associate the name and address. So, the Windows Internet Naming Service (WINS) is used [PARKER96]. A PC registers its name and IP address with a local WINS server. Thereafter, the WINS server can be queried to get an IP address associated with a particular PC.

In order for a client to access another client, it accesses the remote client’s data using the remote client’s PC name and share name. Also, the client must have permission to access the share. Therefore, for two clients to talk to each other, they need IP addresses, WINS name resolution, and permission to access a share.

Application Requirements

The SX.canary project has requirements of its own. Since this is a program that will be run by customers who are not required to be technically savvy, it must be easy to use. This means that thought must be put into the user interface, and the interface needs to be graphical. Also, the program needs to provide feedback that the customer can see, and the results can be easily sent back for analysis.

Since this is a Windows-based application, Canary is Windows-based. It is written using Microsoft’s Visual C++ compiler. This compiler uses a modified C++ with its own set of library classes known as the Microsoft Foundation Classes (MFC). The MFC provides many reusable objects to aid in Windows programming. The graphical objects and event-driven architecture are encapsulated within the MFC. Indeed, the programming of the user interface was much easier.

Programming in the Windows environment using the Microsoft compiler is a subject in and of itself. Much time was spent with reference materials such as [BATES99] and [BLASZCZAK99]. The effect of the environment is many strange constructs within the code, which will not be explained here.

Canary needs to test for the required environment mentioned above. The tests need to be simple to run and provide reasonable results. Also, there needs to be a final Go/No Go response. Canary needs to answer a yes-or-no question. Either the customer’s network is suitable or it isn’t.

Results

 [image: image1.jpg]Sx.canary Enter Host

Eter host name or [P ackess:

Figure 1

SX.canary Application Overview

This section describes how Canary works. When Canary begins, the user is presented with a prompt to enter either a host name or a host’s IP address (see Fig. 1). This is for the Unix system that has the database. Once entered, the testing begins. The first set of tests begins automatically to provide some initial results. These are basic tests that must pass before going any further. This also provides a very simple start for the user. After [image: image2.jpg]WinSack Version|

Name Resaluton

Reverse DNS

Ping

Passed

Passed

Passed

Passed

Bondwidh | Passed

Wik Verson 22 deected
v hes the addess 10110311
10110311 has the name mtvigend.com
Aveage esponsetne s 134000000 me.

Effective bandvicth s 11.545713 Kbps.

Check New Host| [mtvig

b viwlos

Figure 2

the first tests are run, the results are displayed in the main Canary control dialog (see Fig. 2). The user at this time can review the testing log that contains more detailed information on the testing done this session. This is done by clicking on the “View Log” button (see Fig 3). The user may also run additional tests. The only additional test available at this time is a bandwidth test. When the user clicks the “Bandwidth” button, a rough estimate of the available bandwidth is calculated.

[image: image3.jpg]5%.Canary log

Starting WinSack Version Test
WinSack Version fest passed.
The current WinSock versian is 2.2,

The fest suife i being reset with new parameters.
“The new host Is mrfuig

metwig is a host nare.

Starting the hast name resalution fest

The 19 for mrtwig s 10.110.3.11

“The hast name resalution fest passed.

Starting the reverse DNS fest.

Laoking p a host name for the TP address 10.110.3.11
“The hast name Is mrtwig rxtrend.com.

The reverse DNS fest passed.

Starting host equivalence fest

The hasts are equivalent (nrtwig mxrend.com).
Starting Ping Test

Pinging the host af TP 10.110.3.11
1024 bytes from 10.110.3.1: emp_seq
1024 bytes from 10.110.3.11: emp_seq
1024 bytes from 10.110.3.11 emp_seq = 2. time: 130 ms
1024 bytes from 10.110.3.11 emp_seq = 3. time: 130 ms
1024 bytes from 10.110.3.11 emp_seq = 4. time: 130 ms
The average response fime is 134.000000,

“The Ping fest passed.

High Perfarmance Timer is avallable at 3579545 ticks/sec.
Bandividth s 11.545719 Kbps.

0. time: 140ms
L time: 140 ms

Figure 3

WinSock Version

The first test performed checks the version of the WinSock library that is available on the system. This test is performed only once. It is first since without the WinSock library, there is no sense in continuing. All the other tests would just result in errors. This test also serves another purpose: It initializes the WinSock DLL. This is a necessary step required before making any further network-related function calls. At the conclusion of this test, the version of WinSock is displayed. (For sample test results, see Figs. 2 and 3 and Appendix A: A Sample Log File.)
Host Name Resolution

The next two tests are related and combined for this discussion. Host name resolution is accomplished using the GetHostByName() API call. This function takes a host name as an argument and returns a host data structure. The GetHostByIP() API call is used to return a host data structure when the IP address is given. Depending on which way the user identifies the host, the correct resolution is run first. The results from the first test are then compared with the results of the second test to see if they match.

The host structure (struct hostent) contains information about a host. The information is supplied by a call to a DNS server. This structure contains the official canonical name of the host and any aliases that a host may be known by. It also returns any IP addresses that are used by that host. Multiple addresses can be returned if a system has more than one network interface [STEVENS98].

One current weakness of Canary is that it does not handle aliases well. It was noticed that if a host was aliased and an alias was supplied as the host name, these test will fail when they try to coordinate results.

If these tests pass, then the system Canary is running on can resolve the host name and the IP address of the Unix computer.

Ping

There is a utility that is commonly used for the purpose of seeing if a packet can be sent to a particular system called PING. Ping uses the Internet Control Message Protocol (ICMP) to send an echo request packet to a system. If the system receives the packet, it will send an echo reply packet back to the request sender. This test uses the same concept to test a connection to a particular system.

ICMP is a protocol of control messages. It is used by networking software to send control and error messages between routers and hosts [STEVENS98]. There is one type of message that is used by applications called an “echo request”. The echo request is a datagram that is sent to a particular host. The networking software on the host generates another ICMP packet of type “echo reply” and sends it back. Included in the packet sent back is any data payload that was in the echo request.

