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Introduciton:

Linux is a phenomenon of the Internet. It was born out of the hobby project of a student and has grown to become more popular than any other freely available operating system.

It’s stable, effective and complete. It’s a fully developed and professionally written operating system used by enthusiasts all over the world. 

 
The roots of Linux are traced back to the origins of Unix TM . In 1969, Ken

Thompson of the Research Group at Bell Laboratories began experimenting on a

Multi-user, multi-tasking operating system using an otherwise idle PDP-7. He was soon

Joined by Dennis Richie and the two of them, along with other members of the

Research Group produced the early versions of Unix TM. Richie was strongly

Influenced by an earlier project, MULTICS and the name Unix TM is itself a pun on the

Name MULTICS. Early versions were written in assembly code, but the third version

Was rewritten in a new programming language, C. C was designed and written by

Richie expressly as a programming language for writing operating systems. This rewrite

Allowed Unix TM to move onto the more powerful PDP-11/45 and 11/70 computers

then being produced by DIGITAL. The rest, as they say, is history. Unix TM moved out

of the laboratory and into mainstream computing and soon most major computer

manufacturers were producing their own versions.

Linux was the solution to a simple need. The only software that Linus Torvalds, Linux's

author and principle maintainer was able to afford was Minix. Minix is a simple, Unix

TM like, operating system widely used as a teaching aid. Linus was less than impressed

with its features, his solution was to write his own software. He took Unix TM as his

model as that was an operating system that he was familiar with in his day to day

student life. He started with an Intel 386 based PC and started to write. Progress was

rapid and, excited by this, Linus offered his efforts to other students via the emerging

world wide computer networks, then mainly used by the academic community. Others

saw the software and started contributing. Much of this new software was itself the

solution to a problem that one of the contributors had. Before long, Linux had become

an operating system. It is important to note that Linux contains no Unix TM code, it is a

rewrite based on published POSIX standards. Linux is built with and uses a lot of the

GNU (GNU's Not Unix TM) software produced by the Free Software Foundation in

Cambridge, Massachusetts.

Linux source code is freely available and it’s well written and looking at Linux is a very good way to learn more about how an operating system functions. 

Networking and Linux:                  

Networking and Linux are terms that are almost synonymous. In a very real sense

Linux is a product of the Internet or World Wide Web (WWW). Its developers and

users use the web to exchange information ideas, code and Linux itself is often used to           

support the networking needs of organizations. 

The TCP/IP protocols were designed to support communications between computers

connected to the ARPANET, an American research network funded by the US

government. The ARPANET pioneered networking concepts such as packet switching

and protocol layering where one protocol uses the services of another. ARPANET

was retired in 1988 but its successors (NSF1 NET and the Internet) have grown even

larger. What is now known as the World Wide Web grew from the ARPANET and is

itself supported by the TCP/IP protocols. Unix TM was extensively used on the

ARPANET and the first released networking version of Unix TM was 4.3 BSD. Linux's

networking implementation is modeled on 4.3 BSD in that it supports BSD sockets

(with some extensions) and the full range of TCP/IP networking. This programming

interface was chosen because of its popularity and to help applications be portable

between Linux and other Unix TM platforms.

1.1 An Overview of TCP/IP Networking

This section gives an overview of the main principles of TCP/IP networking In an IP network every machine is assigned an IP address, this is a 32 bit number that uniquely identifies the machine. The WWW is a very large, and growing, IP network and every machine that is connected to it has to have a unique IP address assigned to it. IPaddresses are represented by four numbers separated by dots, for example,16.42.0.9. This IP address is actually in two parts, the network address and the host address. The sizes of these parts may vary (there are several classes of IPaddresses) but using 16.42.0.9 as an example, the network address would be 16.42 and the host address 0.9. The host address is further subdivided into a subnetwork and a host address. Again, using 16.42.0.9 as an example, the subnetwork address would be 16.42.0 and the host address 16.42.0.9. This subdivision of the IP address allows organizations to subdivide their networks. For example, 16.42 could be the network address of the ACME Computer Company; 16.42.0 would be subnet 0 and 16.42.1 would be subnet 1. These subnets might be in separate buildings, perhaps connected by leased telephone lines or even microwave links .As IP addresses are hard to remenber, there is a machanism to convert network names to IP address.

These names can be statically specified in the /etc/hosts file or Linux can ask a Distributed Name Server (DNS server) to resolve the name for it. In this case the local host must know the IP address of one or more DNS servers and these are specified in

/etc/resolv.conf. 

Whenever we connect to another machine, its IP address is used to exchange data with that machine. This data is contained in IP packets each of which have an IP header containing the IP addresses of the source and destination machine's IP addresses, a checksum and other useful information. The checksum is derived from the data in the IP packet and allows the receiver of IP packets to tell if the IP packet was corrupted during transmission, perhaps by a noisy telephone line. The data transmitted by an application may have been broken down into smaller packets which are easier to handle. The size of the IP data packets varies depending on the connection media; ethernet packets are generally bigger than PPP packets. The destination host must reassemble the data packets before giving the data to the receiving application.  Hosts connected to the same IP subnet can send IP packets directly to each other, all other IP packets will be sent to a special host, a gateway. Gateways (or routers) are connected to more than one IP subnet and they will resend IP packets received on one subnet, but destined for another onwards. For example, if subnets 16.42.1.0 and 16.42.0.0 are connected together by a gateway then any packets sent from subnet 0 to subnet 1 would have to be directed to the gateway so that it could route them. The local host builds up routing tables which allow it to route IP packets to the correct machine. For every IP destination there is an entry in the routing tables which tells Linux which host to send IP packets to in order that they reach their destination. These routing tables are dynamic and change over time as applications use the network and  as the network topology changes.
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Figure1: TCP/IP Protocol Layers

The above figure shows TCP/IP protocol layer. The IP protocol is a transport layer that is used by other protocols to carry their data. The Transmission Control Protocol (TCP) is a reliable end to end protocol that uses IP to transmit and receive its own packets. Just as IP packets have their own header, TCP has its own header. TCP is a connection based protocol where two networking applications are connected by a single, virtual connection even though there may be many subnetworks, gateways and routers between them. TCP reliably transmits and receives data between the two applications and guarantees that there will be no lost or duplicated data. When TCP transmits its packet using IP, the data contained within the IP packet is the TCP packet itself. The IP layer on each communicating host is responsible for transmitting and receiving IP packets. User Datagram Protocol (UDP) also uses the IP layer to transport its packets, unlike TCP, UDP is not a reliable protocol but offers a datagram service. This use of IP by other protocols means that when IP packets are received the receiving IP layer must know which upper protocol layer to give the data contained in this IP packet to. To facilitate this every IP packet header has a byte containing a protocol identifier. When TCP asks the IP layer to transmit an IP packet , that IP packet's header states that it contains a TCP packet. The receiving IP layer uses that protocol identifier to decide which layer to pass the received data up to, in this case the TCP layer. When applications communicate via TCP/IP they must specify not only the target's IP address but also the port address of the application. A port address uniquely identifies an application and standard network applications use standard port addresses; for example, web servers use port 80. These registered port addresses can be seen in /etc/services. 

This layering of protocols does not stop with TCP, UDP and IP. The IP protocol layer itself uses many different physical media to transport IP packets to other IP hosts. These media may themselves add their own protocol headers. One such example is the ethernet layer, but PPP and SLIP are others. An ethernet network allows many hosts to be simultaneously connected to a single physical cable. Every transmitted ethernet frame can be seen by all connected hosts and so every ethernet device has a unique address. Any ethernet frame transmitted to that address will be received by the addressed host but ignored by all the other hosts connected to the network. These unique addresses are built into each ethernet device when they are manufactured and it is usually kept in an SROM2 on the ethernet card. Ethernet addresses are 6 bytes long, an example would be

08-00-2b-00-49-A4. Some ethernet addresses are reserved for multicast purposes and ethernet frames sent with these destination addresses will be received by all hosts on the network. As ethernet frames can carry many different protocols (as data) they, like IP packets, contain a protocol identifier in their headers. This allows the ethernet layer to correctly receive IP packets and to pass them onto the IP layer. 

In order to send an IP packet via a multi-connection protocol such as ethernet, the IP layer must find the ethernet address of the IP host. This is because IP addresses are simply an addressing concept, the ethernet devices themselves have their own

physical addresses. IP addresses on the other hand can be assigned and reassigned by network administrators at will but the network hardware responds only to ethernet frames with its own physical address or to special multicast addresses which all machines must receive. Linux uses the Address Resolution Protocol (or ARP) to allow machines to translate IP addresses into real hardware addresses such as ethernet addresses. A host wishing to know the hardware address associated with an IP address sends an ARP request packet containing the IP address that it wishes translating to all nodes on the network by sending it to a multicast address. The target host that owns the IP address, responds with an ARP reply that contains its physical hardware address. ARP is not just restricted to ethernet devices, it can resolve IP addresses for other physical media, for example FDDI. Those network devices that cannot ARP are marked so that Linux does not attempt to ARP. There is also the reverse function, Reverse ARP or RARP, which translates phsyical network addresses into IP addresses. This is used by gateways, which respond to ARP requests on behalf of IP addresses that are in the remote network.
1.2  The Linux TCP/IP Networking Layers
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Fig 1.2:linux Networking Layers

Just like the network protocols themselves, Figure  1.2 shows that Linux implements the internet protocol address family as a series of connected layers of software. BSD sockets are supported by a generic socket management software concerned only with BSD sockets. Supporting this is the INET socket layer, this manages the communication end points for the IP based protocols TCP and UDP. UDP (User Datagram Protocol) is a connectionless protocol whereas TCP (Transmission Control Protocol) is a reliable end to end protocol. When UDP packets are transmitted, Linux neither knows nor cares if they arrive safely at their destination. TCP packets are numbered and both ends of the TCP connection make sure that transmitted data is received correctly. The IP layer contains code implementing the Internet Protocol. This code prepends IP headers to transmitted data and understands how to route incoming IP packets to either the TCP or UDP layers. Underneath the IP layer, supporting all of Linux's networking are the network devices, for example PPP and ethernet. Network devices do not always represent physical devices; some like the loopback device are purely software devices. Unlike standard Linux devices that are created via the mknod command, network devices appear only if the underlying software has found and initialized them. You will only see /dev/eth0 when you have built a kernel with the appropriate ethernet device driver in it. The ARP protocol sits between the IP layer and the protocols that support ARPing for addresses.

