High Level Language for Intel IXP1200 Microengines






Submitted By:









Jaideep Chadha

High Level Language for Intel IXP1200 Microengines

Introduction

Intel has developed the First True Network Processor called IXP1200.  The IXP1200 is a highly integrated, hybrid data processor that delivers high-performance parallel processing power and flexibility to a wide variety of networking, communications, and other data-intensive products. The IXP1200 is designed specifically as a data control element for applications that require access to a fast memory subsystem, a fast interface to I/O devices such as network MAC devices, and processing power to perform efficient manipulation on bits, bytes, words, and longword data.  

The IXP1200 has the popular StrongARM Core microprocessor and six independent 32-bit RISC based microengines with hardware multithread support.  Intel has provided a C compiler for the StrongARM Core microprocessor and assembler for the instructions for the microengines. The programs for the microengines have to be written in assembly because of lack of a high-level language support.  

The basic goal of this project is to study the microengines and their instruction set, evaluate various technologies available to develop a high-level language and design a high level language for the microengines. 

IXP1200 Network Processor

The IXP1200 has the popular StrongARM microprocessor and six independent 32-bit RISC data engines with hardware multithread support that combined, provide over 1 giga-operations per second. The Microengines contain the processing power to perform tasks typically reserved for high speed ASICs. In LAN switching applications, the six Microengines are capable of packet forwarding of over 3 million Ethernet packets per second at Layer 3. The StrongARM processor can then be used for more complex tasks such as address learning, building and maintaining forwarding tables, and network management.

The microengines support a 32-bit RISC instruction set tailored to networking and communications applications. The Microengines operate at the IXP1200 Core frequency and all instructions execute in a single cycle. 

The six Microengines each provide the following features:

· Hardware multithread support for four contexts.

· Programmable 1K instruction Control Store (program memory)

· 128 32-bit general purpose registers

· 128 32-bit Transfer Registers (for transferring data into and out of the Microengines)
· Powerful ALU and Shifter capable of performing an ALU and shift operation in a single cycle
Hardware Multithread Support

Hardware multithread support allows four separate programs to share execution time on a Microengine.  When a program is not executing, each program context is preserved in hardware through separate program counters, signal event states, and relatively addressed register set (General Purpose Registers (GPRs) and Transfer Registers) for each program. When a program is put to sleep, a context switch occurs and another program begins executing. The overhead associated with switching contexts is a maximum of one cycle, however a deferred instruction can be used to eliminate this overhead.

Control Store

Each Microengine contains a programmable Control Store that holds the microcode program. The four program threads associated with the Microengine share the Control Store. The Control Stores support 1024 32-bit instructions and must be programmed by the StrongARM Core upon system initialization.

General-Purpose Registers (GPRs)

Each Microengine supports 128 32-bit GPRs. The GPRs can be addressed using relative addressing or absolute addressing. Relative addressing divides the GPRs among the Microengine threads so that each thread has exclusive access to a subset of GPRs (32 maximum). Absolute addressing allows a register to be shared among all the threads within a Microengine.

Transfer Registers

Data is moved into and out of the Microengines via the Transfer Registers. Each Microengine supports 128 32-bit Transfer Registers. This register set is divided into 32 SRAM Read, 32 SRAM Write, 32 SDRAM Read, and 32 SDRAM Write Transfer Registers. Each register subset connects to the other functional units via four separate 32-bit data buses. The SDRAM registers are used to move data between the SDRAM Unit and the Microengine. The SRAM Transfer Registers are used to move data between the SRAM Unit or FBI Unit and the Microengine.  The Transfer Registers can be addressed using relative addressing or absolute addressing. Relative addressing divides the Transfer Registers amongst the Microengine threads so that each thread has exclusive access to a subset of Transfer Registers (8 SRAM read, 8 SDRAM read, 8 SRAM write, 8 SDRAM write). Absolute addressing allows a register to be shared among all the threads within a

Microengine.

ALU and Shifter

The Microengines contain a powerful 32-bit ALU and Shifter capable of performing an ALU and shift operation in a single cycle. The two inputs of the ALU (A and B) can operate on data supplied by the SRAM/FBI read Transfer Registers, SDRAM read Transfer Registers, GPRs, and immediate data within the instruction. The ALU can perform addition, subtraction, and logical operations as well as generate sign, zero, and carry out condition codes based on these operations.