The packets that get sent out contain some very important information. First, they contain a sequence number. Since ICMP packets are datagrams, delivery order is not guaranteed (however, at this time, Canary waits for a reply after each packet is sent). Therefore, the packets need to be identified before they are sent out so that we can know which one gets replied to. Also, the payload of the packet contains a timestamp of when the echo request was sent. Checking the time when the packet is received, a delay can be calculated. Finally, the payload contains dummy data. This can be used to change the size of the packet to see its effect on the response time.

Response time is an important measurement. In performance analysis, it is important to know what the delays are throughout the system. Also, data from the server is expected to arrive with only a reasonable amount of delay. Therefore, this test can fail for two reasons. No reply packets are received from the server, or the reply packets did not come back fast enough.

Bandwidth

Bandwidth is a measure of how much data can be transferred within a certain amount of time. More specifically, this is a measure of datarate. Data transfer rates are usually expressed in terms of the number if bits transferred in a second. Modems are generally 28.8 kilobits/second or 56 kilobits/second, while Ethernet is at 10 or 100 megabits/second.

ICMP echo request packets are once again used. In this case, two packets are sent out. The first one is small. Its purpose is to make the measurement less dependent on response time. Once this packet is received, the timer is started since the second packet is right behind it. The second packet is of a definite size (larger than the first). When it is received, a timer is used to measure how long it takes to receive the packet. The datarate is then calculated to be the amount of time to receive that number of bytes.

There are certain assumptions that had to be made. First, the computer is much faster than the network. The second packet is received right after the first. The two packets don’t mix their sequence (are not received out of order).

As it turns out, this is a very tricky measurement, especially on a single ended system. First, there is the issue of scale. The characteristics of a modem line are very different than a 100 Mbps Ethernet line. If there is a modem line operating at 24 kbps for a connection to a LAN with a server, and there is a 134 ms delay to that server, only 400 bytes can be sent out before the reply is coming back from the server. That means the packets need to be sent or the link will be artificially saturated trying to read and write at the same time. High-speed networks present another problem. At 100 Mbps, it only takes 80 microseconds to receive a 1000 byte packet. It is hard to get a timer to measure that.

Several ideas were considered to overcome these problems. The desire was to send a large amount of data in order to provide a better measurement. First, a large packet was sent out as the second request. What appeared to happen was that the packet had arrived before it was read (indicated by very fast datarate calculations). That meant that the data would be coming back as it was being sent out. Another idea was to try multi-threading the test. One thread would send the data and the other would receive. Unfortunately, this didn’t seem to work. The use of the socket or connection seemed to collide with itself. The receiver would never receive all of the packets. The next choice was to try a single thread, but with a small second packet. A data packet of 100 bytes was sent and timed. This produced results that were in the ballpark, but still not very good. On a line that the modem reported a connection speed of 24 kbps, Canary reported 9-11 kbps bandwidth. This was at least the right order of magnitude. However, the smaller packet produced widely varying results on a fast connection (Canary showed anywhere from 30-114 mbps for a 100 mbps Ethernet connection through a switch).

This last method is what Canary currently uses. It at least produces some kind of result. But this test needs improvement. In the future, better equipment will be used to measure the bandwidth for real for comparison. Also, the test would be better if it was two-ended. That way, a large amount of data can be sent from one system and measured on another and thus avoid port contention. This might be accomplished by having two Canary programs talk to each other.

Conclusion

SX.canary is a work in progress. It does some work that is useful. However, there are a lot of exciting tests yet to be implemented. The bandwidth test needs to be revisited to see if it can provide better results. Also, none of the Windows client-to-client tests have been implemented yet. However, many important lessons were learned.

1. A good user interface is never easy.

2. It always sounds easier to implement than it turns out to be.

3. Bandwidth and Response Time are two different measures.

4. There are times when it is very useful to do the math to see what to expect.

I was hoping for more at this time, but it just didn’t happen. Fortunately, I will have the opportunity to complete this project in the coming year.

References

[BATES99]
Bates, J., Tompkins, T., Practical Visual C++, 1999, Que Corporation, Indianapolis, IN.

[BLASZCZAK99]
Blaszczak, M., Professional MFC With Visual C++ 6, 1999, Wrox Press Ltd., Acocks Green, Birmingham, United Kingdom.

[LEON00]
Leon-Garcia, A., Widjaja, I., Communication Networks Fundamental Concepts and Key Architectures, 2000, McGraw Hill, Boston, MA.

[PARKER96]
Parker, T., et al, TCP/IP Unleashed, 1996, Sams Publishing, Indianapolis, IN.

[QUINN96]
Quinn, B., Shute, D., Windows Sockets Network Programming, 1996, Addison-Wesley Publishing Company, Reading, MA.

[STEVENS98]
Stevens, R. W., UNIX Network Programming Volume 1, 1998, Prentice Hall PTR, Upper Saddle River, NJ.

Appendix A: A Sample Log File

<--- This is the logged output from SX.canary --->

Starting WinSock Version Test

WinSock Version test passed.

The current WinSock version is 2.2.

--

The test suite is being reset with new parameters.

The new host is mrtwig.

mrtwig is a host name.

Starting the host name resolution test.

The IP for mrtwig is 10.110.3.11.

The host name resolution test passed.

Starting the reverse DNS test.

Looking up a host name for the IP address 10.110.3.11.

The host name is mrtwig.nxtrend.com.

The reverse DNS test passed.

Starting host equivalence test

The hosts are equivalent (mrtwig.nxtrend.com).

Starting Ping Test

Pinging the host at IP 10.110.3.11.

1024 bytes from 10.110.3.11: icmp_seq = 0. time: 140 ms

1024 bytes from 10.110.3.11: icmp_seq = 1. time: 140 ms

1024 bytes from 10.110.3.11: icmp_seq = 2. time: 130 ms

1024 bytes from 10.110.3.11: icmp_seq = 3. time: 130 ms

1024 bytes from 10.110.3.11: icmp_seq = 4. time: 130 ms

The average response time is 134.000000.

The Ping test passed.