1.3  The BSD Socket Interface

This is a general interface which not only supports various forms of networking but is also an inter-process communications mechanism. A socket describes one end of a communications link, two communicating processes would each have a socket

describing their end of the communication link between them. Sockets could be thought of as a special case of pipes but, unlike pipes, sockets have no limit on the amount of data that they can contain. Linux supports several classes of socket and these are known as address families. This is because each class has its own method of addressing its communications.  

                Linux supports the following socket address families or domains: 

 UNIX 

             Unix domain sockets, 

 INET 

             The Internet address family supports communications via 

             TCP/IP protocols 

 AX25 

             Amateur radio X25 

 IPX 

             Novell IPX 

 APPLETALK 

             Appletalk DDP 

 X25 

             X25

There are several socket types and these represent the type of service that supports the connection. Not all address families support all types of service.

 Linux BSD sockets support a number of socket types: 
Stream

     These sockets provide reliable two way sequenced data streams with a guarantee that data cannot be lost, corrupted or  duplicated in transit. Stream sockets are supported by the TCP protocol of the Internet (INET) address family. 

Datagram

     These sockets also provide two way data transfer but, unlike stream sockets, there is no guarantee that the messages will arrive. Even if they do arrive there is no guarantee that they will arrive in order or even not be duplicated or corrupted.

     This type of socket is supported by the UDP protocol of the Internet address family. 

Raw 

      This allows processes direct (hence ``raw'') access to the underlying protocols. It is, for example, possible to open a raw socket to an ethernet device and see raw IP data traffic. 

Reliable Delivered Messages

     These are very like datagram sockets but the data is guaranteed to arrive. 

Sequenced Packets

     These are like stream sockets except that the data packet sizes are fixed. 

Packet

     This is not a standard BSD socket type, it is a Linux specific extension that allows processes to access packets directly  at the device level. 

Processes that communicate using sockets use a client server model. A server provides a service and clients make use of that service. One example would be a Web Server, which provides web pages and a web client, or browser, which reads those pages. A server using sockets, first creates a socket and then binds a name to it. The format of this name is dependent on the socket's address family and it is, in effect, the local address of the server. The socket's name or address is specified using the sockaddr data structure. An INET socket would have an IP port address bound to it. The registered port numbers can be seen in /etc/services; for example, the port number for a web server is 80. Having bound an address to the socket, the server then listens for incoming connection requests specifying the bound address. The originator of the request, the client, creates a socket and makes a connection request on it, specifying the target address of the server. For an INET socket the address of the server is its IP address and its port number. These incoming requests must find their way up through the various protocol layers and then wait on the server's listening socket. Once the server has received the incoming request it either accepts or rejects it. If the incoming request is to be accepted, the server must create a new socket to accept it on. Once a socket has been used for listening for incoming connection requests it cannot be used to support a connection. With the

connection established both ends are free to send and receive data. Finally, when the connection is no longer needed it can be shutdown. Care is taken to ensure that data packets in transit are correctly dealt with. 

The exact meaning of operations on a BSD socket depends on its underlying address family. Setting up TCP/IP connections is very different from setting up an amateur radio X.25 connection. Like the virtual filesystem, Linux abstracts the socket interface

with the BSD socket layer being concerned with the BSD socket interface to the application programs which is in turn supported by independent address family specific software. At kernel initialization time, the address families built into the kernel

register themselves with the BSD socket interface. Later on, as applications create and use BSD sockets, an association is made between the BSD socket and its supporting address family. This association is made via cross-linking data structures and

tables of address family specific support routines. For example there is an address family specific socket creation routine which the BSD socket interface uses when an application creates a new socket. 

When the kernel is configured, a number of address families and protocols are built into the protocols vector. Each is represented by its name, for example ``INET'' and the address of its initialization routine. When the socket interface is initialized

at boot time each protocol's initialization routine is called. For the socket address families this results in them registering a set of protocol operations. This is a set of routines, each of which performs a  particular operation specific to that address family. The registered protocol operations are kept in the pops vector, a vector of pointers to proto_ops data structures. The proto_ops data structure consists of the address family type and a set of pointers to socket operation routines specific to a particular address family. The pops vector is indexed by the address family identifier, for example the Internet address family

identifier (AF_INET is 2). 

 

Figure 1.3: Linux BSD Socket Data Structures

[image: image3.emf]1.4  The INET Socket Layer

The INET socket layer supports the internet address family which contains the TCP/IP protocols. These protocols are layered, one protocol using the services of another. Linux's TCP/IP code and data structures reflect this layering. Its interface with the BSD socket layer is through the set of Internet address family socket operations which it registers with the BSD socket layer during network initialization. These are kept in the pops vector along with the other registered address families. The BSD socket layer calls the INET layer socket support routines from the registered INET proto_ops data structure to perform work for it. For example a BSD socket create request that gives the address family as INET will use the underlying INET socket create function. The BSD socket layer passes the socket data structure representing the BSD socket to the INET layer in each of these operations. Rather than clutter the BSD socket with TCP/IP specific information, the INET socket layer uses its own data structure, the sock which it links to the BSD socket data structure. This linkage can be seen in Figure  1.3. It links the sock data structure to the BSD socket data structure using the data pointer in the BSD socket. This means that subsequent INET socket calls can easily retrieve the sock data structure. The sock data structure's protocol operations pointer is also set up at creation time and it depends on the protocol requested. If TCP is requested, then the sock data structure's protocol operations pointer will point to the set of TCP protocol operations needed for a TCP connection. 

1.4.1  Creating a BSD Socket

The system call to create a new socket passes identifiers for its address family, socket type and protocol. 
Firstly the requested address family is used to search the pops vector for a matching address family. It may be that a particular address family is implemented as a kernel module and, in this case, the kerneld daemon must load the module before we can

continue. A new socket data structure is allocated to represent the BSD socket. Actually the socket data structure is physically part of the VFS inode data structure and allocating a socket really means allocating a VFS inode. This may seem strange unless you consider that sockets can be operated on in just the same way that ordinary files can. As all files are represented by a VFS inode data structure, then in order to support file operations, BSD sockets must also be represented by  a VFS inode data structure. The newly created BSD socket data structure contains a pointer to the address family specific socket routines and this is set to the proto_ops data structure retrieved from the pops vector. Its type is set to the sccket type requested; one of SOCK_STREAM, SOCK_DGRAM and so on. The address family specific creation routine is called using the address kept  in the proto_ops data structure.  A free file descriptor is allocated from the current processes fd vector and the file data structure that it points at is initialized. This includes setting the file operations pointer to point to the set of BSD socket file operations supported by the BSD socket interface. Any future operations will be directed to the socket interface and it will in turn pass them to the supporting address family by calling its address family operation routines. 

1.4.2  Binding an Address to an INET BSD Socket

In order to be able to listen for incoming internet connection requests, each server must create an INET BSD socket and bind its address to it. The bind operation is mostly handled within the INET socket layer with some support from the underlying TCP

and UDP protocol layers. The socket having an address bound to cannot be being used for any other communication. This means that the socket's state must be TCP_CLOSE. The sockaddr pass to the bind operation contains the IP address to be bound to and, optionally, a port number. Normally the IP address bound to would be one that has been assigned to a network device that supports the INET address family and whose interface is up and able to be used. You can see which network  interfaces are currently active in the system by using the ifconfig command. The IP address may also be the IP broadcast

address of either all 1's or all 0's. These are special addresses that mean ``send to everybody''3. The IP address could also be specified as any IP address if the machine is acting as a transparent proxy or firewall, but only processes with superuser

privileges can bind to any IP address. The IP address bound to is saved in the sock data structure in the recv_addr and saddr fields. These are used in hash lookups and as the sending IP address respectively. The port number is optional and if it is not specified the supporting network is asked for a free one. By convention, port numbers less than 1024 cannot be used by processes without superuser privileges. If the underlying network does allocate a port number it always allocates ones greater than 1024. 

As packets are being received by the underlying network devices they must be routed to the correct INET and BSD sockets so that they can be processed. For this reason UDP and TCP maintain hash tables which are used to lookup the addresses within incoming IP messages and direct them to the correct socket/sock pair. TCP is a connection oriented protocol and so there is more information involved in processing TCP packets than there is in processing UDP packets. 

UDP maintains a hash table of allocated UDP ports, the udp_hash table. This consists of pointers to sock data structures indexed by a hash function based on the port number. As the UDP hash table is much smaller than the number of permissible port numbers (udp_hash is only 128 or UDP_HTABLE_SIZE entries long) some entries in the table point to a chain of sock  data structures linked together using each sock's next pointer. 

TCP is much more complex as it maintains several hash tables. However, TCP does not actually add the binding sock data structure into its hash tables during the bind operation, it merely checks that the port number requested is not currently being used. The sock data structure is added to TCP's hash tables during the listen operation. 

