

Frequency Division Multiplexing (FDM)

Wavelength Division Multiplexing

Impact of WDM

- Many big organizations are starting projects to design WDM system or DWDN (Dense Wave Division Mutiplexing Network). We may see products appear in next three years.In Fujitsu and CCL/Taiwan, 128 different wavelengthes on the same strand of fiber was reported working in the lab.
- We may have optical routers between end systems that can take one wavelenght signal, covert to different wavelenght, send it out on different links. Some are designing traditional routers that covert optical signal to electronical signal, and use time slot interchange based on high speed memory to do the switching, the convert the electronic signal back to optical signal.
- With this type of optical networks, we will have a virtual circuit network, where each connection is assigned some wave length. Each connection can have 2.4 gbps tremedous bandwidth.
- With inital 128 different wavelength, we can have about 10 end users. If each pair of end users needs to communicate simultaneously, it will use 10*10=100 different wavelength.
- There is an issue of protocol layering. Should we have IP/DWDN directly, or IP/Sonet/DWDN? No one is talking about IP/ATM/Sonet/DWDN.

Basic Digital Hierarchies

North American Digital Hierarchy

European Digital Hierarchy

SONET (Synchronous Optical NETwork)

SPE: synchronous payload data This is STS-1 frame with 9×90 bytes (51.84 Mbps). STS-3 frame has 9×270 bytes (155.52 Mbps).

Frame rate is 8000 per second.

SONET and SDH Multiplex Rate

SDH (Synchronous Digital Hierarchy) STS (Synchronous Transport Signal)

SONET		SDH	Data Rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28		

SONET Add-Drop Multiplexor (ADM)

(a) pre-SONET multiplexing

(b) SONET Add-Drop multiplexing

What is the Network Restoration Problem?

- Types of Failures: Channel, Link, Node, Area, and Transient Failures.
- Network Restoration: Process of recovering from network failures.
- Types of Restoration Approaches: Centralized, Distributed, Hierarchical.

Evolution of Switching Techniques

2. Circuit Switching using FDM or TDM with demand (dynamic channel assignment) e.g. old telephone networks, satellites. difficulties in handling computer data traffic:

- demand assignment per "message" \Rightarrow relative long set-up time.
- demand assignment per "session" \Rightarrow low utilization.

3. Message Switching
with data concentrator for long distance high-speed line also called statistical multiplexing or

ATDM (Asynchronous Time-Division Multiplexing)
used in stored-and-forward network.
Note: addresses needed to identify messages.
4. Packet Switching
variable size messages from host segmented into small packets.
advantages-simultaneous parallel path possible; pipelining in multihop network.
Problems- disassembly, reassembly, sequencing, support real-time traffic.

Circuit Switching vs. Packet Switching: Network

(b)

Timing Analysis of Ckt SW, Msg SW and Pkt SW

Important Network Design Parameters for Analyzing Network Performance

Propagation delay refers to how long it takes for a bit to traverse a link. It depends on the distance and the signal propagation speed.
Example: 10 km distance, $2^{\star} 10^{8} \mathrm{~m} / \mathrm{sec}$ propagation speed.

Propagation delay $=$ distance / signal propagation speed
Transmission delay $=$ message size $/$ transmission speed
Queueing delay depends on

- how many requests on the queue and
- how fast the node can process them.

Network with Links and Switches

Switches can be divided into two classes:

- Space-division switches: provide separate physical connections between inputs and outputs (ports).
- Time-division switches: network flow are time-division multiplexed streams.

User 1

Switch

Time Division Switch

Time division switch is used in the circuit switching systems.
How to set up a connection through the time division switch?
What is the relationship between the memory access time (T) of RAM buffer and the number of slots/channels (n) in the frame, assuming a frame period of $125 \mu \mathrm{sec}(8000$ frames $/ \mathrm{sec}$)?
chow
CS522 F2001—Multiplexing and Switching—10/17/2001—Page 21

Time Division Switch

- Here we assume this a telephony network where frames (big or small) are sent at 8000 frames $/ \mathrm{sec}$ frame rate, i.e., $125 \mu \mathrm{sec}$ per frame.
- A separate signaling (call setup) channel is used to tell the switch which pairs of users are trying communicate each other. It results in the mapping table content shown above. Here the mapping table shows (channel0 talks to channel 4, channel1 to channel7, channel2 to channel6)
- There are two basic ways to implement this time slot interchange:
- Sequential write to RAM, random read out of RAM:

In this approach, channel data are written to the RAM sequentially, i.e., data of the first channel is written to the first word of the RAM.
After all data is in, the data in RAM are read according to the mapping table to form the outgoing frame. For example, the first time slot of the outgoing frame is filled with the 4th word of RAM, the 2nd time slot is filled with 7th word.