High Performance Timer is available at 3579545 ticks/sec.

Bandwidth is 11.545719 Kbps.

Appendix B: Source Code

Warning! The full source code is not provided in this paper. This software is propriety and is the property of NxTrend Technology Inc. No permission is given to use this code except for educational review.

//---

// WinSockVerTest.cpp

//

// Description:

// This class initializes the WinSock and in the process checks

// the version of the WinSock DLL.

//

// Author: John E. Harvey, Jr.

//

// Copyright (c) 2000 NxTrend Technology, All rights reserved.

//---

#include "stdafx.h"

#ifdef USE_WINSOCK2

 #include <winsock2.h>

#else

 #include <winsock.h>

#endif

#include "sxcanary.h"

#include "WinSockVerTest.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

//

// Construction/Destruction

//

CWinSockVerTest::CWinSockVerTest()

{

 m_bTestPassed = FALSE;

 m_nMajVersion = 0;

 m_nMinVersion = 0;

}

CWinSockVerTest::~CWinSockVerTest()

{

}

//

// Member Function Implementations

//

//---

// RunTest

//

// Description:

// This test first initializes the WinSock. This is necessary before

// any WinSock functions are used. The test also checks the version

// of the WinSock DLL to make sure it is good enough.

//

// Parameters:

// int reqMajVersion - The minimum major version number required to pass

// int reqMinVersion - The minimum minor version number required to pass

//---

void CWinSockVerTest::RunTest(int reqMajorVersion, int reqMinorVersion) {

 short int versionNum = 0;

 WSADATA wsaData;

 log.Logit("Starting WinSock Version Test\n");

 //

 // Create a version number from the required version passed in.

 //

 versionNum = MAKEWORD(reqMajorVersion, reqMinorVersion);

 //

 // Initialize the WinSock DLL

 //

 if (WSAStartup(versionNum,&wsaData) != 0) {

 sprintf(g_LogMsg,"\nERROR: WSAStartup FAILED! (error = %d)\n\n", WSAStartup(versionNum,&wsaData));

 log.Logit(g_LogMsg);

 sprintf(g_LogMsg, "\nERROR: WinSock Test FAILED!\n\n");

 log.Logit(g_LogMsg);

 m_nMajVersion = INIT_FAILED;

 m_bTestPassed = FALSE;

 return;

 }

 //

 // Check the current winsock version.

 //

 if (((wsaData.wHighVersion & 0xff) < reqMajorVersion)

 || ((wsaData.wHighVersion >> 8) < reqMinorVersion)) {

 log.Logit("\nERROR: WinSock Version test FAILED!\n\n");

 sprintf(g_LogMsg, "The current WinSock version is %d.%d when %d.%d is required.\n",

 ((short int)wsaData.wHighVersion) & 0xff,

 ((short int)wsaData.wHighVersion) >> 8,

 reqMajorVersion,

 reqMinorVersion);

 log.Logit(g_LogMsg);

 m_bTestPassed = FALSE;

 } else {

 log.Logit("WinSock Version test passed.\n");

 sprintf(g_LogMsg, "The current WinSock version is %d.%d.\n",

 ((short int)wsaData.wHighVersion) & 0xff,

 ((short int)wsaData.wHighVersion) >> 8);

 log.Logit(g_LogMsg);

 m_bTestPassed = TRUE;

 }

 log.Logit("\n");

 m_nMajVersion = wsaData.wHighVersion & 0xff;

 m_nMinVersion = wsaData.wHighVersion >> 8;

}

int CWinSockVerTest::GetMajVersion() {

 return m_nMajVersion;

}

int CWinSockVerTest::GetMinVersion() {

 return m_nMinVersion;

}

//---

// HostNameResTest.cpp

//

// Description:

// This class tests to see if a host name can be resolved to an

// IP address. It does so by calling the gethostbyname API call

// in the WinSock library.

//

// Author: John E. Harvey, Jr.

//

// Copyright (c) 2000 NxTrend Technology, All rights reserved.

//---

#include "stdafx.h"

#include "sxcanary.h"

#include "HostNameResTest.h"

#ifdef USE_WINSOCK2

 #include <winsock2.h>

#else

 #include <winsock.h>

#endif

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

//

// Construction/Destruction

//

CHostNameResTest::CHostNameResTest()

{

 m_bTestPassed = FALSE;

 m_strIPAddr = "";

}

CHostNameResTest::~CHostNameResTest()

{

}

void CHostNameResTest::RunTest(char *hostName) {

 struct hostent *host;

 unsigned int netAddress = 0;

 char ipAddress[16];

 log.Logit("Starting the host name resolution test.\n");

 memset (ipAddress, 0, sizeof(ipAddress));

 //

 // First, try to resolve the hostname.

 //

 host = gethostbyname(hostName);

 //

 // If the host points to anything, then an IP address was found.

 //

 if (host) {

 //

 // Get the IP address for the host.

 //

 netAddress = *((unsigned int *)host->h_addr);

 sprintf (ipAddress, "%d.%d.%d.%d",

 netAddress & 0x000000ff,

 (netAddress & 0x0000ff00) >> 8,

 (netAddress & 0x00ff0000) >> 16,

 (netAddress & 0xff000000) >> 24);

 //

 // Log the IP address that was found.

 //

 sprintf (g_LogMsg, "The IP for %s is %s.\n", hostName, ipAddress);

 log.Logit(g_LogMsg);

 //

 // Set the success flag.

 //

 m_bTestPassed = TRUE;

 m_strIPAddr.Format("%s", ipAddress);

 log.Logit("The host name resolution test passed.\n\n");

 } else {

 //

 // There was an error, so log the error.

 //

 log.Logit ("\nERROR: Host name could not be resolved to an IP address!\n\n");

 m_bTestPassed = FALSE;

 log.Logit("\nERROR: The host name resolution test FAILED!\n\n");

 }

}

CString CHostNameResTest::GetIPAddr() {

 return (m_strIPAddr);

}

// RevDNSTest.cpp: implementation of the CRevDNSTest class.