1.4.3  Making a Connection on an INET BSD Socket

Once a socket has been created and, provided it has not been used to listen for inbound connection requests, it can be used to make outbound connection requests. For connectionless protocols like UDP this socket operation does not do a whole lot but

for connection orientated protocols like TCP it involves building a virtual circuit between two applications. An outbound connection can only be made on an INET BSD socket that is in the right state; that is to say one that does not already have a connection established and one that is not being used for listening for inbound connections. This means that the BSD socket data structure must be in state SS_UNCONNECTED. The UDP protocol does not establish virtual connections between applications, any messages sent are datagrams, one off messages that may or may not reach their destinations. It does, however, support the connect BSD socket operation. A connection operation on a UDP INET BSD socket simply sets up the addresses of the remote application; its IP address and its IP port number. Additionally it sets up a cache of the routing table entry so that UDP packets sent on this BSD socket do not need to check the routing database again (unless this route becomes invalid). The cached routing information is pointed at from the ip_route_cache pointer in the INET sock data structure. If no addressing information is given, this cached routing and IP addressing information will be automatically be used for messages sent using this BSD socket. UDP moves the sock's state to TCP_ESTABLISHED. 

For a connect operation on a TCP BSD socket, TCP must build a TCP message containing the connection information and send it to IP destination given. The TCP message contains information about the connection, a unique starting message

sequence number, the maximum sized message that can be managed by the initiating host, the transmit and receive window size and so on. Within TCP all messages are numbered and the initial sequence number is used as the first message number. Linux

chooses a reasonably random value to avoid malicious protocol attacks. Every message transmitted by one end of the TCP connection and successfully received by the other is acknowledged to say that it arrived successfully and uncorrupted. Unacknowledged messages will be retransmitted. The transmit and receive window size is the number of outstanding messages that there can be without an acknowledgement being sent. The maximum message size is based on the network device that is being used at the initiating end of the request. If the receiving end's network device supports smaller maximum message sizes then the connection will use the minimum of the two. The application making the outbound TCP connection request must now wait for a response from the target application to accept or reject the connection request. As the TCP sock is now expecting incoming messages, it is added to the tcp_listening_hash so that incoming TCP messages can be directed to this sock data structure. TCP also starts timers so that the outbound connection request can be timed out if the target application does

not respond to the request. 

1.4.4  Listening on an INET BSD Socket

Once a socket has had an address bound to it, it may listen for incoming connection requests specifying the bound addresses. A network application can listen on a socket without first binding an address to it; in this case the INET socket layer finds an

unused port number (for this protocol) and automatically binds it to the socket. The listen socket function moves the socket into state TCP_LISTEN and does any network specific work needed to allow incoming connections. 

For UDP sockets, changing the socket's state is enough but TCP now adds the socket's sock data structure into two hash tables as it is now active. These are the tcp_bound_hash table and the tcp_listening_hash. Both are indexed via a hash

function based on the IP port number. 

Whenever an incoming TCP connection request is received for an active listening socket, TCP builds a new sock data structure to represent it. This sock data structure will become the bottom half of the TCP connection when it is eventually accepted. It also clones the incoming sk_buff containing the connection request and queues it onto the receive_queue for the listening sock data structure. The clone sk_buff contains a pointer to the newly created sock data structure. 

1.4.5  Accepting Connection Requests

UDP does not support the concept of connections, accepting INET socket connection requests only applies to the TCP protocol as an accept operation on a listening socket causes a new socket data structure to be cloned from the original listening socket. The accept operation is then passed to the supporting protocol layer, in this case INET to accept any incoming connection requests. The INET protocol layer will fail the accept operation if the underlying protocol, say UDP, does not support connections. Otherwise the accept operation is passed through to the real protocol, in this case TCP. The accept

operation can be either blocking or non-blocking. In the non-blocking case if there are no incoming connections to accept, the accept operation will fail and the newly created socket data structure will be thrown away. In the blocking case the network application performing the accept operation will be added to a wait queue and then suspended until a TCP connection request is received. Once a connection request has been received the sk_buff containing the request is discarded and the sock data structure is returned to the INET socket layer where it is linked to the new socket data structure created earlier. The file descriptor (fd) number of the new socket is returned to the network application, and the application can then use that file descriptor in socket operations on the newly created INET BSD socket. 

1.5  The IP Layer

1.5.1  Socket Buffers

One of the problems of having many layers of network protocols, each one using the services of another, is that each protocol needs to add protocol headers and tails to data as it is transmitted and to remove them as it processes received data. This make passing data buffers between the protocols difficult as each layer needs to find where its particular protocol headers and tails are. One solution is to copy buffers at each layer but that would be inefficient. Instead, Linux uses socket buffers or sk_buffs to pass data between the protocol layers and the network device drivers. sk_buffs contain pointer and length

fields that allow each protocol layer to manipulate the application data via standard functions or ``methods''. 

[image: image4.emf]
Figure 1.4: The Socket Buffer (sk_buff)

Figure  1.4 shows the sk_buff data structure; each sk_buff has a block of data associated with it. 

The sk_buff has four data pointers, which are used to manipulate and manage the socket buffer's data: 

head   points to the start of the data area in memory. This is fixed when the sk_buff and                    its associated data block is allocated,

data points at the current start of the protocol data. This pointer varies depending on the protocol layer that currently owns  the sk_buff, 

tail points at the current end of the protocol data. Again, this pointer varies depending on the owning protocol layer, 

end points at the end of the data area in memory. This is fixed when the sk_buff is allocated. 

There are two, length fields len and truesize, which describe the length of the current protocol packet and the total size of the data buffer respectively.

             The sk_buff handling code provides standard mechanisms for adding and removing protocol  headers and tails to the application data. These safely manipulate the data, tail and len fields in the sk_buff: 

push This moves the data pointer towards the start of the data area and increments the len field. This is used when adding  data or protocol headers to the start of the data to be transmitted, 

pull This moves the data pointer away from the start, towards the end of the data area and decrements the len field. This is used when removing data or protocol headers from the start of the data that has been received, 

put This moves the tail pointer towards the end of the data area and increments the len field. This is used when adding data or protocol information to the end of the data to be transmitted, 

trim This moves the tail pointer towards the start of the data area and decrements the len field. This is used when  removing data or protocol tails from the received packet. 

The sk_buff data structure also contains pointers that are used as it is stored in doubly linked circular lists of sk_buff's during processing. There are generic sk_buff routines for adding sk_buffs to the front and back of these lists and for removing them. 

1.5.2  Receiving IP Packets

Linux's network drivers built are into the kernel and initialized. This results in a series of device data structures linked together in the dev_base list. Each device data structure describes its device and provides a set of callback routines that the network protocol layers call when they need the network driver to perform work. These functions are mostly concerned with transmitting data and with the network device's addresses. When a network device receives packets from its network it must convert the received data into sk_buff data structures. These received sk_buff's are added onto the backlog queue by the network drivers as they are received. If the backlog queue grows too large, then the received sk_buff's are discarded. The network bottom half is flagged as ready to run as there is work to do. When the network bottom half handler is run by the scheduler it processes any network packets waiting to be transmitted  before processing the backlog queue of sk_buff's determining which protocol layer to pass the received packets to. 

As the Linux networking layers were initialized, each protocol registered itself by adding a packet_type data structure onto either the ptype_all list or into the ptype_base hash table. The packet_type data structure contains the protocol type, a pointer to a network device, a pointer to the protocol's receive data processing routine and, finally, a pointer to the next packet_type data structure in the list or hash chain. The ptype_all chain is used to snoop all packets being received from any network device and is not normally used. The ptype_base hash table is hashed by protocol identifier and is used to decide which protocol should receive the incoming network packet. The network bottom half matches the protocol types of incoming sk_buff's against one or more of the packet_type entries in either table. The protocol may match more than one entry, for example when snooping all network traffic, and in this case the sk_buff will be cloned. The sk_buff is passed to the matching protocol's handling routine. 

1.5.3  Sending IP Packets

Packets are transmitted by applications exchanging data or else they are generated by the network protocols as they support established connections or connections being established. Whichever way the data is generated, an sk_buff is built to contain the data and various headers are added by the protocol layers as it passes through them. 

The sk_buff needs to be passed to a network device to be transmitted. First though the protocol, for example IP, needs to  decide which network device to use. This depends on the best route for the packet. For computers connected by modem to a single network, say via the PPP protocol, the routing choice is easy. The packet should either be sent to the local host via the loopback device or to the gateway at the end of the PPP modem connection. For computers connected to an ethernet the choices are harder as there are many computers connected to the network. 

For every IP packet transmitted, IP uses the routing tables to resolve the route for the destination IP address. Each IP destination successfully looked up in the routing tables returns a rtable  data structure describing the route to use. This includes the source IP address to use, the address of the network device data structure and, sometimes, a prebuilt hardware header. This hardware header is network device specific and contains the source and destination physical addresses and other media specific information. If the network device is an ethernet device, the hardware header would be as shown in Figure  10.1 and the source and destination addresses would be physical ethernet addresses. The hardware header is cached with the route because it must be appended to each IP packet transmitted on this route and constructing it takes time. The hardware header may contain physical addresses that have to be resolved using the ARP protocol. In this case the outgoing packet is stalled until the address has been resolved. Once it has been resolved and the hardware header built, the hardware header is cached so that future IP packets sent using this interface do not have to ARP. 

1.5.4  Data Fragmentation

Every network device has a maximum packet size and it cannot transmit or receive a data packet bigger than this. The IP protocol allows for this and will fragment data into smaller units to fit into the packet size that the network device can handle. The IP protocol header includes a fragment field which contains a flag and the fragment offset. 

