December 9, 2000

CLIENT / SERVER REQUEST AND RESPONSE SIMULATION

Aaron Morris

CS522

Semester Project

Fall 2000

INTRODUCTION

This document outlines the functionality and makeup of a program written to simulate a client-server request and response environment. Requests from clients are routed through a central director object, which chooses an optimal server based on the number of requests being sent to each. The servers then are responsible for generating a file of random size and the director for successfully returning it to the source of the request.

The simulation tracks and reports statistics on the average response time, average file size, average idle servers, and average server load throughout the run. The simulation also has a GUI (graphical user interface) which allows the user to input many parameters affecting the situation being modeled.

CONTENTS

Introduction……………………………………………………………..1

Table of Contents………………………………………………………..2

System Overview…………………………………………………………3

Basics………………………………………………………..………………..3

User Interface…………………………………………………………………3

Statistics………………………………………………………………………3

The Model…………………………………………………………………….3

The Model Design……………………………………………………….4

General Issues…………………………………………………………………4

Simulation Classes…………………………………………………………….4

Basic Class Relationships……………………………………………………..8

Sample Simulation Output………………………………………………9

Description……………………………………………………………………9

GUI……………………………………………………………………………9

Sample System Output Listing………………………………………………..9

The Program…………………………………………………………….11

Event Types…………………………………………………………………..11

Messages………………………………………………………………………13

Statistics Gathering……………………………………………………………14

Tricky Issues……………………………………………………………..15

Event Separation…..…………………………………………………………..15

Channel Implementation………………………………………………………15

Statistics Gathering……………………………………………………………16

Linked Object Lists……………………………………………………………16

Conclusions………………………………………………………………16

Insights…………………………………………………………………………16

Simulation Status………………………………………………………………16

SYSTEM OVERVIEW

Basics

This system is a model of a client-server relationship, with the addition of a central routing object called a Director. The Director is responsible for receiving requests from client systems, and routing that request to what is to the best of its knowledge the optimal server for handling the request. The Director is then required to route the response from the Server back to the client who initiated the request.

User Interface

In order to create a flexible and useful simulation, the program includes a GUI (graphical user interface), which allows the user to change various parameters affecting the simulation run. Parameters such as the end of simulation time, the number of clients and servers, the speed of all the objects and also the request frequency all can radically change the results of a run. All output is also routed to the screen as well as a text file for the user to look at as needed, and track the simulation from start to finish.

Statistics

For a simulation to be useful, some statistics representing how the model performed are necessary. In this case, the user most likely will be interested in the average response time as well as the average server load and average idle servers per unit time. This will help show the relationship between response time and the number of servers required to meet that response time based on the given number of clients and their average request frequency. For perspective, the simulation also reports on the average file size sent back by the servers throughout the run.

Model

The model used will be that of an object-oriented, event-based simulation. The model strives to represent random requests and file retrievals as realistically as possible, given the scope of the project, and also to effectively route requests in a random but accurate fashion. The implementation details follow in the next section.

THE MODEL DESIGN

General Issues
The model, as mentioned above, is implemented as an object-oriented, event-based system. Each state-changing occurrence in the system is modeled as an event, which is stored in a queue of events to be executed. Each major component of the system is modeled as an object, including servers, clients, channels, the central director, among other necessary classes for storage, statistics, and event representation. Following is a description of all the classes used in the system.

Simulation Classes

CS522App

This is a class used to generate the graphical user interface and to key off the simulation. The interface allows the user to enter parameters, start the simulation, pause the simulation, prematurely end the simulation, and finally to reset the simulation to be run again as needed.

Simulator

This is a class used to store all the objects necessary for the simulation. An object of this class is created by the CS522App object when all necessary parameters are entered and the start simulation button is pressed. This class “runs” until the simulation ends or the user presses the End button.

DataHandler

This class is a general class that is used to represent the Clients, Servers, and the central processing Director. Each of these classes requires similar structures and functionality, and so creating the general DataHandler class allows any one of these descendant classes to be processed in functions and methods interchangeably.

Client

This class represents a Client in the simulation, and is a descendant of the DataHandler class. The client is responsible for generating requests at a random time interval for the servers to process. When the request is answered, the random file is then routed back to the client and any necessary statistics on response time are updated.