//

//

#include "stdafx.h"

#include "sxcanary.h"

#include "RevDNSTest.h"

#ifdef USE_WINSOCK2

 #include <winsock2.h>

#else

 #include <winsock.h>

#endif

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

//

// Construction/Destruction

//

CRevDNSTest::CRevDNSTest()

{

}

CRevDNSTest::~CRevDNSTest()

{

}

CString CRevDNSTest::GetHostName()

{

 return (m_strHostName);

}

/*---

 * RunTest()

 *

 * Description:

 * This runs the reverse DNS test. An IP address is taken as an argument

 * and a host name is retrieved.

 ---/

void CRevDNSTest::RunTest(char *ipAddress) {

 struct hostent *host;

 unsigned int netAddress = 0;

 log.Logit("Starting the reverse DNS test.\n");

 sprintf(g_LogMsg, "Looking up a host name for the IP address %s.\n", ipAddress);

 log.Logit(g_LogMsg);

 //

 // First, convert the IP address into a network address.

 //

 netAddress = inet_addr(ipAddress);

 //

 // Get a host record for the system based on its address.

 //

 host = gethostbyaddr((char *)&netAddress, 4, AF_INET);

 //

 // If the host points to anything, that is a good sign.

 //

 if (host) {

 sprintf (g_LogMsg, "The host name is %s.\n", host->h_name);

 log.Logit(g_LogMsg);

 m_strHostName.Format("%s", host->h_name);

 m_bTestPassed = TRUE;

 log.Logit("The reverse DNS test passed.\n\n");

 } else {

 //

 // The host could not be found.

 //

 sprintf(g_LogMsg, "Could not get the host name for the IP address %s!\n", ipAddress);

 log.Logit(g_LogMsg);

 m_strHostName.Format("");

 m_bTestPassed = FALSE;

 log.Logit("\nERROR: The reverse DNS test FAILED!\n\n");

 }

}

/*---

 * PingTest.cpp

 *

 * Description:

 * This tests attempts to ping a host using its IP address. This

 * test makes use of the ICMP protocal to send echo request

 * packets to the host and waits for the echo reply packets.

 * Multiple packets are sent and the average response time is

 * computed.

 *

 * This code was adapted from a sample program provided by the MSDN.

 *

 * Author: John E. Harvey, Jr.

 *

 * Copyright (c) 2000 NxTrend Technology, All rights reserved.

 ---/

#include "stdafx.h"

#ifdef USE_WINSOCK2

 #include <winsock2.h>

#else

 #include <winsock.h>

#endif

#include "sxcanary.h"

#include "PingTest.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

#define ICMP_ECHO 8

#define ICMP_ECHOREPLY 0

#define ICMP_MIN 8 // minimum 8 byte icmp packet (just the header)

//

// The IP header

//

typedef struct iphdr {

 unsigned int headerLength:4; // length of the header

 unsigned int version:4; // Version of IP

 unsigned char typeOfService; // Type of service

 unsigned short totalLength; // total length of the packet

 unsigned short identifier; // unique identifier

 unsigned short flags; // flags

 unsigned char ttl;

 unsigned char proto; // protocol (TCP, UDP etc)

 unsigned short checksum; // IP checksum

 unsigned int sourceIP;

 unsigned int destIP;

}IpHeader;

//

// ICMP header

//

typedef struct _ihdr {

 BYTE i_type;

 BYTE i_code; // type sub code

 USHORT i_cksum;

 USHORT i_id;

 USHORT i_seq;

 // This is not the std header, but we reserve space for time

 ULONG timestamp;

} IcmpHeader;

#define DEF_PACKET_SIZE 992

#define MAX_PACKET 1024

#define xmalloc(s) HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,(s))

#define xfree(p) HeapFree (GetProcessHeap(),0,(p))

//

// Construction/Destruction

//

CPingTest::CPingTest()

{

 m_bTestPassed = FALSE;

}

CPingTest::~CPingTest()

{

}

void CPingTest::RunTest(char *ipAddr) {

 double avgResponseTime = 0.0;

 log.Logit("Starting Ping Test\n");

 sprintf (g_LogMsg, "Pinging the host at IP %s.\n", ipAddr);

 log.Logit(g_LogMsg);

 avgResponseTime = PingHostByIP(ipAddr, 5, 10000, 500);

 if (avgResponseTime < 0) {

 m_bTestPassed = FALSE;

 sprintf(g_LogMsg, "\nERROR: The Ping test FAILED.\n\n");

 log.Logit(g_LogMsg);

 } else {

 m_bTestPassed = TRUE;

 m_dAvgRespTime = avgResponseTime;

 sprintf(g_LogMsg, "The average response time is %f.\n", avgResponseTime);

 log.Logit(g_LogMsg);

 sprintf(g_LogMsg, "The Ping test passed.\n\n");

 log.Logit(g_LogMsg);

 }

}

/**

 * PingHostByIP()

 *

 * Description:

 * Ping a host by using its IP address. The number of packets sent and

 * the timeout are specified by the calling program.

 *

 * Arguments:

 * char *ipAddr - The IP address of the host to ping.

 * unsigned int numPackets - The number of packets to send to the host.

 * unsigned int timeout - The number of milliseconds to wait for a response.

 * unsigned int packetInterval - The number of milliseconds to wait before

 * sending the next packet.

 * int verboseMode - Flag for whether or not to produce output.

 *

 * Return Value:

 * double avgResponseTime - The average time it took to send a packet. A

 * negative value indicates that the host could

 * not be contacted.

 ***/

double CPingTest::PingHostByIP(char *ipAddr,

 unsigned int numPackets,

 unsigned int timeout,

 unsigned int packetInterval) {

 SOCKET sockRaw;

 u_long ioctlArgument = 1L;

 struct sockaddr_in dest,from;

 int bytesRead,datasize;

 int fromlen = sizeof(from);

 char *destIp;

 char *icmpData;

 char *recvbuf;

 unsigned int addr = 0;

 USHORT seqNumber = 0;

 long initialTime = 0L;

 int done = FALSE;

 int totalBytesTransferred = 0;

 unsigned int idex = 0;

 int packetTimeSum = 0;

 double avgResponseTime = 0.0;

 //

 // Create the socket which is a RAW socket.