When an IP packet is ready to be transmitted,  IP finds the network device to send the IP packet out on. This device is found from the IP routing tables. Each device has a

field describing its maximum transfer unit (in bytes), this is the mtu field. If the device's mtu is smaller than the packet size of the IP packet that is waiting to be transmitted, then the IP packet must be broken down into smaller (mtu sized) fragments. Each

fragment is represented by an sk_buff; its IP header marked to show that it is a fragment and what offset into the data this IP packet contains. The last packet is marked as being the last IP fragment. If, during the fragmentation, IP cannot allocate an sk_buff, the transmit will fail. 

Receiving IP fragments is a little more difficult than sending them because the IP fragments can be received in any order and they must all be received before they can be reassembled. Each time an IP packet is received it is checked to see if it is an IP

fragment. The first time that the fragment of a message is received, IP creates a new ipq data structure, and this is linked into the ipqueue list of IP fragments awaiting recombination. As more IP fragments are received, the correct ipq data structure is

found and a new ipfrag data structure is created to describe this fragment. Each ipq data structure uniquely describes a fragmented IP receive frame with its source and destination IP addresses, the upper layer protocol identifier and the identifier for this IP frame. When all of the fragments have been received, they are combined into a single sk_buff and passed up to the next protocol level to be processed. Each ipq contains a timer that is restarted each time a valid fragment is received. If this timer expires, the ipq data structure and its ipfrag's are dismantled and the message is presumed to have been lost in transit. It is then up to the higher level protocols to retransmit the message. 

1.6  The Address Resolution Protocol (ARP)

The Address Resolution Protocol's role is to provide translations of IP addresses into physical hardware addresses such as ethernet addresses. IP needs this translation just before it passes the data (in the form of an sk_buff) to the device driver for

transmission. It performs various checks to see if this device needs a hardware header and, if it does, if the hardware header for the packet needs to be rebuilt. Linux caches hardware headers to avoid frequent rebuilding of them. If the hardware header needs

rebuilding, it calls the device specific hardware header rebuilding routine. All ethernet devices use the same generic header rebuilding routine  which in turn uses the ARP services to translate the destination IP address into a physical address. 

The ARP protocol itself is very simple and consists of two message types, an ARP request and an ARP reply. The ARP request contains the IP address that needs translating and the reply (hopefully) contains the translated IP address, the hardware address. The ARP request is broadcast to all hosts connected to the network, so, for an ethernet network, all of the machines connected to the ethernet will see the ARP request. The machine that owns the IP address in the request will respond to the ARP request with an ARP reply containing its own physical address. 

The ARP protocol layer in Linux is built around a table of arp_table data structures which each describe an IP to physical address translation. These entries are created as IP addresses need to be translated and removed as they become stale over time. 

Each arp_table data structure has the following fields: 

 last used 

                the time that this ARP entry was last used, 

 last updated 

                the time that this ARP entry was last updated, 

 flags 

                these describe this entry's state, if it is complete and so on, 

 IP address 

                The IP address that this entry describes 

 hardware address 

                The translated hardware address 

 hardware header 

                This is a pointer to a cached hardware header, 

 timer 

                This is a timer_list entry used to time out ARP requests 

                that do not get a response, 

 retries 

                The number of times that this ARP request has been 

                retried, 

 sk_buff queue 

                List of sk_buff entries waiting for this IP address 

                to be resolved

The ARP table consists of a table of pointers (the arp_tables vector) to chains of arp_table entries. The entries are cached to speed up access to them, each entry is found by taking the last two bytes of its IP address to generate an index into the table and then following the chain of entries until the correct one is found. Linux also caches prebuilt hardware headers off the arp_table entries in the form of hh_cache data structures. 

When an IP address translation is requested and there is no corresponding arp_table entry, ARP must send an ARP request message. It creates a new arp_table entry in the table and queues the sk_buff containing the network packet that needs the address translation on the sk_buff queue of the new entry. It sends out an ARP request and sets the ARP expiry timer running. If there is no response then ARP will retry the request a number of times and if there is still no response ARP will remove the arp_table entry. Any sk_buff data structures queued waiting for the IP address to be translated will be notified and it is up to the protocol layer that is transmitting them to cope with this failure. UDP does not care about lost packets but TCP will attempt to retransmit on an established TCP link. If the owner of the IP address responds with its hardware address,

the arp_table entry is marked as complete and any queued sk_buff's will be removed from the queue and will go on to be transmitted. The hardware address is written into the hardware header of each sk_buff. 

The ARP protocol layer must also respond to ARP requests that specfy its IP address. It registers its protocol type (ETH_P_ARP), generating a packet_type data structure. This means that it will be passed all ARP packets that are received by the network devices. As well as ARP replies, this includes ARP requests. It generates an ARP reply using the hardware address kept in the receiving device's device data structure. 

Network topologies can change over time and IP addresses can be reassigned to different hardware addresses. For example, some dial up services assign an IP address as each connection is established. In order that the ARP table contains up to date entries, ARP runs a periodic timer which looks through all of the arp_table entries to see which have timed out. It is very careful not to remove entries that contain one or more cached hardware headers. Removing these entries is dangerous as other data structures rely on them. Some arp_table entries are permanent and these are marked so that they will not be

deallocated. The ARP table cannot be allowed to grow too large; each arp_table entry consumes some kernel memory. Whenever the a new entry needs to be allocated and the ARP table has reached its maximum size the table is pruned by searching out the oldest entries and removing them. 

1.7  IP Routing

The IP routing function determines where to send IP packets destined for a particular IP address. There are many choices to be made when transmitting IP packets. Can the destination be reached at all? If it can be reached, which network device should be used to transmit it? If there is more than one network device that could be used to reach the destination, which is the better one? The IP routing database maintains information that gives answers to these questions. There are two databases, the most important being the Forwarding Information Database. This is an exhaustive list of known IP destinations and their best routes. A smaller and much faster database, the route cache is used for quick lookups of routes for IP destinations. Like all caches, it must contain only the frequently accessed routes; its contents are derived from the Forwarding Information Database.

Routes are added and deleted via IOCTL requests to the BSD socket interface. These are passed onto the protocol to process. The INET protocol layer only allows processes with superuser privileges to add and delete IP routes. These routes can be fixed or they can be dynamic and change over time. Most systems use fixed routes unless they themselves are routers. Routers run routing protocols which constantly check on the availability of routes to all known IP destinations. Systems that are not routers are known as end systems. The routing protocols are implemented as daemons, for example GATED, and they also

add and delete routes via the IOCTL BSD socket interface. 

1.7.1  The Route Cache

Whenever an IP route is looked up, the route cache is first checked for a matching route. If there is no matching route in the route cache the Forwarding Information Database is searched for a route. If no route can be found there, the IP packet will fail

to be sent and the application notified. If a route is in the Forwarding Information Database and not in the route cache, then a new entry is generated and added into the route cache for this route. The route cache is a table (ip_rt_hash_table) that contains pointers to chains of rtable data structures. The index into the route table is a hash function based on the least significant two bytes of the IP address. These are the two bytes most likely to be different between destinations and provide the best spread of hash values. Each rtable entry contains information about the route; the destination IP address, the network device to use to reach that IP address, the maximum size of message that can be used and so on. It also has a reference count, a usage count and a timestamp of the last time that they were used (in jiffies). The reference count is incremented each time the route is used to show the number of network connections using this route. It is decremented as applications stop using the route. The usage count is incremented each time the route is looked up and is used to order the rtable entry in its chain of hash entries. The last used timestamp for all of the entries in the route cache is periodically checked to see if the rtable is too old . If the route has not been recently used, it is discarded from the route cache. If routes are kept in the route cache they are ordered so that the most used entries are at the front of the hash chains. This means that finding them will be quicker when routes are looked up. 

1.7.2  The Forwarding Information Database
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Figure 1.5: The Forwarding Information Database

The forwarding information database (shown in Figure  1.5) contains IP's view of the routes available to this system at this time. It is quite a complicated data structure and, although it is reasonably efficiently arranged, it is not a quick database to consult. In particular it would be very slow to look up destinations in this database for every IP packet transmitted. This is the reason that the route cache exists: to speed up IP packet transmission using known good routes. The route cache is derived from the forwarding database and represents its commonly used entries. 

Each IP subnet is represented by a fib_zone data structure. All of these are pointed at from the fib_zones hash table. The hash index is derived from the IP subnet mask. All routes to the same subnet are described by pairs of fib_node and fib_info data structures queued onto the fz_list of each fib_zone data structure. If the number of routes in this subnet grows large, a hash table is generated to make finding the fib_node data structures easier. 

Several routes may exist to the same IP subnet and these routes can go through one of several gateways. The IP routing layer does not allow more than one route to a subnet using the same gateway. In other words, if there are several routes to a subnet, then each route is guaranteed to use a different gateway. Associated with each route is its metric. This is a measure of how advantageous this route is. A route's metric is, essentially, the number of IP subnets that it must hop across before it reaches the destination subnet. The higher the metric, the worse the route.

Processes

How  Linux kernel creates, manages and deletes the processes in the system: 

Processes carry out tasks within the operating system.They can be thought of as a computer program in action.

Linux is a multiprocessing operating system. Processes are separate tasks each with their own rights and responsibilities. If one process crashes it will not cause another process in the system to crash. Each individual process runs in its own virtual address space and is not capable of interacting with another process except through secure, kernel managed mechanisms.

During the lifetime of a process it will use many system resources, such as the CPU

, the system's physical memory, files within the filesystems ,the physical devices in the system,etc., Linux must keep track of the process itself and of the system resources that it has so that it can manage it and the other processes in the system fairly. So that each has a fair share of the system’s resources and does not monopolize any them.