Microengine Instruction Set

The following lists the RISC instructions supported by the Microengines.  Each instruction is executed in a single cycle. 

	Instruction
	Description

	Arithmetic, Rotate, and Shift Instructions
	

	ALU
	Perform an ALU operation.

	ALU_SHF
	Perform an ALU and shift operation.

	DBL_SHIFT
	Concatenate two longwords, shift the result, and save a longword.

	
	

	Branch and Jump Instructions
	

	BR, BR=0, BR!=0, BR>0, BR>=0, BR<0, BR<=0, BR=cout, BR!=cout
	Branch on condition code.

	BR_BSET, BR_BCLR
	Branch on bit set or bit clear.

	BR=BYTE, BR!=BYTE
	Branch on byte equal or not equal.

	BR=CTX, BR!=CTX
	Branch on current context.

	BR_INP_STATE
	Branch on event state (e.g., SRAM done).

	BR_!SIGNAL
	Branch if signal deasserted.

	JUMP
	Jump to label.

	RTN
	Return from a branch or a jump.

	Reference Instructions
	

	CSR
	CSR reference.

	FAST_WR
	Write immediate data to the thd_ done CSRs.

	LOCAL_CSR_RD, LOCAL_CSR_WR
	Read and write CSRs.

	R_FIFO_RD
	Read the receive FIFO.

	PCI_DMA
	Issue a request to the PCI Unit.

	SCRATCH
	Scratchpad reference.

	SDRAM
	SDRAM reference.

	SRAM
	SRAM reference.

	T_FIFO_WR
	Write to the transmit FIFO.

	Local Register Instructions
	

	FIND_BSET, FIND_BSET_WITH_MASK
	Determine position number of first bit set in an arbitrary 16-bit field of a register.

	IMMED
	Load immediate word and sign extend or zero fill with shift.

	IMMED_BO, IMMED_B1, IMMED_B2, IMMED_B3
	Load immediate byte to a field.

	IMMED_WO, IMMED_W1
	Load immediate word to a field.

	LD_FIELD, LD_FIELD_W_CLR
	Load byte(s) into specified field(s).

	LOAD_ADDR
	Load instruction address.

	LOAD_BSET_RESULT1, LOAD_BSET_RESULT2
	Load the result of a find_bset or find_bset_with_mask instruction.

	Miscellaneous Instructions
	

	CTX_ARB
	Perform context swap and wake on event.

	NOP
	Perform no operation.

	HASH1_48, HASH2_48, HASH3_48
	Perform 1, 2, or 3 48-bit hash operations.

	HASH1_64, HASH2_64, HASH3_64
	Perform 1, 2, or 3 64-bit hash operations.


Table 1. Summary of Microengine Instructions

Parser Generators

Different options for available for Compiler design

There are different options available to write the compiler for a high level language. One of the most common one is LEX and YACC. 

A new parser generator available for writing compilers is JavaCC.  It was introduced by Sun Microsystems Inc. and currently is being distributed by Metamata Inc. 

Lex and YACC

Lex helps write programs whose control flow is directed by instances of regular expressions in the input stream. It is well suited for editor-script type transformations and for segmenting input in preparation for a parsing routine. 

Lex source is a table of regular expressions and corresponding program fragments. The table is translated to a program, which reads an input stream, copying it to an output stream and partitioning the input into strings, which match the given expressions. As each such string is recognized the corresponding program fragment is executed. A deterministic finite automaton generated by Lex performs the recognition of the expressions. The program fragments written by the user are executed in the order in which the corresponding regular expressions occur in the input stream. 

Yacc provides a general tool for describing the input to a computer program. The Yacc user specifies the structures of his input, together with code to be invoked as each such structure is recognized. Yacc turns such a specification into a subroutine that handles the input process; frequently, it is convenient and appropriate to have most of the flow of control in the user's application handled by this subroutine.

JavaCC

Java Compiler Compiler (JavaCC) is the most popular parser generator for use with Java applications. A parser generator is a tool that reads a grammar specification and converts it to a Java program that can recognize matches to the grammar. In addition to the parser generator itself, JavaCC provides other standard capabilities related to parser generation such as tree building (via a tool called JJTree included with JavaCC), actions, debugging, etc.

JavaCC is freely downloadable and can be used in most situations at no cost. Individuals own the files generated by JavaCC. Sun and Metamata do not place any restrictions on what you can do with the generated files.
JavaCC does not have any runtime libraries (such as JAR files). The only files needed are those generated by JavaCC. So there are no issues regarding the use of library files. 