 //

#ifdef USE_WINSOCK2

 sockRaw = WSASocket (AF_INET,

 SOCK_RAW,

 IPPROTO_ICMP,

 NULL, 0,0);

#else

 sockRaw = socket (AF_INET,

 SOCK_RAW,

 IPPROTO_ICMP);

#endif

 if (sockRaw == INVALID_SOCKET) {

 sprintf(g_LogMsg,"\nERROR: Unable to create the socket: %d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 return (PING_FAILED);

 }

 //

 // Set the socket options.

 //

 //

 // If the timeout stuff actually worked, it would be nice. Since it

 // doesn't, we need to do our own timeout using non-blocking sockets.

 //

 // bytesRead = setsockopt(sockRaw,SOL_SOCKET,SO_RCVTIMEO,(char*)&timeout,

//

sizeof(timeout));

 // if(bytesRead == SOCKET_ERROR) {

// fprintf(stderr,"failed to set recv timeout: %d\n",WSAGetLastError());

// return(PING_FAILED);

 // }

 // timeout = 1000;

 // bytesRead = setsockopt(sockRaw,SOL_SOCKET,SO_SNDTIMEO,(char*)&timeout,

//

sizeof(timeout));

 // if(bytesRead == SOCKET_ERROR) {

// fprintf(stderr,"failed to set send timeout: %d\n",WSAGetLastError());

// return(PING_FAILED);

 // }

 //

 //

 // Set the socket to be non-blocking.

 //

 bytesRead = ioctlsocket (sockRaw, FIONBIO, (u_long FAR *)&ioctlArgument);

 if(bytesRead == SOCKET_ERROR) {

 sprintf(g_LogMsg,"\nERROR: failed to set socket to non-blocking: %d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 return(PING_FAILED);

 }

 memset(&dest,0,sizeof(dest));

 //

 // Take the IP address string and convert it to an actual inet address.

 //

 addr = inet_addr(ipAddr);

 if (addr == INADDR_NONE) {

 sprintf(g_LogMsg, "\nERROR: Unable to resolve %s\n\n",ipAddr);

 log.Logit(g_LogMsg);

 return(PING_FAILED);

 }

 dest.sin_addr.s_addr = addr;

 dest.sin_family = AF_INET;

 //

 // Convert the address to network byte order.

 //

 destIp = inet_ntoa(dest.sin_addr);

 //

 // Calculate the total size of the packet.

 //

 datasize = DEF_PACKET_SIZE;

 datasize += sizeof(IcmpHeader);

 //

 // Make buffers.

 //

 icmpData = (char *)xmalloc(MAX_PACKET);

 recvbuf = (char *)xmalloc(MAX_PACKET);

 if (!icmpData) {

 sprintf(g_LogMsg, "\nERROR: HeapAlloc failed %d\n\n",GetLastError());

 log.Logit(g_LogMsg);

 return(PING_FAILED);

 }

 memset(icmpData,0,MAX_PACKET);

 FillIcmpData(icmpData,datasize);

 //

 // Loop through sending each packet until the requested number

 // of packets have been sent.

 //

 idex = 0;

 while(idex < numPackets) {

 int bytesWritten = 0;

 int packetTime = 0;

 //

 // Fill in the values for the packet header.

 //

 ((IcmpHeader*)icmpData)->i_cksum = 0;

 ((IcmpHeader*)icmpData)->timestamp = GetTickCount();

 ((IcmpHeader*)icmpData)->i_seq = seqNumber++;

 ((IcmpHeader*)icmpData)->i_cksum = CalcChecksum((USHORT*)icmpData, datasize);

 //

 // Loop through sending as much as the system will take until the

 // whole packet is sent. Since this is a non-blocking socket,

 // there is no gaurantee that the entire packet is taken before the

 // sendto function returns.

 //

 done = FALSE;

 totalBytesTransferred = 0;

 initialTime = GetTickCount();

while (!done) {

 //

 // Send the packet to the host.

 //

 bytesWritten = sendto(sockRaw,

 icmpData + totalBytesTransferred,

 datasize - totalBytesTransferred,

 0, (struct sockaddr*)&dest, sizeof(dest));

 if (bytesWritten == SOCKET_ERROR){

 //

 // If the error is that the socket would normally block, then

 // ignore it and try again.

 //

 if (WSAGetLastError() != WSAEWOULDBLOCK) {

 sprintf(g_LogMsg, "\nERROR: PING failed to send the data out on the network! errno=%d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 return(PING_FAILED);

 }

 } else {

 totalBytesTransferred += bytesWritten;

 }

 //

 // Check to see if we have finished sending the whole packet.

 //

 if (totalBytesTransferred >= datasize) {

 done = TRUE;

 }

 //

 // Check for a timeout.

 //

 if ((GetTickCount() - initialTime) > timeout) {

 return (PING_FAILED);

 }

 } // End while sending packet bytes.

 //

 // Receive the echo back from the host.

 //

 //

 // Loop through receiving as much as needed until the

 // whole packet is received. Since this is a non-blocking socket,

 // there is no gaurantee that the entire packet is received before the

 // recvfrom function returns.

 //

 done = FALSE;

 totalBytesTransferred = 0;

 initialTime = GetTickCount();

while (!done) {

 //

 // Receive the reply from the host.

 //

 bytesRead = recvfrom(sockRaw,

 recvbuf + totalBytesTransferred,

 MAX_PACKET,

 0,(struct sockaddr*)&from, &fromlen);

 if (bytesRead == SOCKET_ERROR){

 //

 // If the error is that the socket would normally block, then

 // ignore it and try again.

 //

 if (WSAGetLastError() != WSAEWOULDBLOCK) {

 sprintf(g_LogMsg, "\nERROR: PING failed to receive the data from the network! errno=%d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 return(PING_FAILED);

 }

 } else if (bytesRead == 0) {

 //

 // Connection has been closed. Shouldn't happen, since this is

 // not a stream socket.