Server

This class, a descendant of DataHandler, represents a Server in the simulation. The server is responsible for receiving, processing, and answering requests for a “file” from client objects. Thus, the server receives requests and returns a random filesize to be sent back to the original client object.

Director

This class is a descendant of the DataHandler class and represents the central directing object in the simulation. It takes incoming requests off of the various channels connected to the clients, and routes those requests via channels to the server objects. The Director maintains a list of the servers in the simulation, and tracks relative load values for each server. When the requests from the clients are received, the Director randomly chooses a server from those with the least load. As the responses are received back from the server objects, this class also re-routes the files to the original requesting client object.

Note: This class is invisible to all the other DataHandler objects in the simulation, meaning the clients and servers. The clients and servers simply send the request back through the channel from which they received it, and at the other end of the channel is the Director.

Channel

The channel class represents the means of transmission between the various objects in the simulation. When a client object sends out a request, it is sent through a channel object, and then picked up on the other side of the channel by the Director object. Another channel is utilized between each Server and the Director. The channel objects are assigned a speed via the parameters input by the user. Each path, be it Client-Director or Director-Server, has a separate Channel object.

SimEvent

This class represents an “event” in the simulation. Each major system-altering occurrence is modeled as an event. By declaring this general event class, all events can be stored in a queue together and processed as if they are exactly the same. Then each type of event can simply be a descendant of this object, and its implementation coded to suit the necessary actions it represents.

RequestEvent

This class is a descendant of the SimEvent class, and models the request of a file by one of the client objects. When a client wants to request an object, it creates a RequestEvent to be executed at a random time interval in the future. This event is placed in the event queue, ordered by time of execution, and will be executed at the time for which it was generated for. Each RequestEvent is also responsible for generating the next request event, so that an endless loop of requests is generated and placed in the queue until the simulation is ended. When processed, this event will create a file request message to be sent to the Director object and routed to the server objects.

ResponseEvent
This is also a descendant of the SimEvent class, and models the response of a server to an incoming request. This event type is generated by a server object and then placed in the central event queue for processing. When processed, this event will create a random file size and send this file back to the Director to be routed back to the client object.

TransferEvent

This event, of type SimEvent, is responsible for the transference of a message between a channel and a DataHandler object. The message is simply routed to the receiving object and the event is finished.

EndSimEvent

This is another descendant of the SimEvent, and is very simple as well. This event is used as a flag to terminate the simulation. The simulation is also terminable via the GUI, however when the specified elapsed time has passed in the simulation, then this event will key off the stoppage of execution and the printing of statistics.

ClientQueue

This class houses all the client objects in the simulation. This provides an easy way for all the Clients to be managed together and provides information to the simulation and to the statistics gathering objects. This class can return a reference to a specific client, and also return the number of clients.

ServerQueue

This class is similar to the ClientQueue class, only it houses Server objects. It contains all the Server instances and returns specific instances of servers, and can also return the least loaded server if necessary.

EventQueue

This class is the major one for processing in the simulation. Every event generated in the simulation is placed in this queue to be executed. Since each event is descended from the SimEvent class, all events can be stored and sorted in this queue in exactly the same manner. As the simulation progresses, the first event in the queue is pulled off and executed. Any new events are placed in the queue, sorted by the time for which the execution should occur.

Message

This class represents the messages being passed between all the various DataHandler objects in the simulation, including clients, servers and the Director. A message is the basic unit that can be transferred over Channel objects. For example, a message representing a request will be sent from a client. The director then transfers this message to the servers, who send back a new message with a file attached to it.

MessageQueue
This class houses any messages that need to be stored. Each DataHandler object has a message queue, in order to store any outstanding requests and to process them in the order in which they arrived. This class has the ability to store requests and return the first request off the list, and also to report on the size of the list.

RandNum

The RandNum class is used to represent random number generation in the simulation. This class can produce both a java random integer and also a random number based on an exponential distribution. This distribution is used to model the arrival of request events in the simulation. This class has methods to generate and return both types of numbers.

Counter

The counter class is a statistics class used to track instances of samples over the life of the simulation. Each time a sample is needed, such as the response time a given request took, the counter is updated with that response time. At the end of the simulation the counter can report on the mean response time, number of responses, and also the variance and the range of values. This object can be used to track any statistic that is not time-related, rather is only instance-related.