The one CPU being the most precious, and  Linux being  a multiprocessing operating system, its objective is to have a process running on each CPU in the system at all times, to maximize CPU utilization. If there are more processes than CPUs (and there usually are), the rest of the processes must wait before a CPU becomes free until they can be run. Multiprocessing is a simple idea; a process is executed until it must wait, usually for some system resource; when it has this resource, it may run again. In a uniprocessing system, for example DOS, the CPU would simply sit idle and the waiting time would be wasted. In a multiprocessing system many processes are kept in memory at the same time. Whenever a process has to wait the operating system takes the CPU away from that process and gives it to another, more deserving process. It is the scheduler which chooses which is the most appropriate process to run next and Linux uses a number of scheduling strategies to ensure fairness. 

Linux supports a number of different executable file formats, ELF is one, Java is

another and these must be managed transparently as must the processes use of the

system's shared libraries.

Linux supports a full and high quality implementation of the TCP/IP networking protocols. With a network interface card or a modem and PPP, one can connect a machine to a local area network or the Internet and have access to many additional services and network utilities. Linux provides two methods of establishing host-network services. Servers can either run stand-alone or under the control of a program called inetd. Heavily used services will usually run stand-alone. This means the service does all the management and listening on a socket or port. The most common stand-alone services are inetd, syslogd, portmapper, named, and routed. The file /etc/rc.d/rc.inet2 configures the stand-alone services. Here is an example of /etc/rc.d/rc.inet2

2.Commands to install Linux networking capabilities:

Following are some of the basic Linux commands useful to install linux networking capabilities:

2.1Network Configuration

The most fundamental commands are those used to configure network interfaces and policies. Most of these commands are used by shell scripts during boot to set up networking automatically.

Linux recognizes network interfaces on bootup. Each interface is automatically assigned a label - like ``lo0'' for the loopback interface with which the machine talks to itself, ``eth3'' for the fourth internet card installed on the system (since numbering starts with zero), and ``ax0'' for the first Ham radio packet interface present.

These commands are presented in the order they would typically be used while setting up networking.

ifport(8)

If some of the network cards support multiple transceiver types, then you start configuration by using this command to specify which transceiver type you will use.

ifconfig(8)

This command is used to configure network interfaces, or to display their current configuration. In addition to activating and deactivating interfaces with the up and down settings, this command is necessary for setting an interface's address information. An IP interface, for example, needs to be told both its own address and the network mask and broadcast address of its subnet.

route(8)

Once a machines  interfaces are configured, it can receive packets from the network. Deciding where any outgoing packets be sent is called ``routing,'' and it is made by consulting the system's routing table. The destination address of every outgoing packet is checked against every line of this table; if a matching line is found then the packet is sent out the interface listed on that line of the table; if no match is found the system returns the error ``Unreachable host.'' The route command is the tool used to display or modify the routing table.(Routing is discussed in the first section in detail)

usernetctl(1)

Command used to bring certain interfaces up or down by the user alone, by himself. It is like an emasculated version of ifconfig, that can only turn the interface on or off.

ipfwadm(8)

If the machine is configured to act as a firewall, one  can set up: IP accounting; IP input, forwarding, and output filters; and IP masquerading. This is the command used to perform these functions. It is also used to display the contents of the filter tables.

arp(8)

When the system transmits a packet, it has to send it to a particular physical-layer address. When one sends an IP packet over Ethernet, it will normally be sent to the Ethernet address of another machine directly connected to it. The ARP (Address Resolution Protocol) table normally uses an automatic mechanism to find what physical addresses go with which IP addresses. The arp command displays this table, and can be used to modify it.

2.2TCP/IP Testing and Troubleshooting

ping(8)

The IP protocol includes control messages called ICMP packets. One type of ICMP packet is called an ``echo request,'' and the IP rules require its recipient to send back an ``echo reply.'' These are incredibly useful because one can determine (1) whether the remote host is up and talking to the network, (2) the time required for a packet to make a round-trip to the host, and (3) (by sending a few dozen echo requests) what fraction of the packets sent between the hosts get lost somewhere along the way.

The ping command sends echo requests to the host one specifies on the command line, and lists the responses received their round trip time. When we terminate ping it summarizes the results, giving the average round trip time and the percent packet loss. This command is used constantly to determine whether there is a problem with the network connection between two hosts.

traceroute(8)

While ping gives information about the performance of the network path between two hosts, traceroute will actually show the route. It attempts to list the series of hosts through which your packets travel on their way to a given destination.

host(1)

nslookup(8)

dig(1)
People like names rather than numbers; ``www.linux.org'' is easier to remember than ``198.182.196.51.'' So the Internet includes a huge distributed database called the Domain Name Service that converts text host names into numeric IP addresses. Basically, the last components of the name are used to identify the server responsible for interpreting the first parts of the name. So a query of ``elvis.mit.edu'' gets sent to a top-level DNS server responsible for ``edu'', which passes the request on to a DNS server at MIT, which knows which machine they call ``elvis''.

These commands all perform a DNS query for you. All three can do simple queries (host name to address), reverse queries (address to host name), and more exotic operations (like listing all of the hosts in a domain). The dig command is often considered to give the most behind-the-scenes information for those interested, while host has the simplest default output.

2.3Network Clients and Services

The TCP wrappers  package handles most incoming connections. In the old days, the FTP daemon (for instance) would run when the system started up, grab port 21, and spend the rest of its life listening for and servicing incoming FTP requests. But the fact that each service made its own decision about which connections to accept made the creation and enforcement of a uniform access policy difficult or impossible.

These days our system instead contains TCP wrappers, which monitor all of the incoming ports by themselves. When a connection is made the wrappers decide whether access will be permitted, and only when a connection is approved is the daemon run to respond to it. The access rules are usually found in the configuration files /etc/hosts.allow and /etc/hosts.deny.

inetd(8)

tcpd(8)

TCP wrapping is subdivided into two jobs. The inetd daemon is usually run when networking is activated and grabs control of the ports for FTP and telnet and whatever. The /etc/inetd.conf file tells it what ports to monitor, what service is offered on each port, and what program to run when a connection is detected. The program that inetd is usually instructed to run is tcpd, which checks the /etc/hosts.allow and /etc/hosts.deny files to see if the connection should be permitted and if so starts or alerts the appropriate daemon.

tcpdchk(8)
tcpdmatch(8)

These small utility programs let you check your /etc/hosts.allow and /etc/hosts.deny files. The tcpdchk command scans the files and reports any errors or omissions it finds. The tcpdmatch utility lets you specify a hypothetical daemon/client pair and predicts, given your setup files, whether the connection would be accepted.

This table offers a summary of the most common services, and the Linux daemons responsible for them, which are mediated by the TCP wrappers:

Port Client Server Description

21 ftp in.ftpd File transfer protocol - The standard protocol for transferring files across the Internet, whether from password-protected user accounts or publicly available ``anonymous'' servers.

23 telnet in.telnetd Telnet remote terminal protocol - The standard protocol for logging in to a remote machine.

37 rdate in.timed System time - Responds with the time according to the system clock.

67 bootptest bootpd Internet Bootstrap Protocol - If you want to control IP address assignment from a central location, you can have machines broadcast a query upon booting that a nearby bootp server must respond to with the IP address the machine should use, and possibly the name of a configuration file to retrieve through tftp.

69 tftp in.tftpd Trivial file transfer protocol - A very simple file transfer protocol that lets any host download any publicly readable file in its directory (which is normally /tftpboot). If you use this make sure to protect it with TCP wrapper. This is normally used to provide configuration files to machines initializing themselves with bootp.

70 gopher gn Gopher - A hierarchical information browser that was in vogue before the introduction of HTML.

79 finger in.fingerd User information lookup - Takes a username (or, for some servers, part of a user's real name) and responds with basic statistics including time of last login and whether the user has read his mail. Access to service is often restricted through the TCP wrappers since public knowledge about users reduces security.

110 (various) ipop3d PostOffice V.3 - A protocol for remote mail retrieval.

113 (various) in.identd User Authentication - An important service that, given the number of an active IP port on a host, returns the username of the user who is employing that port. Used in many access and security related applications.

119 nntp in.nntpd Net news (Usenet) transfer protocol - The protocol that lets a client remotely query a news server.

512 rexec in.rexecd Remote command execution - Allows a user to execute a command on a remote system. This and the next two services permit a common authentication shortcut, where a user may create an .rhosts file in his home directory that lists login names and machines which can access his account without having to enter a password. Whether to enable these services is an important security issue.

513 rlogin in.rlogind Remote login - Permits login from a remote system (see rexec above).

514 rsh in.rshd Remote shell - Gives a user a command prompt on a remote machine (see rexec above).

517 talk in.talkd (BSD) Talk to another user - Allows two users to type live messages back and forth to each other over the Internet. Popular for dating couples at different colleges or institutions.

540 uucp uucico Unix-to-Unix Copy protocol - An Internet incarnation of the ancient and venerated UUCP protocol which linked the world of Unix computers back when periodic modem connections were the primary means of communication.

Network Monitoring

nstat(1)

This command displays the values of a few dozen statistics relating to network activity that are maintained inside the kernel. These statistics are normally kept for the benefit of the SNMP daemon. They may also be viewed by accessing the file /proc/net/snmp.

netstat(8)

This is another command that will present the contents of /proc/net files for you, but offers a broader range of information than the nstat program. It can list the currently active network connections, dump the system routing tables, present interface statistics, and list masqueraded connections.

snmp*(1)

The collection of SNMP commands (snmpget, snmpnext, et cetera) that come with the Linux CMU SNMP package allow you to query a remote machine that has an SNMP daemon running. This can provide network performance and error statistics for that host. The CMU package also contains an snmpd(8) daemon that you can run if you want your machine to provide SNMP information.

tcpdump(8)

This is a sniffer, a program that captures packets off of a network interface and interprets them for you. It understands all basic Internet protocols, and can be used to save entire packets for later inspection.