 //

 done = TRUE;

 } else {

 totalBytesTransferred += bytesRead;

 }

 //

 // Check to see if we have finished receiving the whole packet.

 //

 if (totalBytesTransferred >= datasize) {

 done = TRUE;

 }

 //

 // Check for a timeout.

 //

 if ((GetTickCount() - initialTime) > timeout) {

 return (PING_FAILED);

 }

 } // End while receiving packet bytes.

 //

 // Decode the return packet.

 //

 packetTime = DecodeResponse(recvbuf, totalBytesTransferred, &from);

 if (packetTime < 0) {

 return (PING_FAILED);

 }

 //

 // Keep track of the time taken for this packet so the average can be

 // computed later.

 //

 packetTimeSum += packetTime;

 //

 // Pause before sending the next packet.

 //

 Sleep(packetInterval);

 //

 // Increment the packet count.

 //

 idex++;

 } // End while looping through packets

 //

 // Close the socket and free resources.

 //

 closesocket(sockRaw);

 //

 // Calculate the average response time.

 //

 if (numPackets == 0) {

 avgResponseTime = 0;

 } else {

 avgResponseTime = (double)packetTimeSum / numPackets;

 }

 return (avgResponseTime);

} // END PingHostByIP

/**

 * DecodeResponse()

 *

 * Description:

 * The response is an IP packet. We must decode the IP header to locate

 * the ICMP data

 *

 * Arguments:

 * char *buf - the packet to decode

 * int bytes - the number of bytes in the packet

 * struct sockaddr_in *from - where the packet came from

 * int verboseMode - Flag indicating whether or not to

 * print output

 *

 * Return Value:

 * int packetTime - the time it took to get the packet back

 ***/

int CPingTest::DecodeResponse(char *buf, int bytes, struct sockaddr_in *from) {

 IpHeader *iphdr;

IcmpHeader *icmphdr;

unsigned short iphdrlen;

 int packetTime = 0;

iphdr = (IpHeader *)buf;

iphdrlen = iphdr->headerLength * 4 ; // number of 32-bit words *4 = bytes

if (bytes < iphdrlen + ICMP_MIN) {

 sprintf(g_LogMsg, "\nERROR: Too few bytes from %s\n\n",inet_ntoa(from->sin_addr));

 log.Logit(g_LogMsg);

}

icmphdr = (IcmpHeader*)(buf + iphdrlen);

if (icmphdr->i_type != ICMP_ECHOREPLY) {

 sprintf(g_LogMsg, "\nERROR: non-echo type %d recvd\n\n",icmphdr->i_type);

 log.Logit(g_LogMsg);

return (PING_FAILED);

}

if (icmphdr->i_id != (USHORT)GetCurrentProcessId()) {

 sprintf(g_LogMsg,"\nERROR: Received someone else's packet!\n\n");

 log.Logit(g_LogMsg);

return (PING_FAILED);

}

 packetTime = GetTickCount() - icmphdr->timestamp;

 sprintf(g_LogMsg, "%d bytes from %s: icmp_seq = %d. time: %d ms \n",bytes, inet_ntoa(from->sin_addr), icmphdr->i_seq, packetTime);

 log.Logit(g_LogMsg);

 return (packetTime);

}

/**

 * CalcChecksum()

 *

 * Description:

 * This function calculates the checksum for the ICMP packet.

 *

 * Arguments:

 * USHORT *buffer - the checksum

 * int size - the size of the checksum

 *

 * Return Value:

 * USHORT - the packet checksum

 ***/

USHORT CPingTest::CalcChecksum(USHORT *buffer, int size) {

 unsigned long cksum=0;

 while(size >1) {

cksum+=*buffer++;

size -=sizeof(USHORT);

 }

 if(size) {

cksum += *(UCHAR*)buffer;

 }

 cksum = (cksum >> 16) + (cksum & 0xffff);

 cksum += (cksum >>16);

 return (USHORT)(~cksum);

}

/**

 * FillIcmpData()

 *

 * Description:

 * Helper function to fill in various stuff in our ICMP request.

 *

 * Arguments:

 * char *icmpData - the packet

 * int datasize - the size of the packet

 *

 * Return Value: none

 ***/

void CPingTest::FillIcmpData(char *icmpData, int datasize){

 IcmpHeader *icmp_hdr;

 char *datapart;

 icmp_hdr = (IcmpHeader*)icmpData;

 icmp_hdr->i_type = ICMP_ECHO;

 icmp_hdr->i_code = 0;

 icmp_hdr->i_id = (USHORT)GetCurrentProcessId();

 icmp_hdr->i_cksum = 0;

 icmp_hdr->i_seq = 0;

 datapart = icmpData + sizeof(IcmpHeader);

 //

 // Place some junk in the buffer.

 //

 memset(datapart,'E', datasize - sizeof(IcmpHeader));

}

double CPingTest::GetAvgRespTime()

{

 return (m_dAvgRespTime);

}

/*---

 * BandwidthTest.cpp

 *

 * Description:

 * This is a bandwidth test. The goal is to obtain a measurement of bandwidth

 * from a single system. The measurement is not very accurate, but it does

 * provide a rough estimate of the bandwidth in Kbps.

 *

 * Author: John E. Harvey, Jr.

 *

 * Copyright (c) 2000 NxTrend Technology, All rights reserved.