Averager

The averager is very similar to the counter object, but instead of being instance-based is time-based. This class keeps a running average of values, weighted by the time interval over which the sample was taken. At the end of the simulation this object can also report the mean value, the time interval over which all the values were sampled, the range of values, and the variance.

Stats

The stats object houses all the counters and averagers needed by the simulation. At the end of the simulation, the stats object can create a report that includes all the statistics from each counter and averager. The stats object is also used to house the global system time, which can be referenced by objects in the simulation.

Report

The report object is used throughout the simulation to write output to the screen and to an output file. The report object will open the necessary output file specified by the user, write the given output string to the GUI and to the output file, and finally close the output file at the end of the simulation.

Basic Class Relationships

The below diagram gives a visual depiction of how (basically) the classes are related. In the interest of simplicity, not all class relationships are related, especially when an object merely contains a link to a specific class, not an instance of a class.

The GUI portion of the simulator is represented by the CS522App class. The Simulator class is the meat of the simulation, containing instances of the EventQueue, ClientQueue, ServerQueue, RandNum, Stats, and Director classes. All the event classes are descendants of the SimEvent class, and the Client, Server, and Director classes are descendants of the DataHandler class. The Stats class contains instances of the Counter, Averager, and Report classes. Each DataHandler class contains an instance of a MessageQueue, along with source and destination channels for transmission of messages.

As stated above, many of the reference relationships are not shown here, because there are too many to diagram. However the figure below allows for at least a basic understanding of how the classes are related without having to piece it together from all the class descriptions.

[image: image1.png]035224

vl Simitor e
[Tinuos
St Sorvarles Sty
gt e
e
Resporsbvert e Batrder Iverager
Ot i
Trartvn | [Messaelbese ot
Sorver
ErdSnEvert Message Do

SAMPLE SIMULATION OUTPUT

I

Description
In order to give you a basic understanding of what the simulation is accomplishing before showing any implementation details, below is a sample listing of some output from the simulation. The output is not complete, as a full simulation run would not fit in its entirety in this document. Select important messages are included, however. Also pictured is the GUI used to launch the simulation and input parameters to be used in the run.

GUI

[image: image2.png]

Sample Output File Listing

===

CS522 CLIENT/SERVER SIMULATION

Aaron Morris

Last Updated 12/00

Output will be written to: CS522Out.txt

===

BEGIN SIMULATION:

Running Servers : 5

Running Clients : 30

End Simulation Time : 200

Director Prop Delay : 1

Server Delay Time : 1

KBytes for Server Delay : 2000

Channel Max Delay : 8

Maximum File Size : 10000

Request Freq Modifier : 7

Min Request Separation : 5

REQUEST From Client 0 at Time 5 MessageID = 0

REQUEST From Client 29 at Time 5 MessageID = 2900000

REQUEST From Client 28 at Time 5 MessageID = 2800000

REQUEST From Client 27 at Time 5 MessageID = 2700000

REQUEST From Client 25 at Time 5 MessageID = 2500000

REQUEST From Client 24 at Time 5 MessageID = 2400000

REQUEST From Client 23 at Time 5 MessageID = 2300000

REQUEST From Client 22 at Time 5 MessageID = 2200000

…

RESPONSE From Server 0 at Time 10 MessageID = 2800000

RESPONSE From Server 1 at Time 10 MessageID = 0

…

***SUCCESS Client 27 Received Message #2700005 Back at Time 77

 Message:'File of Size 59', Took 46 Units of Time

…

=======================

Event Simulation Ended

=======================

 Final Results

Average Response Time

 sampled 15.0 values

 values ranged from 10.0 to 97.0

 mean is 49.86666666666667

 variance is 626.1155555555556

Average File Size

 sampled 1130.0 values

 values ranged from 1.0 to 9981.0

 mean is 5057.8486725663715

 variance is 8449566.170905318

Average Idle Servers

 observed for: 200.0 units of time

 observations ranged from 0.0 to 5.0

 mean is 3.595

 variance is 1.3809749999999976

Average Server Load

 observed for: 200.0 units of time

 observations ranged from 0.0 to 8.0

 mean is 0.76

 variance is 2.0424

THE PROGRAM

Event Types
There are four types of events in the simulation, all of which descend from the general SimEvent class. Each event type is unique in its functionality, however all four share a similar means of processing and storage. The four below types are described in more detail than from the design portion of the document.