Dialup Networking

pppd(8)

This daemon can send and receive network packets through a serial link between two computers. It is commonly used to allow dialup machines to communicate with the Internet despite not having a real Ethernet connection. See the PPP HOWTO.

sliplogin(8)

This command is similar to pppd except that it uses the older SLIP protocol for encapsulating packets.

diald(8)

The diald daemon monitors your system for network traffic, automatically dials up your Internet service provider whenever you attempt to access the Internet. This prevents you from having to keep up with whether your modem is currently dialed in, while making sure your dialup connection is terminated when you are not using it. At runtime you may configure diald's connection criteria, including how long it should wait before shutting down the modem due to inactivity.

Generic Network Configuration Information:

Having understood the concept of networking in Linux, and a brief overlook of the basic networking commands, lets now move on to the steps involved in  “Configuration:”

Before you start building or configuring your network you will need some things. 

The most important of these are:

2.3.1. Current Kernel source:

The majority of current distributions come with networking enabled, therefore it may not be required to recompile the kernel.  However , if it’s not the case then  you do need to update the kernel

Because the kernel you are running now might not yet have support for the network types or cards that you wish to use you will probably need the kernel source so that you can recompile the kernel with the appropriate options.

What addresses you should use depends on exactly what it is that you are doing. You may have to use a combination of the following activities to get all the addresses you need:

2.3.2:IPAddresses:

1: Installing a linux machine on an existing IP network

If you wish to install a linux machine onto an existing IP network then you should get the following information from the administrator:

Host IP Address

IP network address

IP broadcast address

IP netmask

Router address

Domain Name Server Address

You should then configure your linux network device with those details. You can not make them up.

2:Building a brand new network that will never connect to the Internet

If you are building a private network and you never intend that network to be connected to the Internet then you can choose whatever addresses you like. However, for safety and consistency reasons there have been some IP network addresses that have been reserved specifically for this purpose. You cannot use them.

2.2Configuration commands :

There are a few different approaches to Linux system boot procedures. After the kernel boots, it always executes a program called `init'. The init program then reads its configuration file called /etc/inittab and commences the boot process. 

Despite the fact that the init program is always the same, the setup of system boot is organized in a different way by each distribution(Debian,rdhat,etc.,).

Usually the /etc/inittab file contains an entry looking something like:

si::sysinit:/etc/init.d/boot


This line specifies the name of the shell script file that actually manages the boot sequence. This file is somewhat equivalent to the AUTOEXEC.BAT file in MS-DOS.

There are usually other scripts that are called by the boot script and often the network is configured within one of many of these.

Most modern distributions include a program that will allows one to configure many of the common sorts of network interfaces. You can use those , if it will do what you want before attempting a manual configuration.

-----------------------------------------


Distrib   | Network configuration program


-----------------------------------------


RedHat    | /usr/bin/netcfg


Slackware | /sbin/netconfig

2.3. Creating your network interfaces.

Unlike in many  Unix operating systems, where  the network devices have appearances in the /dev directory,  in Linux, the network devices are created dynamically in software and do not require device files to be present.

In the majority of cases the network device is automatically created by the device driver while it is initializing and has located your hardware. For example, the ethernet device driver creates eth[0..n] interfaces sequentially as it locates your ethernet hardware. The first ethernet card found becomes eth0, the second eth1 etc.

In some cases though, notably slip and ppp, the network devices are created through the action of some user program. The same sequential device numbering applies, but the devices are not created automatically at boot time. The reason for this is that unlike ethernet devices, the number of active slip or ppp devices may vary during the uptime of the machine. 

2.4. Configuring a network interface. Kernels 2.0 and 2.2
Once you have all of the programs you need and the address and network information you can configure your network interfaces. Configuring a network interface is the process of assigning appropriate addresses to a network device and  setting appropriate values for other configurable parameters of a network device. The program most commonly used to do this is the ifconfig (interface configure) command.

Typically, the  command is similar to the following:

root# ifconfig eth0 192.168.0.1 netmask 255.255.255.0 up

This is an example of configuring an ethernet interface `eth0' with the IP address `192.168.0.1' and a network mask of `255.255.255.0'. The `up' that trails the command tells the interface that it should become active, but can usually be omitted, as it is the default. To shutdown an interface, you can just call ``ifconfig eth0 down''.

The kernel assumes certain defaults when configuring interfaces. For example, you may specify the network address and broadcast address for an interface, but if you don't, as in the  example above, then the kernel will make reasonable guesses as to what they should be based on the netmask you supply and if you don't supply a netmask then on the network class of the IP address configured. In my example the kernel would assume that it is a class-C network being configured on the interface and configure a network address of `192.168.0.0' and a broadcast address of `192.168.0.255' for the interface.

There are many other options to the ifconfig command. The most important of these are:

up
This option activates an interface (and is the default).

down
This option deactivates an interface.

[-]arp
This option enables or disables use of the address resolution protocol on this interface

[-]allmulti
This option enables or disables the reception of all hardware multicast packets. Hardware multicast enables groups of hosts to receive packets addressed to special destinations. This may be of importance if you are using applications like desktop videoconferencing but is normally not used.

mtu N
This parameter allows you to set the MTU of this device.

netmask <addr>
This parameter allows you to set the network mask of the network this device belongs to.

irq <addr>
This parameter only works on certain types of hardware and allows you to set the IRQ of the hardware of this device.

[-]broadcast [addr]
This parameter allows you to enable and set the accepting of datagrams destined to the broadcast address, or to disable reception of these datagrams.

[-]pointopoint [addr]
This parameter allows you to set the address of the machine at the remote end of a point to point link such as for slip or ppp.

hw <type <addr>
This parameter allows you to set the hardware address of certain types of network devices. This is not often useful for ethernet, but is useful for other network types such as AX.25.

With the release of Kernel 2.2 there are a number of options available that are not listed above. Some of the most interesting are tunneling and IPV6 options.

 The ifconfig paramaters for kernel 2.2 are listed below.

interface
The name of the interface. This is usually a driver name followed by a unit number, for example eth0 for the first Ethernet interface.

up

This flag causes the interface to be activated. It is implicitly specified if an address is assigned to the interface.

down
This flag causes the driver for this interface to be shut down.

[-]arp
Enables or disables the use of the ARP protocol on this interface.

[-]promisc
Enables or disables the promiscuous mode of the interface. If selected, all packets on the network will be received by the interface.

[-]allmulti
Enables or disables all-multicast mode. If selected, all multicast packets on the network will be received by the interface.

metric N
This parameter sets the interface metric.

mtu N
This parameter sets the Maximum Transfer Unit (MTU) of an interface.

dstaddr addr
Sets the remote IP address for a point-to-point link (such as PPP). This keyword is now obsolete; use the pointopoint keyword instead.

netmask addr
Sets the IP network mask for this interface. This value defaults to the usual class A, B or C network mask (as derived from the interface IP address), but it can be set to any value.

add addr prefixlen
Adds an IPv6 address to an interface.

del addr prefixlen
Removes an IPv6 address from an interface.

tunnel aa.bb.cc.dd
Creates a new SIT (IPv6-in-IPv4) device, tunneling to the given destination.

irq addr
Sets the interrupt line used by this device. Not all devices can dynamically change their IRQ set- ting.

io_addr addr
Sets the start address in I/O space for this device.

mem_start addr
Set the start address for shared memory used by this device. Only a few devices need this.

media type
Sets the physical port or medium type to be used by the device. Not all devices can change this set- ting, and those that can vary in what values they support. Typical values for type are 10base2 (thin Ethernet), 10baseT (twisted-pair 10Mbps Ethernet), AUI (external transceiver) and so on. The special medium type of auto can be used to tell the driver to auto-sense the media. Again, not all drivers can do this.

[-]broadcast [addr]
If the address argument is given, set the protocol broadcast address for this interface. Otherwise, set (or clear) the IFF_BROADCAST flag for the interface.

[-]pointopoint [addr]
This keyword enables the point-to-point mode of an interface, meaning that it is a direct link between two machines with nobody else listening on it. If the address argument is also given, set the pro- tocol address of the other side of the link, just like the obsolete dstaddr keyword does. Otherwise, set or clear the IFF_POINTOPOINT flag for the interface.

hw class address
Set the hardware address of this interface, if the device driver supports this operation. The keyword must be followed by the name of the hardware class and the printable ASCII equivalent of the hardware address. Hardware classes currently supported include ether (Ethernet), ax25 (AMPR AX.25), ARCnet and netrom (AMPR NET/ROM).

multicast

Set the multicast flag on the interface. This should not normally be needed as the drivers set the flag correctly themselves.

address

The IP address to be assigned to this interface.

txqueuelen length
Set the length of the transmit queue of the device. It is useful to set this to small values for slower devices with a high latency (modem links, ISDN) to prevent fast bulk transfers from disturbing inter- active traffic like telnet too much.

You may use the ifconfig command on any network interface. Some user programs such as pppd and dip automatically configure the network devices as they create them, so manual use of ifconfig is unnecessary.

2.4. Configuring The Name Resolver.

The `Name Resolver' is a part of the linux standard library. Its prime function is to provide a service to convert human-friendly hostnames like `ftp.funet.fi' into machine friendly IP addresses such as 128.214.248.6.