 ---/

#include "stdafx.h"

#ifdef USE_WINSOCK2

 #include <winsock2.h>

#else

 #include <winsock.h>

#endif

#include "sxcanary.h"

#include "BandwidthTest.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

#define ICMP_ECHO 8

#define ICMP_ECHOREPLY 0

#define ICMP_MIN 8 // minimum 8 byte icmp packet (just header)

#define DEF_PACKET_SIZE 100

#define MAX_PACKET 1024

//

// The IP header

//

typedef struct iphdr {

 unsigned int h_len:4; // length of the header

 unsigned int version:4; // Version of IP

 unsigned char tos; // Type of service

 unsigned short total_len; // total length of the packet

 unsigned short ident; // unique identifier

 unsigned short frag_and_flags; // flags

 unsigned char ttl;

 unsigned char proto; // protocol (TCP, UDP etc)

 unsigned short checksum; // IP checksum

 unsigned int sourceIP;

 unsigned int destIP;

}IpHeader;

//

// ICMP headers

//

typedef struct _ihdr {

 BYTE i_type;

 BYTE i_code; // type sub code

 USHORT i_cksum;

 USHORT i_id;

 USHORT i_seq;

} IcmpHeader;

#define xmalloc(s) HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,(s))

#define xfree(p) HeapFree (GetProcessHeap(),0,(p))

//

// Construction/Destruction

//

CBandwidthTest::CBandwidthTest()

{

}

CBandwidthTest::~CBandwidthTest()

{

}

double CBandwidthTest::GetBandwidth()

{

 return (m_dBandwidth);

}

/**

 * RunTest()

 *

 * Description:

 * This runs the bandwidth test. The test is a modified PING. Two packets

 * are sent. After the first packet's reply is received back, a clock is

 * started to time how long it takes to receive the second reply. This is

 * so that the delayed response is not also timed. The bandwidth is calculated

 * based on how much data was received and how long it took to receive it.

 * This test is by no means accurate. It is very dependent on the current

 * state of the network as well as the state of the machine this program is

 * running on. Also, faster networks are harder to measure. However, the

 * purpose of this test is to make sure there is enough bandwidth, so it

 * should be good enough.

 *

 * Arguments:

 * char *icmp_data - the packet

 * int datasize - the size of the packet

 *

 * Return Value: none

 ***/

void CBandwidthTest::RunTest(char *ipAddr) {

 SOCKET sockRaw;

 struct sockaddr_in dest,from;

 int datasize;

 int fromlen = sizeof(from);

 char *destIp;

 char *icmpData, *icmpHeaderPkt;

 char *recvbuf;

 unsigned int addr=0;

 USHORT seqNo = 0;

 int bytesRead = 0;

 unsigned int idex = 0;

 LARGE_INTEGER timerFreq; // LARGE_INTEGER is a union used to represent

 LARGE_INTEGER liInitialTime; // a 64 bit int using 2 numbers. It is used

 LARGE_INTEGER liFinishTime; // by the timer.

 hyper highResInitialTime = 0L;

 hyper highResFinishTime = 0L; // hyper is a microsoft 64 bit integer

 hyper elapsedTime = 0L;

 int bytesWritten = 0;

 m_dBandwidth = 0.0;

 liInitialTime.QuadPart = 0;

 liFinishTime.QuadPart = 0;

 //

 // There are two type of timers. Some systems have a high performance

 // timer available. All systems have a millisecond timer available.

 // If the high performance timer is available, use it. The millisecond

 // timer can be used but it is not fast enough, therefore this test can

 // not be run without it.

 //

 QueryPerformanceFrequency(&timerFreq);

 if (timerFreq.QuadPart > 0) {

 sprintf (g_LogMsg, "High Performance Timer is available at %ld ticks/sec.\n", timerFreq);

 log.Logit(g_LogMsg);

 } else {

 log.Logit("High Performance Timer is not available. This test can NOT be run on this PC.\n");

 m_dBandwidth = 0.0;

 m_bTestPassed = FALSE;

 m_nFailureType = BW_NO_TIMER_ERROR;

 return;

 }

 //

 // Create the socket which is a RAW socket.

 //

#ifdef USE_WINSOCK2

 sockRaw = WSASocket (AF_INET,

 SOCK_RAW,

 IPPROTO_ICMP,

 NULL, 0,0);

#else

 sockRaw = socket (AF_INET,

 SOCK_RAW,

 IPPROTO_ICMP);

#endif

 if (sockRaw == INVALID_SOCKET) {

 sprintf(g_LogMsg,"\nERROR: Unable to create the socket: %d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 m_dBandwidth = 0.0;

 m_bTestPassed = FALSE;

 m_nFailureType = BW_SOCKET_ERROR;

 return;

 }

 //

 // Zero out the destination sockaddr struct.

 //

 memset(&dest,0,sizeof(dest));

 //

 // Take the IP address string and convert it to actual inet address.

 //

 addr = inet_addr(ipAddr);

 if (addr == INADDR_NONE) {

 sprintf(g_LogMsg, "\nERROR: Unable to resolve %s\n\n",ipAddr);

 log.Logit(g_LogMsg);

 m_dBandwidth = 0.0;

 m_bTestPassed = FALSE;

 m_nFailureType = BW_NETWORK_ERROR;

 return;

 }

 dest.sin_addr.s_addr = addr;

 dest.sin_family = AF_INET;

 //

 // Convert the address to network byte order.

 //

 destIp = inet_ntoa(dest.sin_addr);

 //

 // Calculate the total size of the packet.

 //

 datasize = DEF_PACKET_SIZE;

 datasize += sizeof(IcmpHeader);

 //

 // Create the buffers.

 //

 recvbuf = (char *)xmalloc(MAX_PACKET);

 icmpHeaderPkt = (char *)xmalloc(ICMP_MIN);

 icmpData = (char *)xmalloc(MAX_PACKET);

 if (!icmpData) {

 sprintf(g_LogMsg, "\nERROR: HeapAlloc failed %d\n\n",GetLastError());

 log.Logit(g_LogMsg);

 m_dBandwidth = 0.0;

 m_bTestPassed = FALSE;

 m_nFailureType = BW_MEMORY_ERROR;

 return;

 }

 //

 // Fill in the packets.

 //

 memset(icmpHeaderPkt, 0, ICMP_MIN);

 FillIcmpData(icmpHeaderPkt, 0);

 memset(icmpData,0,MAX_PACKET);

 FillIcmpData(icmpData,datasize);

 //

 // To test the bandwidth, two packets are sent. The

 // first is an ICMP header only. It is the minimum

 // packet sent (Though it may get padded later). This

 // first packet is a timing packet to signal the timer start.