RequestEvent
The RequestEvent class is generated by Client objects to facilitate the creation and transference of a message. This message is sent to the channel connecting the client to the Director object. Below is code used to implement the execution of a RequestEvent.

// Instructions for a Request Type Event

public void execute(EventQueue eventList, Stats stats, int

 Placeholder, RandNum randGen)

{

int Time;

Time = stats.getGlobalTime();

// Spawn next Arrival Event (once) and put in Event Queue

if (this.spawn)

{

this.spawn = false;

RequestEvent newRE = Creator.genRequest(Time);

eventList.enQueue(newRE);

}

writeExecute(stats.getGlobalTime(),stats);

// Schedule Transmit Event from Client To Director

TransferEvent newTE =

Creator.genTransfer(Time,message);

eventList.enQueue(newTE);

}
ResponseEvent
The ResponseEvent is an event created by Server objects in order to facilitate the sending back of the requested file from the server. The file is sent back as part of a Message object, transferred to the Server’s Source channel for transmission. The code for the execution of this event follows.

// Instructions for a Response Type Event

public void execute(EventQueue eventList,Stats stats,

 int MaxFileSize, RandNum randGen)

{

int Time;

Time = stats.getGlobalTime();

writeExecute(stats.getGlobalTime(),stats);

// Schedule Transmit Event from Server To Director

TransferEvent newTE = Creator.genTransfer(Time,message);

eventList.enQueue(newTE);

// See if Server has Outstanding Requests in Queue

if (Creator.getQueueLength() > 0)

{

SimEvent ev;

Message temp;

temp = Creator.send();

ev = Creator.genResponse(Time,temp);

Creator.setCurrentLoad(Creator.getCurrentLoad(),1);

eventList.enQueue(ev);

}

// If no outstanding requests, set server back to idle

else

{

Creator.setIdle();

Creator.setCurrentLoad(0);

}

}
TransferEvent
The Transfer Event is used to transfer a message between a DataHandler and Channel object. This event type is generated by other events and by Channel objects, to model completion of transmission on the other end of the channel. The code from this class’ execution follows.

If transferring TO a channel, handle with a Channel’s receive method. If transferring FROM a Channel, use the DataHandler’s receive method.

public void execute(EventQueue eventList,Stats stats,int p,RandNum r)

{

//this.writeExecute(stats.getGlobalTime(),stats);

if (Direction == "TO")

{

c.receive(stats.getGlobalTime(),message,eventList);

}

else if (Direction == "FROM")

{

d.receive(stats.getGlobalTime(),message);

}

else

{

stats.report.write("ERROR TRANSFERRING '" +

Direction + "'");

}

}

EndSimEvent
The End Sim Event is extremely simple and is created only once, by the Simulator object when initialization occurs. It is simply a flag event that occurs at whatever time the user enters for the end of simulation time. The code for its execution follows.

public void execute(EventQueue eventList,Stats stats,int p,RandNum r)

{

writeExecute(stats.getGlobalTime(),stats);

}

public void writeExecute(int Time, Stats stats)

{

stats.report.write("ENDSIM being processed at time " +

 stats.getGlobalTime());

stats.report.write(" ");

stats.report.write("=======================");

stats.report.write("Event Simulation Ended");

stats.report.write("=======================");

}
Messages

Messages in this simulation are represented by a separate Message object. This message object is a simple object which has some attributes for filesize, source object, send time and a space for the Body or file of the message can be stored. The Message class, minus some methods used to return information on the message, are listed below.

public class Message {

private String HeaderName; // "RESPONSE", "REQUEST" Etc....

private int MessageID; // ID of request

private int HeaderSize; // Size of Attached Message

private int OrigSendTime; // Sending time of Message

private DataHandler SourceObject; // Original Sending Object of Message

private int CurrentLoad; // Current Load of Responding Server

private Message next; // For linked list implementation

private DataHandler Source; // Source of Message

private DataHandler Destination; // Target Destination of Message

private String Body; // Body of message -- File, FileName

private int sortValue;

// Sorting value of message for Queue

public Message(int Time, int ID, String headerName, int hs, String

MBody, int CurrentLoad, DataHandler src)

{

next = null;

HeaderName = new String();

HeaderName = headerName;

HeaderSize = hs;

OrigSendTime = Time;

MessageID = ID;

Body = MBody;

CurrentLoad = 0;

Source = src;

sortValue = 0;

}

Statistics Gathering

Statistics gathering is a very important aspect of this simulation, and so the details of the Counter and Averager classes’ update methods have been described below. The implementations are quite straightforward, but the objects are very versatile in what can be recorded using them.