Also, JavaCC has been certified to be 100% pure Java. This makes it platform independent, which means that there is no special porting effort needed for different platforms. It has already been tested on 5-6 different platforms.

Preferred Parser Generator and possible solution

For some of the reasons mentioned above, I would like to use JavaCC as the Parser Generator to develop the language for IXP1200.

Input to JavaCC is a grammar file. The grammar file has an extension jj.  Therefore the first thing to be done is to define grammar for the language and generate a grammar file with an extension jj.  

Once that has been done, the file has to be compiled with JavaCC. This would generate a bunch of Java files that implement the parser and lexical analyzer (or token manager).  Supporting java classes can be written to read the input files in the high-level language and then compiled by the lexical analyzer. Once that has been done, the microengine’s assembly can be generated. The assembler can then compile this assembly file and an object file may be generated. 

Proposed design of the High Level Language

Grammar for the High Level Language

Since the preferred parser generator is JavaCC, the high level language would be very similar to java. Following is the grammar for the high level language. 

1. Comments: Both single and multiple line comments would be supported. A single line comment can be made by using “//” and a multiple line comment can be started by “/*” and ended by “*/”.

2. Data types: The basic data types that would be supported in the language are

a. Byte – correspond to 1 byte.

b. Short – correspond to Word or 2 bytes.

c. Integer – correspond to 4 bytes.

d. Long - correspond to 8 bytes.

3. Mathematical Operations: Mathematical operations supported in the high level language would be

= - assignment
+ - sum
- - difference
* - Multiply instruction is not supported in the assembly language for the microengines. But this would be supported in the high level language and then necessary assembly will be generated. The programmer will not have to worry about the details as to how this will be done in assembly.
4. Binary Operations: The binary operations that would be supported in the high level language are

/,  %,  +,  -,

>>, <<,

<, <=, ==, !=, >=, >,

& - AND operator,

 | - OR operator,

 ^,

&& - binary AND operator,

|| - binary OR operator

5. Loops: Following three loops would be supported in the high level language

for 

while

repeat

Break and continue will be supported to break out of the loop or continue within the same loop.

6. Conditions: The standard if{} else{} construct will be supported for conditional statements. Following conditional expressions will be supported 

a. == - equals

b. != - not equals

c. < - less than

d. > - greater than

e. <= - less than equal to

f. >= - greater than equal to.

7. Directives: Following is the list of some general directives.

final – to define constants

import – will work like #include in C. It will be used to include other files and execute code from them.

macro – to define a macro.


8. Reserved Words: Some of the reserved words would be

byte

short,

int,

long,

for,

while,

repeat,

final,

import,

macro

9. Other features:

Some of the other features that would be a part of the high level language are 

a. Constructs and statements for Context switching between multiple threads will be there.  For e.g. there would be statements and reserved words corresponding to the CTX_ARB instruction.
b. Try and provide an abstraction to the hardware level multithread support.  The abstraction would hide the hardware level multithreading and programmers will be able to use multithreading normally and also control the hardware level multithreading.  

c. Try and map the software level multithreading to the hardware level multithreading. This would improve the performance as in hardware level multithreading there will be loss of only single cycle as opposed to software level multithreading.

d. Define a library of general-purpose methods.

· Methods for multi-step processes like microengine initialization.

· Methods to perform specific functions like bit swizzle, IP checksum
· . 

This library will be helpful to the programmers as they will be able to do tasks by invoking just one method instead of remembering all the assembly steps that are involved. 

e. Some special register and variable declarations will also be provided to access special registers like the Thread registers and the SRAM and SDRAM register.

This grammar is the initial grammar proposed for the language.  It will grow and the list of keywords or reserved words will also increase once the implementation begins and language is refined.

Advantages of a such a High Level Language

· High-level language is easier to understand and use.

· Coding for the processor would become simpler.

· Implementing multi-step common processes would be as easy as invoking one method.

· Microengines, which are a powerful part of the IXP1200 processor, could be put to better use with such development environment available.
References

· IXP1200 network processor – Hardware reference manual

· IXP1200 network processor – Software reference manual

· IXP1200 network processor – Programmer’s reference manual

· IXP1200 SDK documentation
High Level Language for Intel IXP1200 Microengines




11