 // The second packet is larger and is the data that is timed.

 //

 //

 // Fill in the values for the first packet.

 //

 ((IcmpHeader*)icmpHeaderPkt)->i_cksum = 0;

 ((IcmpHeader*)icmpHeaderPkt)->i_seq = 0;

 ((IcmpHeader*)icmpHeaderPkt)->i_cksum = IcmpChecksum((USHORT*)icmpHeaderPkt, ICMP_MIN);

 //

 // Fill in the values for the second packet header.

 //

 ((IcmpHeader*)icmpData)->i_cksum = 0;

 ((IcmpHeader*)icmpData)->i_seq = 1;

 ((IcmpHeader*)icmpData)->i_cksum = IcmpChecksum((USHORT*)icmpData, datasize);

 //

// Send the packets to the host.

//

bytesWritten = sendto(sockRaw,

 icmpHeaderPkt,

 ICMP_MIN,

 0, (struct sockaddr*)&dest, sizeof(dest));

if (bytesWritten == SOCKET_ERROR){

 sprintf(g_LogMsg, "\nERROR: Bandwidth test failed to send the data out on the network! errno=%d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 m_dBandwidth = 0.0;

 m_bTestPassed = FALSE;

 m_nFailureType = BW_SOCKET_ERROR;

return;

 }

 bytesWritten = sendto(sockRaw,

 icmpData,

 datasize,

 0, (struct sockaddr*)&dest, sizeof(dest));

if (bytesWritten == SOCKET_ERROR){

 sprintf(g_LogMsg, "\nERROR: Bandwidth test failed to send the data out on the network! errno=%d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 m_dBandwidth = 0.0;

 m_bTestPassed = FALSE;

 m_nFailureType = BW_SOCKET_ERROR;

return;

 }

 //

// Receive the first reply from the host.

//

 bytesRead = recvfrom(sockRaw,

 recvbuf,

 MAX_PACKET,

 0,(struct sockaddr *)&from, &fromlen);

if (bytesRead == SOCKET_ERROR){

 sprintf(g_LogMsg, "\nERROR: Bandwidth test failed to receive the data from the network! errno=%d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 m_bTestPassed = FALSE;

 m_nFailureType = BW_SOCKET_ERROR;

 return;

 }

 //

 // Start the clock.

 //

 QueryPerformanceCounter(&liInitialTime);

 //

 // Receive the second reply from the host.

 //

 bytesRead = recvfrom(sockRaw,

 recvbuf,

 MAX_PACKET,

 0,(struct sockaddr *)&from, &fromlen);

 //

 // Stop the clock.

 //

 QueryPerformanceCounter(&liFinishTime);

 //

 // Now check for an error. The time needs to be as tight as possible.

 //

 if (bytesRead == SOCKET_ERROR){

 sprintf(g_LogMsg, "\nERROR: Bandwidth test failed to receive the data from the network! errno=%d\n\n",WSAGetLastError());

 log.Logit(g_LogMsg);

 m_bTestPassed = FALSE;

 m_nFailureType = BW_SOCKET_ERROR;

 return;

 }

 //

 // Calculate the bandwidth measurement.

 //

 highResInitialTime = liInitialTime.QuadPart;

 highResFinishTime = liFinishTime.QuadPart;

 if (highResFinishTime > highResInitialTime) {

 elapsedTime = highResFinishTime - highResInitialTime;

 m_dBandwidth = (((bytesRead) * 8.0) / ((highResFinishTime - highResInitialTime) / (timerFreq.QuadPart * 1.0))) / 1000.0;

 //

 // Put the bandwidth in the log file.

 //

 sprintf (g_LogMsg, "Bandwidth is %f Kbps.\n", m_dBandwidth);

 log.Logit(g_LogMsg);

 m_bTestPassed = TRUE;

 m_nFailureType = BW_OK;

 } else {

 m_dBandwidth = 0;

 m_bTestPassed = TRUE;

 m_nFailureType = BW_TOO_FAST;

 }

 //

 // Close the socket.

 //

 closesocket(sockRaw);

}

/**

 * FillIcmpData()

 *

 * Description:

 * Helper function to fill in various stuff in the ICMP request.

 *

 * Arguments:

 * char *icmp_data - the packet

 * int datasize - the size of the packet

 *

 * Return Value: none

 ***/

void CBandwidthTest::FillIcmpData(char *icmpData, int datasize){

 IcmpHeader *icmpHeader;

 char *datapart;

 unsigned long idex;

 icmpHeader = (IcmpHeader*)icmpData;

 icmpHeader->i_type = ICMP_ECHO;

 icmpHeader->i_code = 0;

 icmpHeader->i_id = (USHORT)GetCurrentProcessId();

 icmpHeader->i_cksum = 0;

 icmpHeader->i_seq = 0;

 if (datasize > 0) {

 datapart = icmpData + sizeof(IcmpHeader);

 //

 // Place some junk in the buffer. Make it random junk so

 // that it is less compressible.

 //

 srand((unsigned)time(NULL));

 for (idex = 0; idex < (datasize - sizeof(IcmpHeader)); idex++) {

 *(datapart + idex) = (unsigned char)(rand() % 256);

 }

 }

}

/**

 * IcmpChecksum()

 *

 * Description:

 * This function calculates the checksum for the ICMP packet.

 *

 * Arguments:

 * USHORT *buffer - the checksum

 * int size - the size of the checksum

 *

 * Return Value:

 * USHORT - the packet checksum

 ***/

USHORT CBandwidthTest::IcmpChecksum(USHORT *buffer, int size) {

 unsigned long cksum=0;

 while(size >1) {

cksum+=*buffer++;

size -=sizeof(USHORT);

 }

 if(size) {

cksum += *(UCHAR*)buffer;

 }

 cksum = (cksum >> 16) + (cksum & 0xffff);

 cksum += (cksum >>16);

 return (USHORT)(~cksum);

}

int CBandwidthTest::GetFailureType()

{

 return (m_nFailureType);

}

John E. Harvey, Jr.
33