Counter:

// Method to update the counter with the value at Time

public void update(double Value)

{

 // If no samples yet, min and max are the first value

if (n == 0)

{

min = Value;

max = Value;

}

else if (Value < min)
{ min = Value; } // New min value

else if (Value > max)
{ max = Value; } // New max value

sum += Value; // Sum of all values updated with

last = Value; // Set for next time update

sumsquared += Value*Value; // Sum of all values squared

n++; // Increment number of samples

}

Averager:

// Update method -- update the Averager for the increment of time

// between lastTime and the Current Time with the Value sent in

public void update(int Time, double Value)

{

// If this is the first value, min and max are the same

if (n == 0)

{

min = Value;

max = Value;

}

else if (Value < min)
{ min = Value; } // New Min Value

else if (Value > max)
{ max = Value; } // New Max Value

// Update for time interval from last update to this Time

sum += Value*(Time-lastTime);

last = Time;

sumsquared += Value*Value * (Time - lastTime);

lastTime = Time;

n++;

}
TRICKY ISSUES

Although the designing of an object-oriented, event-based simulation is fairly straight forward, there are some issues that can become difficult to resolve. The following few examples are issues that proved challenging in implementing the simulation.

Event Separation

When designing the event-based simulation, it was difficult to define how some of the simulation actions fit into events, and to cleanly break the events into separate classes. What should constitute a separate event class? In the case of the transfer event, for example, there are two possible scenarios: a transfer to a channel, and a transfer from a channel. Should both of these actions be a separate event, or should the event handle both cases, even though this would require the event to know more about its environment? Both cases were coded as one event, however the simulation would have operated just as well with another event class.

Channel Implementation

While the concept of the channel object is also very straightforward, it was not easy to decide how they should operate. By having the channel “receive” a message and then propagate it, special processing has to be performed to ensure that the message goes in the correct direction, either from the channel or to the channel. Then a second transfer event immediately is generated and has to point to the object on the correct side of the channel.

Statistics Gathering

Statistics gathering proved to be another challenging task. Once the Averager and Counter classes are written, it is much less imposing. However, the placement of the calls to the update methods is important, as it can affect the results of the run. For example, if the counter for average idle servers is sampled at a point when a server is just set idle again, the data will perhaps be skewed to be too low. Or if an averager updates with the wrong time value, those results will be wrong as well. Careful attention needs to be placed on where and when to update the statistics.

Linked Object Lists

The final major issue encountered while coding the simulation was the need to keep the linked lists between objects in check. An object could only reside in one linked list at a time, and thus if it was removed from one but still held the link to the list, then very unpredictable results could occur, and the problem is very difficult to track down.

CONCLUSIONS

Insights

This simulation, modeling the client to director to server interaction, has taught me not only to write an event-based simulation but also to consider such details as propagation speeds, request queuing, and routing of requests via a third-party object. This simulation is a very useful tool to look at a simple view of this interaction, allowing the user to alter the environment of the run, and to gain useful insights via statistics gathered over the course of the run. The object-oriented design also makes it relatively easy to modify and update the simulation as needed.

Simulation Status

The simulation is operational, however it needs some minor adjustments for it to more accurately model the system being simulated. For example, the various times assigned to the interactions of the objects, such as the server and channel speeds, and the propagation delay of the director object, need to be tweaked so that they interact in a more realistic fashion. This portion of the simulation still has a couple inconsistencies. Also, more detailed analysis and accurate generation of file types and sizes could be added. Further, the code needs to be refined, as it is in a working but not yet optimized state. I hope to further refine it and make adjustments to allow for a more realistic simulation.

PAGE
16

_1037882224

_1037883174