Information you will need: You will need to know what domain your hosts name will belong to. The name resolver software provides this name translation service by making requests to a `Domain Name Server', so you will need to know the IP address of a local nameserver that you can use.

There are three files you need to edit:

1:      The /etc/resolv.conf is the main configuration file for the name resolver code. Its format is quite simple. It is a text file with one keyword per line. There are three keywords typically used, they are:

domain
This keyword specifies the local domain name.

search
This keyword specifies a list of alternate domain names to search for a hostname

nameserver
This keyword, which may be used many times, specifies an IP address of a domain name server to query when resolving names

An example /etc/resolv.conf might look something like:

domain maths.wu.edu.au

search maths.wu.edu.au wu.edu.au


nameserver 192.168.10.1


nameserver 192.168.12.1

This example specifies that the default domain name to append to unqualified names (ie hostnames supplied without a domain) is maths.wu.edu.au and that if the host is not found in that domain to also try the wu.edu.au domain directly. Two nameservers entry are supplied, each of which may be called upon by the name resolver code to resolve the name.

2:. /etc/host.conf

The /etc/host.conf file is where you configure some items that govern the behaviour of the name resolver code. In nearly all circumstances the following example will work for anyone:

order hosts, bind                                          

multi on  


This configuration tells the name resolver to check the /etc/hosts file before attempting to query a nameserver and to return all valid addresses for a host found in the /etc/hosts file instead of just the first.

3: /etc/hosts

The /etc/hosts file is where you put the name and IP address of local hosts. If you place a host in this file then you do not need to query the domain name server to get its IP Address. The disadvantage of doing this is that you must keep this file up to date yourself if the IP address for that host changes. In a well managed system the only hostnames that usually appear in this file are an entry for the loopback interface and the local hosts name.

# /etc/hosts


127.0.0.1      localhost loopback


192.168.0.1    this.host.name

You may specify more than one host name per line as demonstrated by the first entry, which is a standard entry for the loopback interface.

2.5. Configuring the loopback interface.
The `loopback' interface is a special type of interface that allows one to make connections to themselves. This feature is very helpful, for example, to test some network software without interfering with anybody else on your network. By convention the IP address `127.0.0.1' has been assigned specifically for loopback. So no matter what machine you go to, if you open a telnet connection to 127.0.0.1 you will always reach the local host.

Example:

root# ifconfig lo 127.0.0.1

root# route add -host 127.0.0.1 lo


2.6 IP Routing


We have already seen, in the first section, about the routing mechanism in Linux.

“IP routing is the process by which a host with multiple network connection decides where to deliver IP datagrams it has received.”

We have already seen how routing tables are used by hosts to determine  which interface it should send the datagram to next. 

The routing table contains rows which typically contain at least three fields, the first is a destination address, the second is the name of the interface to which the datagram is to be routed and the third is optionally the IP address of another machine which will carry the datagram on its next step through the network.

In Linux we can see this table using the following command:


User% cat /proc/net/route

Or by using either of the following commands:


user% /sbin/route –n

user% netstat –r

To manipulate this table special command is used. This command takes command line arguments ans converts them into kernel system calls that request the kernel to add, delete or modify entries in the routing table. The command is called ‘route’.
A simple example:

    Consider an ethernet, class-C network with an address of 192.168.1.0. Given a router connected to the internet with the IP address of 192.168.1.0,  you will first configure the interface and then use the followed command:

       root# ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up

Now, you have to add an entry into the routing table to tell the kernel that the datagrams for all hosts with addresses that match 192.168.1.* should be sent to the ethernet device. For that the command would be:

Root# route add –net 192.168.1.0 netmask  255.255.255.0  eth0

The “-net” argument tells the program that this entry is a network route. You also have  other choice “-host” route, which is a route that is specific to one IP address.

The above command(route) will enable you to establish IP connections with all of the hosts on the ethernet segment. But for all the other hosts that are not on the ethernet , segment, it will surely be a difficult job to manually add routes to every possible destination network.

          This is where we use the concept of  “default” route.  The default route matches every possible destination. If any other entry exists that matches the required address it will be used instead of the default route. The basic idea behind default route is simply to enable one to say  “and everything else should go here”.

      For the above example, one might use the following command:

               root# route add default gw 192.168.1.1 eth0

The `gw' argument tells the route command that the next argument is the IP address, or name, of a gateway or router machine which all datagrams matching this entry should be directed to for further routing.

Hence, the complete configuration would be:


root# ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up


root# route add -net 192.168.1.0 netmask 255.255.255.0 eth0


root# route add default gw 192.168.1.1 eth0

The routing configuration described above is best suited to simple network arrangements where there are only ever single possible paths to destinations. When you have a more complex network arrangement things get a little more complicated. The big problem with `manual routing' or `static routing' as described, is that if a machine or link fails in your network then the only way you can direct your datagrams another way, if another way exists, is by manually intervening and executing the appropriate commands. Naturally this is clumsy, slow, impractical and hazard prone. Various techniques have been developed to automatically adjust routing tables in the event of network failures where there are alternate routes, all of these techniques are loosely grouped by the term `dynamic routing protocols'.
The most common are probably RIP (Routing Information Protocol) and OSPF (Open Shortest Path First Protocol). The `routed' program is normally supplied with your Linux distribution.

An example of where and how you might use a dynamic routing protocol might look something like the following:

192.168.1.0 /                         192.168.2.0 /

       255.255.255.0                         255.255.255.0

     -                                     -

     |                                     |

     |   /-----\                 /-----\   |

     |   |     |ppp0   //    ppp0|     |   |

eth0 |---|  A  |------//---------|  B  |---| eth0

     |   |     |     //          |     |   |

     |   \-----/                 \-----/   |

     |      \ ppp1             ppp1 /      |

     -       \                     /       -

              \                   /

               \                 /

                \               /

                 \             /

                  \           /

                   \         /

                    \       /

                     \     /

                  ppp0\   /ppp1

                     /-----\

                     |     |

                     |  C  |

                     |     |

                     \-----/

                        |eth0

                        |

                   |---------|

                   192.168.3.0 /

                      255.255.255.0

We have three routers A, B and C. Each supports one ethernet segment with a Class C IP network (netmask 255.255.255.0). Each router also has a PPP link to each of the other routers. The network forms a triangle.

It should be clear that the routing table at router A could look like:

root# route add -net 192.168.1.0 netmask 255.255.255.0 eth0


root# route add -net 192.168.2.0 netmask 255.255.255.0 ppp0


root# route add -net 192.168.3.0 netmask 255.255.255.0 ppp1

This would work just fine until the link between router A and B should fail. If that link failed then with the routing entry shown above hosts on the ethernet segment of A could not reach hosts on the ethernet segment on B because their datagram would be directed to router A's ppp0 link which is broken. They could still continue to talk to hosts on the ethernet segment of C and hosts on the C's ethernet segment could still talk to hosts on B's ethernet segment because the link between B and C is still intact.

But, if A can talk to C and C can still talk to B, why shouldn't A route its datagrams for B via C and let C send them to B ? This is exactly the sort of problem that dynamic routing protocols like RIP were designed to solve. If each of the routers A, B and C were running a routing daemon then their routing tables would be automatically adjusted to reflect the new state of the network should any one of the links in the network fail. To configure such a network is simple, at each router you need only do two things. In this case for Router A:

root# route add -net 192.168.1.0 netmask 255.255.255.0 eth0


root# /usr/sbin/routed

The `routed' routing daemon automatically finds all active network ports when it starts and sends and listens for messages on each of the network devices to allow it to determine and update the routing table on the host.

This has been a very brief explanation of dynamic routing .

The important points relating to dynamic routing are:

1.You only need to run a dynamic routing protocol daemon when your Linux machine has the possibility of selecting multiple possible routes to a destination. An example of this would be if you plan to use IP Masquerading.

2.The dynamic routing daemon will automatically modify your routing table to adjust to changes in your network.

3.RIP is suited to small to medium sized networks.

2.7. Configuring the network servers and services.

Network servers and services are those programs that allow a remote user to make user of your Linux machine. Server programs listen on network ports. Network ports are a means of addressing a particular service on any particular host and are how a server knows the difference between an incoming telnet connection and an incoming ftp connection. The remote user establishes a network connection to your machine and the server program, the network daemon program, listening on that port accepts the connection and executes. There are two ways that network daemons may operate. Both are commonly employed in practice. The two ways are:

standalone

The network daemon program listens on the designated network port and when an incoming connection is made it manages the network connection itself to provide the service.

slave to the inetd server
The inetd server is a special network daemon program that specializes in managing incoming network connections. It has a configuration file which tells it what program needs to be run when an incoming connection is received. Any service port may be configured for either of the tcp or udp protocols. 

There are two important files that we need to configure. They are,

1: the /etc/services file which assigns names to port numbers and 

2:the /etc/inetd.conf file which is the configuration file for the inetd network daemon.

2.7.1. /etc/services

The /etc/services file is a simple database that associates a human friendly name to a machine friendly service port. Its format is quite simple. The file is a text file with each line representing and entry in the database. Each entry is comprised of three fields separated by any number of whitespace (tab or space) characters. 

The fields are:

name port/protocol aliases # comment

name: A single word name that represents the service being described.

port/protocol: This field is split into two subfields.

Port : A number that specifies the port number the named service will be available on. Most of the common services have assigned service numbers. These are described in RFC-1340.

Protocol : This subfield may be set to either tcp or udp.

It is important to note that an entry of 18/tcp is very different from an entry of 18/udp and that there is no technical reason why the same service needs to exist on both. Normally common sense prevails and it is only if a particular service is available via both tcp and udp that you will see an entry for both.