- Random write to RAM, sequential read out of RAM:

In this approach, the time slot data in the incoming frame are written to the RAM "randomly" according to the mapping table. After all data is in, the data in RAM are read sequentially to form the outgoing frame.

- The outgoing frame cannot be sent until the whole incoming frame is read.

Crosspoint Switch and Multistage Switch

A 8×8 crosspoint switch How many crosspoints are needed in this switch?

A 3-stage switch Why 3-stage? Why not 2-stage?

Those lines without input cell is assume to have very large routing tag value. Batcher sorting switch sorts the cells according to the routing tag values.
For this work, in a given cycle, no two cells go to the same output port.
The nth stage of banyan switch interprets the nth bit of routing tags as routing bit.

CS522 F2001—Multiplexing and Switching—10/17/2001—Page 27

Exercise Cell Switching

Prob. 3. Batcher-Banyan Switch. Draw the 2×2 element configurations along the

Tst 3-stage Network2nd 3-stage Network
routes for those 4 cells.

Intelligent Networks

Provides services using enhanced signaling networks.

- Caller ID, voice mail, voice recognition, call screening, call back...

Signalling System \#7
a packet network that control the setting up, managing, and releasing of telephone call. It also supports, IN, mobile cellular networks, and ISDN.

Application Layer	TUP	TCAP	ISUP
Presentation Layer			
Session Layer			
Transport Layer		SCCP	
Network Layer	MTP Level 3		
Data Link Layer	MTP Level 2		
Physical Layer	MTP Level 1		

It has its own layering called part and related message format.
It is used by a cellular network to communication with LECs or IXCs.

Paging System vs. Cellular Phone System

one way communication vs. two way communications
Some companies to offer integrated system that provides both services.
Advanced paging system can relay email/bulletin board messages.

Fig. 2-53. (a) Paging systems are one way. (b) Mobile telephones are two way

Advanced Mobile Phone System (AMPS)

invented by Bell Lab. and deployed in US in 1982.
$10-\mathrm{km}$ cell. Mobile phone put out 0.6 watts; transmitter in cards are 3 watts.
AMPS uses 832 full duplex channels. 832 simplex channels from 824-849, another 832 simplex channels from $869-894 \mathrm{MHz}$. Each channel is 30 kHz wide. FDM is used. They are divided into two carriers (B -side and A -side).

(a)

(b)

AMPS Call Management

Registration: (register once every 15 minutes)

- When a cellular phone is switched on, it scans 21 control channels, picks the strongest one, broadcasts the 32 bit serial number and 34 bit telephone number (10 bits for 3 digit area code, 24 bits for 7 digit subscriber number), in digital form, multiple times with ECC code.
- Base station hears the registration msg, keeps record, and inform the customer's home MTSO(Mobile Telephone Switching Office).
Making cellular call:
- Enter number in keypad and press SEND button. The destination phone number and its ID are sent over the shared access channel. If collision occurs, retry it later.
- Base station relays info to MTSO, which allocate idle channel, and make phone call to destination.
Incoming call to a cellular phone:
- a packet first sends to the callee's home MTSO to find out its current location.
- a packet then sends to the current base station, which broadcasts on the paging channel for the called phone.
- When the called phone responded, a voice channel is assigned and rings.

Personal Communications Services (PCS)

- Use CDMA (Code Division Multiplexing Access).
- Microcell (50-100 meters) 0.25 watt light weight terminal.
- Small base station, toaster size, called telepoints, on top of telephone/light pole.
- Use $1.7-2.3 \mathrm{GHz}$ spectrum.
- FCC auction off licenses to use PCS spectrum in 1994-5. Get 7.7 billion dollars.
- The original users in the spectrum needs to be relocated. Who should pay that?

Iradium Project

- Use 77 LEO (low earth orbit) satellites.
- Revised to 66 LEO, 1628 moving cells.
- Provide world-wide telecommunication services among hand-held devices using those LEO satellites.
- The coverage areas of PCS or Current Cellular systems are limited. You pay more for access if you are not in the area of your subscriber.

(a)

(b)

Fig. 2-57. (a) The Iridium satellites form six necklaces around the earth. (b) 1628 moving cells cover the earth.