Aliases:  Other names that may be used to refer to this service entry.

Any text appearing in a line after a `#' character is ignored and treated as a comment.

2.7.2. /etc/inetd.conf

The /etc/inetd.conf file is the configuration file for the inetd server daemon. Its function is to tell inetd what to do when it receives a connection request for a particular service. For each service that you wish to accept connections for, you must tell inetd what network server daemon to run and how to run it.

Its format is also fairly simple. It is a text file with each line describing a service that you wish to provide. Any text in a line following a `#' is ignored and considered a comment. Each line contains seven fields separated by any number of whitespace (tab or space) characters. The general format is as follows:

service  socket_type  proto  flags  user  server_path  server_args

service: Is the service relevant to this configuration as taken from the /etc/services file.

socket_type:  This field describes the type of socket that this entry will consider relevant, allowable values are: stream, dgram, raw, rdm, or seqpacket. This is a little technical in nature, but as a rule of thumb nearly all tcp based services use stream and nearly all udp based services use dgram. It is only very special types of server daemons that would use any of the other values.

Proto:   The protocol to be considered valid for this entry. This should match the appropriate entry in the /etc/services file and will typically be either tcp or udp. Sun RPC (Remote Procedure Call) based servers will use rpc/tcp or rpc/udp.

Flags:  There are really only two possible settings for this field. This field setting tells inetd whether the network server program frees the socket after it has been started and therefore whether inetd can start another one on the next connection request, or whether inetd should wait and assume that any server daemon already running will handle the new connection request. Again this is a little tricky to work out, but as a rule of thumb all tcp servers should have this entry set to nowait and most udp servers should have this entry set to wait. 

User:  This field describes which user account from /etc/passwd will be set as the owner of the network daemon when it is started. 

server_path: This field is pathname to the actual server program to execute for this entry.

Server_args: This field comprises the rest of the line and is optional. This field is where you place any command line arguments that you wish to pass to the server daemon program when it is launched.

2.8. Other miscellaneous network related configuration files.

There are a number of miscellaneous files relating to network configuration under linux . Some of them are:

2.8.1. /etc/protocols

The /etc/protocols file is a database that maps protocol id numbers against protocol names. This is used by programmers to allow them to specify protocols by name in their programs and also by some programs such as tcpdump to allow them to display names instead of numbers in their output. The general syntax of the file is:

protocolname  number  aliases

  2.8.2. /etc/networks

The /etc/networks file has a similar function to that of the /etc/hosts file. It provides a simple database of network names against network addresses. Its format differs in that there may be only two fields per line and that the fields are coded as:

networkname networkaddress

An example might look like:

loopnet    127.0.0.0

localnet   192.168.0.0

amprnet    44.0.0.0


When you use commands like the route command, if a destination is a network and that network has an entry in the /etc/networks file then the route command will display that network name instead of its address.
2.9. Network Security and access control.

There are all sorts of security and access control mechanisms, Some of the  most elementary of them are:

2.9.1. /etc/ftpusers

The /etc/ftpusers file is a simple mechanism that allows you to deny certain users from logging into your machine via ftp. The /etc/ftpusers file is read by the ftp daemon program (ftpd) when an incoming ftp connection is received. The file is a simple list of those users who are disallowed from logging in. It might looks something like:

# /etc/ftpusers - users not allowed to login via ftp


root


uucp


bin


mail

2.9.2. /etc/securetty

The /etc/securetty file allows you to specify which tty devices root is allowed to login on. The /etc/securetty file is read by the login program (usually /bin/login). Its format is a list of the tty devices names allowed, on all others root login is disallowed:

# /etc/securetty - tty's on which root is allowed to login


tty1


tty2


tty3


tty4

2.9.3. The tcpd hosts access control mechanism.

The tcpd program you will have seen listed in the same /etc/inetd.conf provides logging and access control mechanisms to services it is configured to protect.

When it is invoked by the inetd program it reads two files containing access rules and either allows or denies access to the server it is protecting accordingly.

It will search the rules files until the first match is found. If no match is found then it assumes that access should be allowed to anyone. The files it searches in sequence are: /etc/hosts.allow, /etc/hosts.deny.(described below).

 2.9.4. /etc/hosts.allow

The /etc/hosts.allow file is a configuration file of the /usr/sbin/tcpd program. The hosts.allow file contains rules describing which hosts are allowed access to a service on your machine.

The file format is quite simple:

# /etc/hosts.allow


#


# <service list>: <host list> [: command]

service list:  This is a comma delimited list of server names that this rule applies to. Example server names are: ftpd, telnetd and fingerd.

host list: This is a comma delimited list of host names, including  IP addresses which can be  specified using wildcard characters to match groups of hosts. Examples include: gw.vk2ktj.ampr.org to match a specific host, .uts.edu.au to match any hostname ending in that string, 44. to match any IP address commencing with those digits. There are some special tokens to simplify configuration, some of these are: ALL matches every host, LOCAL matches any host whose name does not contain a `.' ie is in the same domain as your machine and PARANOID matches any host whose name does not match its address (name spoofing).  The EXCEPT token allows you to provide a list with exceptions. 

Command: This is an optional parameter. This parameter is the full pathname of a command that would be executed everytime this rule is matched. It could for example run a command that would attempt to identify who is logged onto the connecting host, or to generate a mail message or some other warning to a system administrator that someone is attempting to connect. There are a number of expansions that may be included, some common examples are: %h expands to the name of the connecting host or address if it doesn't have a name, %d the daemon name being called.

An example:# /etc/hosts.allow

  
#

   
# Allow mail to anyone

  in.smtpd: ALL

  # All telnet and ftp to only hosts within my domain and my host at home.

  telnetd, ftpd: LOCAL, myhost.athome.org.au

  # Allow finger to anyone but keep a record of who they are.

  fingerd: ALL: (finger @%h | mail -s "finger from %h" root)

2.9.5. /etc/hosts.deny

The /etc/hosts.deny file is a configuration file of the /usr/sbin/tcpd program. The hosts.deny file contains rules describing which hosts are disallowed access to a service on your machine.

A simple sample would look something like this:

# /etc/hosts.deny

  #

  # Disallow all hosts with suspect hostnames

  ALL: PARANOID

  #

  # Disallow all hosts.

  ALL: ALL 

The PARANOID entry is really redundant because the other entry traps everything in any case. Either of these entry would make a reasonable default depending on your particular requirement.

Having an ALL: ALL default in the /etc/hosts.deny and then specifically enabling on those services and hosts that you want in the /etc/hosts.allow file is the safest configuration.

2.9.6. /etc/hosts.equiv

The hosts.equiv file is used to grant certain hosts and users access rights to accounts on your machine without having to supply a password. This is useful in a secure environment where you control all machines, but is a security hazard otherwise. Your machine is only as secure as the least secure of the trusted hosts. 

2.10. Network Firewalling.

Not allowing datagrams to even reach your machine or servers is an excellent means of security.

.

Conclusion:

 
As the author suggests, I truly agree that Linux and networking a go together. 

There are several advantages of Linux. Below are some of them, which I found worth mentioning with respect to the metworking aspects of Linux.

Advantages with respect networking:

1:It has the advantage of  being able to “talk” with other operating systems, such as Windows 3.1x, 9.1x,NT. Certain softwares have been developed that allows Linux to coexist, along with windows, sharing files, printers, and other kinds of data with Windows boxes on the same network. It can act as a Primary Domain Controller for a Windows NT network. On the same hardware, it beats Windows NT as a Windows file server . Linux can also connect to Macintosh computers , and share files and printers with Macs. It can actually  talk to Windows, Mac, and Novell clients all at the same time. 

2:Linux supports IP Masquerading, which allows any number of machines to surf the Internet through one machine, using only one IP address. With IP Masquerading and a network, every computer at our home or business can share the Internet connection, even if we only have one IP address assigned by our ISP. 

3:Linux has just about every kind of network server there is, including web servers ,like Apache,  FTP servers, IRC, MUD, Sendmail , and much, much more. 

4:One of the main use of Linux is in networking, and Linux shines in this category

Linux supports a wide variety of software emulators for all kinds of systems. These allow our PC to run programs meant for other systems just as if it were running on its intended platform. 

 5: Run Headless, Mouseless, Diskless

Because Linux supports remote operation, we can set up a Linux box, and then log into it remotely and operate it over the network just as if we had a keyboard and mouse plugged into the machine. Using X-windows, we can even run graphical applications remotely, even if the headless box doesn't even have a video card. This setup is often ideal for setting up servers, routers, and other systems that rarely or never need input or output except through the network.

 And ofcourse as we know, Linux has made it’s source code available to others. We can say “Linux has made Operating Systems Programming  Cheap And Easy”.

It offers a unique opportunity to learn systems programming with hands-on experience.  As we  have the source code available. 

We can summarize as follows:
 “Linux is Network-friendly,Multi-user,Open,Free,Reliable, Backwards-Compatible”.
 

What I Have Completed and Learnt :


Included in the document  are the various important aspects of networking in Linux. It was a great learning experience for me, as I read and documented my understanding of the concerned topics. Also, I have included several, general advantages of  Linux, when concerned with networking.  I have successfully completed my aim in learning “How networking is done in Linux”. In addition, I have also included the required documentation needed, to  install Linux networking capabilities. I found them to be useful and now I plan to install Linux on my home computers and create  a network, and take advantage of the Linux networking capabilities, and put my knowledge into use. Below are the links to only some of the sites from where have collected the information(there were several others). 

Also, the lectures explained in the class(mainly the initial lectures covering basics of networking), proved to be great help to me understanding the networking capabilities of Linux, which are indeed similar to Unix.
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